Aggregate Nearest Neighbor Queries in
Spatial Databases

DIMITRIS PAPADIAS
Hong Kong University of Science and Technology

YUFEI TAO
City University of Hong Kong
and

KYRIAKOS MOURATIDIS and CHUN KIT HUI
Hong Kong University of Science and Technology

Given two spatial datasets P (e.g., facilities) and @ (queries), an aggregate nearest neighbor (ANN)
query retrieves the point(s) of P with the smallest aggregate distance(s) to points in @. Assuming,
for example, n users at locations q1, . .. g5, an ANN query outputs the facility p € P that minimizes
the sum of distances |pg;| for 1 < i < n that the users have to travel in order to meet there. Similarly,
another ANN query may report the point p € P that minimizes the maximum distance that any
user has to travel, or the minimum distance from some user to his/her closest facility. If @ fits in
memory and P is indexed by an R-tree, we develop algorithms for aggregate nearest neighbors that
capture several versions of the problem, including weighted queries and incremental reporting of
results. Then, we analyze their performance and propose cost models for query optimization. Finally,
we extend our techniques for disk-resident queries and approximate ANN retrieval. The efficiency
of the algorithms and the accuracy of the cost models are evaluated through extensive experiments
with real and synthetic datasets.

Categories and Subject Descriptors: H.2 [Database Management]; H3.3 [Information Storage
and Retrieval]: Information Search and Retrieval

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Spatial database, nearest neighbor queries, aggregation

This research was supported by the grant HKUST 6180/03E and CityU 1163/04E from Hong Kong
RGC.

Authors’ addresses: D. Papadias, K. Mouratidis, and C. K. Hui, Department of Computer Science,
Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; email:
{dimitris,kyriakos,michaelh}@cs.ust.hk; Y. Tao, Department of Computer Science, City University
of Hong Kong, Tat Chee Avenue, Hong Kong, China; email: taoyf@cs.cityu.edu.hk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.

© 2005 ACM 0362-5915/05/0600-0529 $5.00

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005, Pages 529-576.

530 . D. Papadias et al.

p(,.

P
[

(a) f=sum
Fig. 1. Examples of ANN queries.

1. INTRODUCTION

This article proposes and solves aggregate nearest neighbor (ANN) queries in
spatial databases. Let f be a monotonically increasing function! and @ =
{g1, ...,q,} be a set of query points. We define the aggregate distance between
a data point p and @ as adist(p, @) = f(pqil,-..,|pq,l), where |pq;| is the
Euclidean distance of p and g;. Givenaset P = {p1, ..., py} of staticdata points,
an ANN query returns the data point p with the minimum aggregate distance.
Similarly, a £-ANN query outputs the 2 (>1) data points with the smallest ag-
gregate distances. As an example consider Figure 1, where the dataset P con-
tains a set of facilities p1, ..., p12 and @ is a set of user locations q1, ...,qq4. If f
is the sum function (Figure 1(a)), the corresponding 1-ANN query reports the
facility (pg) that minimizes the total distance that the users have to travel in or-
der to meet there, that is, adist(pg, @) = Y_i—_, |pegi| = 24 < adist(p, QVp € P.

On the other hand, iff is the max function (Figure 1(b)), the ANN query
will report the facility (p19) that minimizes the maximum distance that any
user has to travel (adist(piy, @) = max;‘:1|p10qi| = |p1q1l = 9), which,
in turn, leads to the earliest time that all users will arrive at the meeting
point (assuming that they move with the same speed). Finally, if f = min
(Figure 1(c)), the result is the facility (p5) which is closest to any user, that
is, adist(ps, @) = min?:1|p5qi| = |psqs] = 1 < adist(p, @) Vp € P. Another
interesting instance of ANN queries occurs when each point ¢; in @ is asso-
ciated with a positive weight w;. Returning to our example, consider that in
Figure 1(a) each q; is the position of some airplane carrying w; passengers and
the goal is to find the airport p that minimizes the total distance traveled by
all passengers (as opposed to airplanes), that is, adist(p, @) = Z?Zl wilpg;|.
Similarly, in Figure 1(b), if each airplane has average travel speed v;, then the
airport p that leads to the shortest meeting time is the one that minimizes
max}_,|pg;|/vi, that is, w; = 1/v;.

Aggregate NN queries constitute a generalized form of nearest neigh-
bor search, where there are multiple (instead of one) query points and the

1A function f is monotonically increasing iff: Vix; > x; implies that f(x1,...,2,) > f(x],...,%,).

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Aggregate Nearest Neighbor Queries in Spatial Databases . 531

optimization goal depends on the function f. Applications that will benefit
from the efficient processing of ANN queries include resource allocation, vir-
tual battlefield and meteorology. As an example of the first case, consider a
franchise that wants to open a restaurant in order to attract the maximum
number of customers from a set of urban blocks. A (weighted) sum ANN query
reports the location that minimizes the sum of distances to all urban blocks of
interest. Such examples can be constructed for several similar problems (e.g.,
a supermarket chain that wants to determine the warehouse location minimiz-
ing the sum of distances to all stores served by the new warehouse). For the
second case, assume that a military unit wants to identify a collection point
for troops under distress. A max ANN query outputs the point that leads to
the earliest pick-up time. As a meteorology example, consider a system that
monitors severe weather phenomena (e.g., typhoons). A min ANN reports the
urban areas under the highest potential danger based on their proximity to any
phenomenon.

In addition to their usefulness as standalone methods, ANN query process-
ing techniques can be integrated as modules for solving numerous related prob-
lems. As an example, assume that a franchise plans to open & branches in a city,
so that the average distance from each residential block to the closest branch
is minimized. This is an instance of k-medoids application, where residential
blocks constitute the input dataset and the k& branch locations correspond to the
medoids. Despite an avalanche of methods for small and moderate-size datasets
[Ng and Han 1994], currently there exists no technique for very large databases.
The proposed ANN algorithms may potentially lead to scalable solutions. Fur-
thermore, in clustering [Jain et al. 1999] and outlier detection [Aggrawal and Yu
2001], the quality of a solution can be evaluated by the sum of distances (or the
maximum distance) between the points and their nearest cluster center. Finally,
the operability and speed of very large circuits depends on the relative distance
between their various components. ANN queries can be applied to detect ab-
normalities and guide relocation of components [Nakano and Olariu 1997].

For the following discussion, we consider Euclidean distance and 2D point
datasets indexed by R-trees [Guttman 1984; Beckmann et al. 1990], but the
proposed techniques are applicable to higher dimensions and alternative data-
partition access methods (e.g., A-trees [Sakurai et al. 2000]). For ease of pre-
sentation, the examples focus on the sum, max and min functions due to their
significance in practice. In cases where the extension to the weighted versions
of these problems is non-trivial, we comment on the necessary changes. The
rest of the article is structured as follows. Section 2 outlines related work on
spatial nearest neighbor search and top-k2 queries. Section 3 develops three al-
gorithms for processing memory-resident ANN queries, which are independent
of the function, i.e., f is also an input parameter. Section 4 describes cost mod-
els that provide significant insight into the behavior of the algorithms and can
be used for query optimization. Section 5 deals with disk-resident query sets
and Section 6 discusses approximate ANN retrieval. Section 7 experimentally
evaluates the effectiveness of the proposed techniques and Section 8 concludes
the paper with directions for future work.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

532 . D. Papadias et al.

Ps R
N;|N
P s N N, . y
?, N3 1 . 14 NI|N3’N4| | |N5’N6| 2|
mindis N,q)
- q
mindist(N,,N,) &aa:c region |p1|p2 |p3||p4 ’p5 |p6|
e N N
Piog v ’ 4 1ps[Ps|Po||Pro|PiilPd]
p Py N, ’ B Ns N6
8 N5 VP
Py
(a) Points and node extents (b) The corresponding R-tree

Fig. 2. Example of an R-tree and a point NN query.

2. RELATED WORK

Nearest neighbor (NN) search is one of the oldest problems in computer science.
Several algorithms and theoretical performance bounds have been devised for
exact and approximate processing in main memory [Sproull 1991; Arya et al.
1998]. Furthermore, the application of NN search to content-based and similar-
ity retrieval has led to the development of numerous cost models [Papadopoulos
and Manolopoulos 1997; Weber et al. 1998; Beyer et al. 1999; Bohm 2000] and
indexing techniques [Sakurai et al. 2000; Yu et al. 2001] for high-dimensional
versions of the problem. In spatial databases most of the work has focused on
the point NN query that retrieves the £(>1) objects from a dataset P that are
closest (usually according to Euclidean distance) to a point ¢q. Algorithms for
conventional (i.e., point) NN queries are discussed in Section 2.1. Section 2.2
overviews some related work in the literature of top-k£ (or ranked) queries.

2.1 Conventional NN Queries

The existing algorithms assume that P is indexed by a spatial access method
(most often an R-tree) and utilize some pruning bounds to restrict the search
space. Figure 2 shows an R-tree for point set P = {p1, po,..., p12} with a
capacity of three entries per node (typically, the capacity is in the order of
hundreds). Points that are close in space (e.g., p1, p2, p3) are clustered in the
same leafnode (IV3). Nodes are then recursively grouped together with the same
principle until the top level, which consists of a single root. Given a node N and
a query point g, the mindist(IN, q) corresponds to the closest possible distance
between ¢ and any point in the subtree of node N. Similarly, mindist(N1, Ng)
is the minimum possible distance between any two points that reside in the
sub-trees of nodes N and Ns. Figure 2(a) shows the mindist between point q
and node N1, and between N, and Nos.

The first NN algorithm for R-trees [Roussopoulos et al. 1995] searches the
tree in a depth-first (DF) manner, recursively visiting the node with the mini-
mum mindist from q. For example, in Figure 2, DF accesses the root, followed

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Aggregate Nearest Neighbor Queries in Spatial Databases . 533

Algorithm DF NN (Node: R-tree node, g: query point)
if Node is an intermediate node
sort entries &, in Node according to mindist(N;,q) in list
repeat
get next entry N; from /list
if mindist(N;,q) < best_dist
DF NN(N,,q); //Recursion
until mindist(N;,q) > best_dist or end of list
else // leaf node
for each point p; in Node
0. if |pjq| < best_dist
1 best_ NN = p;; best_dist = |p;q| //Update current NN

— = 0 00 N LN B W~

Fig. 3. DF NN algorithm.

by N7 and N4, where the first potential nearest neighbor is found (ps). During
backtracking to the upper level (node N;), the algorithm prunes entries whose
mindist is equal to or larger than the distance (best_dist) of the nearest neigh-
bor already retrieved. In the example of Figure 2, after discovering ps, DF will
backtrack to the root level (without visiting N3), and then follow the path Ng,
Ng where the actual NN p1; is found.

Figure 3 illustrates the pseudocode for DF NN queries. This is a simpli-
fied version because the original algorithm [Roussopoulos et al. 1995] includes
some additional pruning heuristics (e.g., minmaxdist), which are redundant (as
shown in Cheung and Fu [1998]). The first call of the algorithm uses the root of
the data R-tree after setting the initial value of best_dist to co. DF can be easily
extended for the retrieval of 2 > 1 nearest neighbors: the £ points discovered
so far with the minimum overall distances are maintained in an ordered list of
k pairs < p, |pq| > (sorted on |pq|) and best_dist equals the distance of the kth
NN. Whenever a better neighbor is found, it is inserted in the list and the last
element is removed.

The DF algorithm is suboptimal, that is, it accesses more nodes than nec-
essary. In particular, as proven in Berchtold et al. [1997], Papadopoulos and
Manolopoulos [1997], and Bohm [2000], an optimal algorithm should visit only
nodes intersecting the search region, that is, a circle centered at the query
point ¢ with radius equal to the distance between ¢ and its nearest neigh-
bor. In Figure 2(a), for instance, an optimal algorithm should visit only the
root, N1, N3, and Ng (whereas DF also visits N4). The best-first (BF) algo-
rithm of Henrich [1994] and Hjaltason and Samet [1999] achieves the opti-
mal I/O performance by maintaining a heap H with the entries visited so far,
sorted by their mindist. As with DF, BF starts from the root, and inserts all
the entries into H (together with their mindist). For example, in Figure 2(a),
H = {<N;i,mindist(N1,q)>, <Ny, mindist(Ns,q)>}. Then, at each step, BF
visits the node in H with the smallest mindist. Continuing the example, the al-
gorithm retrieves the content of N1 and inserts all its entries in H, after which
H = {<Nj, mindist(Ng,q)>, <N4, mindist(Ny4,q)>, <N3, mindist(Ns,q)>}.
The next two nodes accessed are Ny and Ng (inserted in H after visiting
Ny), in which pq; is discovered as the current NN. At this time, the algorithm

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

534 . D. Papadias et al.

Algorithm incremental BF NN (g: query point)

1. insert <R-tree root, mindist(root,q)> into heap H

2. repeat

3 deheap next entry <e, mindist(e,q)> from H

4. if e is a data point report <e, mindist(e,q)>

5 else // e is a node

6 for each entry e; in e insert < e, mindist(e;,q)> into heap H
7. until termination condition

Fig. 4. Incremental BF NN algorithm.

terminates (with pi; as the final result) since the next entry (N4) in H is farther
(from g) than pq;.

Similarly to DF, BF can be easily extended to ANN queries (¢ > 1). In addi-
tion, BF is incremental, that is, it can output the nearest neighbors in ascending
order of their distance to the query without a predefined termination condition.
Consider, for example, a query that asks for the nearest city of Hong Kong with
population more than 2M. An incremental algorithm finds the nearest city ¢,
and examines whether it qualifies the population condition. If the answer is
negative, the algorithm retrieves the next nearest city cs and repeats this pro-
cess until a city satisfying the population condition is found. The implication is
that the number of nearest neighbors to be retrieved is not known in advance.
Figure 4 shows the incremental version of BF, where data points are reported
according to the order that they are de-heaped. To simplify the pseudocode, in
line 6, we assume that the mindist of a data point corresponds to its actual
distance.

A similar framework also applies to closest pair queries that find the pair of
objects (from two datasets) with the minimum distance. Hjaltason and Samet
[1998], Corral et al. [2000], and Shan et al. [2003] propose various algorithms
based on DF and BF traversal. The difference from NN is that the algorithms ac-
cess two index structures (one for each data set) simultaneously. If the mindist
of two intermediate nodes N; and Nj (one from each R-tree) is already greater
than the distance of the closest pair of objects found so far, the subtrees of
N; and Nj cannot contain a closest pair (thus, the pair is pruned). Further-
more, variations of nearest neighbor queries have been studied in the context
of (i) road networks, where the distance between two points is defined as the
length of the shortest path connecting them in the network [Papadias et al.
2003; Kolahdouzan and Shahabi 2004], (ii) spatio-temporal databases, where
the query and/or the data objects move [Kollios et al. 1999; Song and Rous-
sopoulos 2001; Benetis et al. 2002; Tao and Papadias 2003], and (iii) data stream
environments, which necessitate techniques for the efficient handling of contin-
uous queries and intensive updates [Liu and Ferhatosmanoglu 2003; Yu et al.
2005; Xiong et al. 2005].

2.2 Top-k Queries

A top-k query returns the & tuples with the highest scores according to a mono-
tone preference function. Assuming that the data reside in the same repository,

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Aggregate Nearest Neighbor Queries in Spatial Databases . 535

Algorithm threshold (Q: set of query features)

/* T: global threshold; best sim: similarity of the best current solution™/

1. for each query feature: =0

2. T=0; best sim=w; best result=null //Initialization

3. while (T < best_sim)

4 select the next query feature ¢;

5. get the next match p; of q;// probe search engine i

6. t; = score of p; on feature g;; update 7// the global threshold increases
7 compute the global similarity(p,,Q) of p;

8 if similarity(p;,Q)<best_sim

9. best result=p;; best_sim = similarity(p;,Q) //Update current result
10. end of while

Fig. 5. The threshold algorithm.

such queries can be processed by Onion [Chang et al. 2000] (based on convex
hulls) or Prefer [Hristidis and Papakonstantinou 2004] (based on view material-
ization). If the data reside in multiple databases, several algorithms (see Fagin
et al. [2001], Bruno et al. [2002], and Fagin [2002]) compute the final output by
integrating partial search results in each repository. As an example, consider
that a user wants to find the £ images that are most similar to a query image @,
where similarity is defined according to n features q;, ..., q, (color histogram,
object arrangement, texture, shape, etc.). The query is submitted to n retrieval
engines that return the best matches for particular features together with their
similarity scores. The problem is to combine the multiple outputs in order to
determine the top-%k results in terms of their overall similarity.

Assume that we want to retrieve the single best match in terms of the overall
similarity, defined as the sum of scores for individual features. The threshold
algorithm [Fagin et al. 2001], shown in Figure 5, works as follows. The first
search engine returns the data object p; with the highest score on the first fea-
ture ¢1. The global similarity between p; and @ (with respect to all features) is
computed. Then, the second search engine returns the best match py according
to q2. The overall similarity of pe is also computed, and the best of p; and po
becomes the current result (best_result). The process is repeated in a round-
robin fashion, that is, after the last search engine is queried, the second match
is retrieved with respect to ¢; and so on. The algorithm terminates when the
global similarity of the current result is higher than the similarity that can be
achieved by any subsequent solution. In order to compute this value, the algo-
rithm maintains, for each search engine, a local threshold ¢; that corresponds
to the partial score of the last retrieved object (with respect to feature g;). The
best possible similarity that can be achieved by any not-yet discovered point is
T =Y"" , ¢. In the next section, we adapt this approach to ANN processing.

3. ANN ALGORITHMS FOR MEMORY-RESIDENT QUERY SETS

Sections 3.1, 3.2, and 3.3 present three methods for processing memory-resident
ANN queries. For simplicity, we illustrate all algorithms for single (¢ = 1)
ANN retrieval in 2D space using depth-first traversal. Section 3.4 discusses
modifications for arbitrary values of 2 and dimensionality, as well as, best-first

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

536 . D. Papadias et al.

Table I. Frequently Used Symbols

Symbol Description
QR(Q;) set of query points (that fits in memory)
n(n;) number of query points in Q(Q;)
M(M;) MBR of Q(®;)
|pqil Euclidean distance between p and query point g;
adist(p, Q) = f(w1.|pqil,---, aggregate distance between point p and query
Wy.|pqnl) points in @
centroid of @
mindist(N, q) minimum distance between MBR of node N and
point ¢
mindist(p, M) minimum distance between data point p and query
MBR M
amindist(N, Q) = f(mindist(N,q1),..., aggregate mindist of node N from points in @
mindist(N, qy,))
amindist(N, M) = f(mindist(N,M), ..., aggregate mindist of node N with respect to M
mindist(N, M))
amindist(p, M) = f(mindist(p, M), ..., aggregate mindist of point p with respect to M

mindist(p, M))

1:4 pe 114 pe
q, q, 1,=4 Py,
1,=1 ° 4
Pio Pio 4
pe Y q,%8 P12
Sum Sum
T =2, adist(p,, Q)=best_dist=6; adist(p ,,Q) =7 T =8, adist(p](), Q)=best_dist=6; adist(p,,0)=8
Max Max
T =1, adist(p,, Q)=best_dist=5; adist(p,,Q) = 6 T =4, adist(p, ,Q)=best_dist=4
Min
T =1, adist(p ,, Q)= adist(p,, Q) = best_dist=1
(a) Retrieval of 1¥ NN (b) Retrieval of 2" NN

Fig. 6. Example of MQM.

traversal including incremental output of the results and handling of nonspatial
preferences. Table I contains the primary symbols used in our description.

3.1 Multiple Query Method

The multiple query method (MQM) utilizes the main idea of the threshold al-
gorithm, that is, it performs incremental NN queries for each point in @ and
combines their results.

Algorithm. Assume the set of data points shown in Figure 6 and a query
with @ = {q1,q92}, [= sum. MQM retrieves the first NN of ¢q; (p1p with
|p10g1l = 1) and computes |p10g2| = 5, adist(p1o, @) = |p10q1| + [p10g2| = 6.
Similarly, the method finds the first NN of g2 (point pis with |piegs] = 1)

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Aggregate Nearest Neighbor Queries in Spatial Databases . 537

Algorithm MQM (Q: set of query points, f: monotonic function)

/* T: global threshold; best dist: aggregate distance of the current NN */
1. for each query point: =0

2. T=0; best dist=0; best NN=null //Initialization

3. while (T < best_dist)

4 select the next query point g;

5. get the next nearest neighbor p; of q;//Using incremental BFF NN

6. 1= |pgqi

7 update T; /T = fit;, b5y 5..cs ty)

8 compute adist(p;,0)

9. if adist(p;,Q)<best_dist

10. best_NN =pj; best_dist = adist(p;,Q) //Update current ANN of Q
11. end of while

Fig. 7. The MQM algorithm.

and computes |p12q1|=06, adist(pi2, @)="T. Since adist(p1g, @) <adist(pis,
Q), p1o becomes the current ANN (best_NN) of Q. Best_dist (= 6) denotes the
aggregate distance of best_ NN (p19). For each query point q;, MQM stores a
threshold ¢;, which is the distance of its current NN, that is, {1 = |p1oq1| = 1
and ¢y = |p12g2| = 1. The total threshold T is defined as T' = f(¢y, ..., t,), which
in this case is the sum of the two thresholds (=2). Continuing the example, since
T < best_dist, it is possible that there exists some point in P whose distance to
Q is smaller than best_dist. Therefore, MQM retrieves the second NN of g7 (p11)
and computes the aggregate distance adist(p11, @) = |p1191] + |p1192] = 8. The
best_NN remains pio because best_dist < adist(p11, @). The threshold values
are set to t1(= |p11q1]) = 4, T = 5 and MQM continues since best_dist(=6) > T'.
The next query finds again pi; (as the second NN of ¢2) and sets #, = 4 and
T = 8. MQM now terminates (best_dist < T') with pi¢ as the result. In other
words, every nonencountered point has distance greater than or equal to T,
and therefore it cannot be closer to @ than pp(in terms of aggregate distance.
The only difference for the max function concerns the computation of the ag-
gregate distances and the value of the threshold 7. Returning to the example
of Figure 6, the aggregate distance of the first NN (p19) of g1 is adist(p1g, @) =
max(|p10q1l, |p10g2]) = 5. Similarly, for the first NN of qq, adist(pis, @) =
max(|p12q1l, |p12gz|) = 6 and p1g becomes the best_ NN with best_dist = 5. The
threshold T is set to max(t1, t3) = 1. Since best_dist > T, MQM continues with
the second NN of g; (p11), which has adist(p11, @) = max(|p1191], |p1192]) = 4
and replaces pio as the best NN. The value of T is set to 4 (i.e., the new #;)
and MQM terminates with p;; as the final result. The processing of the min
function is simpler since it suffices to find the first NN of each query point; the
final result is the NN (in this case, p1g or p12) with the minimum distance.
Figure 7 shows the pseudocode for MQM (single NN retrieval) capturing any
monotonically increasing function. The only lines specific to individual func-
tions are 7 (update of threshold T') and 8 (computation of adist). The algorithm
for computing nearest neighbors of query points should be incremental (e.g.,
best-first search as shown in Figure 4) because the termination condition is not

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

538 . D. Papadias et al.

known in advance. The handling of weights is straightforward; in particular,
the aggregate distance and global threshold computations must also take into
account the weights (e.g., in the case of the sum function T' = >, w; - ¢;). Fur-
thermore, instead of retrieving NNs for each query point in a round-robin fash-
ion, we choose the next query point g; with a probability that is proportional to
its weight w;. This minimizes the extent of individual queries since, intuitively,
the final result is more likely to be near the “most important” query points. The
weighted min function is an exception to this policy because, unless there is a
data point that coincides with some query point (i.e., adist(p, @) = 0), the ANN
algorithm can only terminate if there is one NN found for each query point.

Proof of Correctness

LEmMma 3.1. MQM reports the point of P with the minimum aggregate dis-
tance from Q.

ProoF. Let ppes: be the output of MQM and adist,,.s its aggregate distance.
Clearly, ppes: has the minimum adist among all the points encountered by the
algorithm before its termination. In order to prove correctness, it suffices to
show that each non-encountered point p € P has adist(p, @) > adistp.s;. MQM
terminates when T' = f(¢1,...,%,) > adistpes. It holds that |pq;| > ¢; for each
q; because, otherwise, p would have been discovered by the incremental NN
search for some query point. Due to the monotonicity of f : adist(p, @) =

fUpqils -5 pq,) = [, ..., t) = T > adistpes;. Hence, the result of MQM is
correct. The proof also captures the existence of weights since the inequality
fwi-1pqil, ..., wn - Ipg,D) > fw1-t1,...,w, - t,) =T still holds. O

3.2 Single Point Method

MQM may incur multiple accesses to the same nodes and retrieve the same
data point through different queries. To avoid this problem, the single point
method (SPM) processes ANN queries by a single index traversal. First, SPM
computes the aggregate centroid q of @, which is a point in space that minimizes
(exactly or approximately) the value of adist(q,). The intuition behind this
approach is that the aggregate nearest neighbor is a point of P “near” q. The
centroid depends on the function f and its exact computation is not always
possible. Nevertheless, SPM returns correct results for any possible selection
of q; a good approximation (or, ideally, an exact aggregate centroid) leads to
fewer node accesses. It remains to derive (i) the computation of ¢, and (ii) the
range around ¢ in which we should search for points of P, before we conclude
that no better NN can be found.

Centroid Computation. The centroid computation is performed at the ini-
tialization phase of SPM and does not incur any I/O operations since® is
memory-resident. In the case of sum, gminimizes the function adist(q,) =
> " 1 lgqg;l, and is also known as the Fermat—Weber point [Wesolowsky 1993].
Let (x, y) be the coordinates of ¢ and (x;, y;) be the coordinates of query point
g;. Since the partial derivatives of function adist(q, @) with respect to its in-
dependent variables x and y are zero at the centroid g, we have the following

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Aggregate Nearest Neighbor Queries in Spatial Databases . 539

equations:

0 adzst(q Q) 1 (x —x;) B
Z\/(x—xl)2+(y yl)2 a

9 adzst(q Q) = (y — i) _
Z Ve -2+ (y =2

Unfortunately, the above equations cannot be solved into closed form for n > 2,
or in other words, they must be evaluated numerically, which implies that the
centroid is approximate. In our implementation, we use the gradient descent
[Hochreiter et al. 2001] method to quickly obtain a good approximation. Specif-
ically, the method starts with the geometric centroid, thatis,x = (1/n)-> "} ; x;,
and y =(1/n)- >} ; y;, and modifies its coordinates as follows:
0 adist(q, @) 0 adist(q, @)
x=x—-n———andy=y - n——,
dx ay
where n is a step size. The process is repeated until the distance function
adist(qg, @) converges to a minimum value. The same technique, but with ini-
tial coordinates (for the geometric centroid) x = (1/ >} ;w;) - Y -, w; - x; and,
y=Q/Y" w)- > wi- yi, captures the existence of weights.

For the max function, the centroid (minimizing the function adist(q, @) =
max_,|qq;|) corresponds to the center of the smallest disk that contains all
points in @. This is also known as the minimum enclosing circle problem, for
which a variety of algorithms derive exact answers. In our implementation,
we use the randomized incremental algorithm of Welzl [1991] with expected
linear time (to the number of query points). Unfortunately, to the best of our
knowledge there is no method for deriving the exact centroid in the presence
of weights. Thus, for weighted max, we can use the same centroid as in the
un-weighted case.

Considering the min aggregate function, any of the query points can be se-
lected as the centroid since it leads to adist(q, @) = min;_,|qq;| = 0. Among the
n alternatives, we choose the one that minimizes max?_,|q;q;| (i.e., the query
point with the lowest maximum distance from any point in). The reason for
this choice will become apparent after the description of the pruning strategy
of SPM. In the weighted min scenario, among the n possible choices for q, we
select the query point g; with the maximum weight w;.

Algorithm. Having computed the aggregate centroid, we now proceed with
the main algorithm. The centroid g can be used to prune the search space based
on the following lemma.

Lemma 3.2. Let @ ={q1,...,q,} be a set of query points and q an arbitrary
point in space. The following inequality holds for any data point p:adist(p, @) >
fUpql—lqiql, ..., pql—1g.q|), where |pq| denotes the Euclidean distance between
pandq.

Proor. By the triangular inequality, for each query point g; we have that:
Ipg;| + lgiql = Ipql = Ipg;| = Ipql — lgiq|. Due to the monotonicity of f:
adist(p, @) = f(Ipqil, ..., 1pg,D) = f(pql —lg1ql, ..., pgl — Igaq]). O

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

540 . D. Papadias et al.

9, s best NN q, best NN centroid q — 4, s best NN
centroid ge &K 4 centroid 2 - 3 4
) GLE I~< NAVLE | A4 12
imdlist QY @)=10] indistC ,q)=6 itV v mindist(N, q)=11, 1
mindist(N ,,q)= mindist(N ,q)= st(N)= indist(N, q)=
G 4 " 54 mindist(N ,,q) r iindist(x\"_,q)zs s mindist(N,,q)=7
N, N, N2
N, ’ N; - N;
(a) f=sum (b) f=max (¢) f=min

Fig. 8. Pruning of nodes in SPM.

As shown in the proof of correctness, Lemma 3.2 ensures that the following
heuristic for pruning intermediate nodes is safe, that is, it only discards nodes
that cannot contain qualifying ANNs.

Heuristic 1. Let g be the centroid of @ and best_dist be the distance of the
best ANN found so far. Node N can be pruned if:

f (mindist(N,q) — |q1q|, ..., mindist(N,q) — |g.q|) > best_dist,

where mindist (N, q) is the minimum distance between the MBR of N and the
centroid g, and best _dist is the aggregate distance of the current ANN. For sum,
the inequality of Heuristic 1 becomes:

Z(mindist(N, q) — |qiq|) > best_dis <
i=1

n
n - mindist(N, q) > best _dist + Z lqiq]|.
i=1
Figure 8(a) shows an example, where Y I ; |g;q| = 6 and best_dist = 16. Since
3-mindist (N1,q) = 30 > best_dist+) ;_; 19;q] = 22, node N is pruned. On the
other hand, N9 has to be visited because it passes Heuristic 1 (i.e., 3 - mindist
(Ng, q) = 18 < 22). For max, Heuristic 1 takes the form:

max;_,(mindist(N,q) — |qiq|) > best_dist <
mindist(N, q) > best_dist + min!_|qiq|.

As an example, consider Figure 8(b), where min;_;|qiq| = 2 and best_dist =
max (4,5, 7) = 7 (note that the centroids are different for each function). Node
N is pruned since mindist (N1,q) = 9 > best_dist + minj_,|qiq| = 9, but node
N is visited because mindist (Nz2,q) = 5 < 9. For min, the pruning condition
translates to:

min;_;(mindist(N,q) — |qiq|) > best_dist &
mindist(N, q) > best_dist + max}_;19:ql,

which explains (in the unweighted case) the choice of ¢ as the query point that
minimizes max]_,|q;q|. In the example of Figure 8(c), q; is selected because it
leads to the lowest maximum distance (=3), and therefore to the highest prun-
ing power of the heuristic. Assuming that the ANN found so far has best dist =
min(4,5,7) = 4, both N1 and Ny are pruned because mindist (N1,q) = 11 >
best_dist + max?_,|q;q| = 7 and mindist (N2,q) =7 > 7.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Aggregate Nearest Neighbor Queries in Spatial Databases . 541

Algorithm SPM (Node: R-tree node, Q: set of query points, f: monotonic function)
/* q: the aggregate centroid of Q */
1. if Node is an intermediate node
sort entries N; in Node according to mindist(N;,q) in list
repeat
get next entry N; from /ist
if Amindist(N;,q)-|9.q|,..., mindist(N;,q)-|q.q|) < best_dist //passes Heuristic 1
SPM(N,,Q) //Recursion
until Amindist(N;,q)-|q 9|, .., mindist(N;,q)-|g.q|) > best_dist or end of list
else if Node is a leaf node
for each point p; in Node
if adis(p;,Q) < best_dist
best_ NN = p;; best_dist = adist(p;,Q) //Update current ANN

SIS0 XN LR W

_—

Fig. 9. The SPM algorithm.

Based on the above observations, it is straightforward to implement SPM
using the depth-first or best-first paradigms. Figure 9 shows the pseudocode
of DF SPM. Starting from the root of the R-tree (for P), entries are sorted in a
list according to their mindist from the query centroid ¢ and are visited (recur-
sively) in this order. Once the first entry N; with f(mindist(N;,q) — 19141, ...,
mindist(N;, q) — |gnq|) > best_dist is found, the subsequent ones in the list are
pruned. Note that the order according to mindist (N;, q) is the same as the order
according to f(mindist(N;,q)—|q1q/l, ..., mindist(N;,q) — |q.q|), since |g;q| are
constants and f is monotonic. Thus, SPM is similar to a conventional algorithm
that retrieves the NNs of the centroid ¢; the difference is in the termination
condition that is now based on aggregate, instead of conventional, distance.

Proof of Correctness

Lemma 3.3. SPM correctly reports the point of P with the smallest aggregate
distance from Q.

Proor. It suffices to prove that Heuristic 1 is safe, or, equivalently, that SPM
does not prune any nodes that may contain a better NN (than the one already
found). For all points p in a node N, it holds that |pq| > mindist(N,q) =
lpgl — lgiql = mindist(N,q) — |g;q|Vi. Thus, due to the monotonicity of f:
fpql —1q1ql, - - -, lpql — lgnq|) > f(mindist(N,q) — 1q1q/l, . .., mindist(N,q) —
|g»q). Anode is pruned by Heuristic 1 if and only if f(mindist(N,q)—|q1q|, ...,
mindist(N, q) — |gnq|) > best_dist. By combining the two inequalities, for each
pin N: f(pq| — 1919l ..., |pql — |gnq|) > best_dist. By Lemma 3.2, this im-
plies that adist(p, @) > best_dist for all points p in IV, and, therefore, N can be
safely pruned. All the above inequalities (including Lemma 3.2) hold for positive
weights; thus, the proof of correctness also captures weighted functions. O

3.3 Minimum Bounding Method

SPM visits the nodes and points around the aggregate centroid using the tri-
angular inequality to prune the search space. Depending on the distance of the
centroid and the query points, Heuristic 1 may lead to unnecessary node visits.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

542 . D. Papadias et al.
q, mindist(N 5 q;)=5

.
mindist(N , M)=3 N\ _§2 _ o mindist(N, M)~
3\ _# mindist(N,,q,)=1

Ny best NN

N,

Fig. 10. Example of Heuristic 3.

The minimum bounding method (MBM) avoids this problem by using directly
the aggregate distance between each node N and all query points: amindist
(N, @)= f(mindist(N, q1), ..., mindist(N, q,).

Algorithm. Starting from the root of the R-tree for dataset P, MBM visits
only nodes that may contain candidate points. We first discuss heuristics for
pruning nodes that cannot contain any results.

Heuristic 2. Let best_dist be the distance of the best ANN found so far. A
node N can be safely pruned if:

amindist(N, Q) > best_dist

For sum, the inequality of Heuristic 2 becomes)"/ ; mindist (N, q;) > best_dist.
Figure 10 shows a set of query points @ = {q1, g2} and its current best NN for
sum(best_dist = 5). Ng is pruned because mindist (Ng, q1) + mindist(Ng, q2) =
6 > best_dist = 5. For max, the pruning condition becomes max , mindist
(N, q;) > best_dist, that is, Ny is pruned because mindist (Ns,q1) = 5 > best_
dist = 3. For min, Heuristic 2 transforms to min!_; mindist(N, q;) > best dist,
that is, Ny must be visited because mindist(N,qs) = 1 < best dist = 2.
Heuristic 2 requires multiple distance computations (one for each query point).
In order to save unnecessary computations, it is applied only for nodes that
pass Heuristic 3.

Heuristic3. Let M bethe MBR of @, and best_dist be the aggregate distance
of the best ANN found so far. A node N cannot contain qualifying points if:

amindist(N, M) > best_dist

where amindist(N, M)= f(mindist(N, M), ..., mindist(N, M)), i.e., mindist
(N, M) appears n times as parameter of f.

In Figure 10, since amindist(N1, M) = 2 - mindist(N1, M) = 6 > best_dist =
5, N1 can be pruned. In other words, even if there is a data point p at the
upper-right corner of N7 and all the query points were lying at the lower right
corner of @, it would still be the case that adist(p, @) > best_dist. In the cases of
(unweighted) max and min, Heuristic 3 takes the same form: mindist(N, M) >
best_dist, but the values of best_dist differ. For instance, in Figure 10, best_
dist = 3 for max, whereas best_dist = 2 for min. In both cases N; can be
pruned because mindist(N1, M) = 3 > best_dist. The concept of Heuristic 3
also applies to the leaf entries; when a point p is encountered, we first compute
amindist(p, M) from p to the MBR of Q. If amindist(p, M) > best_dist (where

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Aggregate Nearest Neighbor Queries in Spatial Databases . 543

Algorithm MBM (Node: R-tree node, Q: set of query points, £ monotonic function)
/* M: the MBR of points in Q */
1. if Node is an intermediate node

2. for each entry N, of Node

3. if amindist(N;,M) < best_dist //N; passes Heuristic 3

4. if amindist(N;,Q) < best_dist //N; passes Heuristic 2

5. insert N;in a /ist sorted on amindist(N;,Q)

6. repeat

7. get next entry N, from list

8. if amindist(N;,Q) < best_dist then MBM(N,,0.f) //Recursion
9. until amindist(N;,Q) = best_dist or list is empty

10. else if Node is a leaf node

11. for each data point p; in Node

12. if amindist(p;,M) < best_dist //p; passes Heuristic 3 for points
13. if adist(p;,Q) < best_dist

14. best_NN = p;; best_dist = adist(p;,Q) //Update current ANN

Fig. 11. The MBM algorithm.

amindist(p, M) = f(mindist(p, M), ..., mindist(p, M)), p is discarded since it
cannot be closer than the best NN.

Because Heuristic 3 requires a single distance computation for each node
under consideration, it is used as a fast filter step before the application of
Heuristic 2. Note that node N5 (in Figure 10) passes Heuristic 3 (assuming sum),
although it cannot contain qualifying points. Heuristics 2 and 3 can be used
with both the depth-first and best-first traversal paradigms. Figure 11 shows
DF MBM, where nodes are visited recursively according to amindist(N;, @).

Proof of Correctness

Lemma 3.4. MBM correctly reports the point of P with the minimum aggre-
gate distance from Q.

Proor. In order to prove the correctness of MBM it suffices to show that
pruning is safe. For every point p in N it holds that |pq;| > mindist(N, M) for
each g;. Due to the monotonicity of f : adist(p, Q) = f(pqil,...,pg,) =
f(mindist(N, M), ..., mindist(N, M)) = amindist(N, M). Therefore, for all
points in a node N pruned by Heuristic 3 it holds that adisi(p, @) >
amindist(N, M) > best_dist. Similarly, for Heuristic 2, since mindist(N, q;) is
the minimum distance between N and query point g; € @ : adist(p, @) >
amindist(N, @) > best_dist for all points p in N. Hence, Heuristic 2 is also
safe because N cannot contain a better ANN than the current one. It is easy to
verify that the proof of correctness captures the existence of weights. O

3.4 Discussion

The extension of all methods to £(>1) ANNs is similar to that of conventional
NN algorithms (see Section 2.1). In particular, the £ current (candidate) neigh-
bors are maintained in a list of £ pairs <p, adist(p, @)> (sorted on adist(p, @))
and best_dist equals the distance of the 2th NN. Whenever a better neighbor is

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

544 . D. Papadias et al.

Algorithm incremental BF SPM (Q: set of query points, 2 monotonic function)
/* q: the aggregate centroid of Q */
1. insert <R-tree root, mindist(root,q)> into heap H
repeat
deheap next entry <e, mindist(e,q)> from H
if e is a data point p;
insert <p;, adist(p;,Q)> into result heap RH
while the first entry <p, adist(p,0)> of RH has adist(p,Q) < filpiql-lg.ql.--., Ipiql-la.ql)
deheap <p, adist(p,0)>; output <p, adist(p,Q)>
else // e is anode
for each entry ¢; in e insert < ¢;, mindist(e;,q)> into heap H
0. until termination condition

2SO0 RNo kWD

Fig. 12. Incremental BF SPM.

found, it is inserted in the list and the last element is removed. All algorithms
can be used in any dimensionality. However, similar to other variations of near-
est neighbor search, they are expected to suffer from the dimensionality curse
[Korn et al. 2001]. Furthermore, since the performance of R-trees deteriorates
fast with the number of dimensions and we focus on spatial data, in the sequel
we assume 2D spaces. In addition, each method can be extended to other dis-
tance metrics: (i) MQM simply requires the incremental retrieval of NNs accord-
ing to the new metric, (ii) SPM requires that the metric satisfies the triangular
inequality, whereas (iii) MBM requires simple modifications of the amindist
definitions. Zero weights are trivially captured by removing the corresponding
query points from the query set. On the other hand, none of the proposed meth-
ods can handle negative weights because in this case the aggregate distance of
an object may decrease as its Euclidean distance increases invalidating the ter-
mination conditions (e.g., in correspondence with shortest path computation,
Dijkstra’s algorithm can only be applied for nonnegative edge costs).

Both SPM and MBM can be implemented using best-first traversal by fol-
lowing the framework of conventional NN search (see Figure 4). Furthermore,
all the proposed algorithms (including MQM and the ones presented in subse-
quent sections) can output ANNs incrementally by using a result heap RH
to store the discovered points on ascending aggregate distance. Each point
is reported when de-heaped from RH. For instance, incremental MQM can
output all points p with adist(p, @) smaller than or equal to the current
threshold T since they are guaranteed to be better than any not-yet discov-
ered point. Similarly, incremental SPM reports all points p from RH such that
adist(p, Q) < f(pjql—191ql, ..., |pjq| —1gnq|), where p; is the last discovered
point. Lemma 3.2 guarantees that for each subsequent point p, : adist(p;, @) >
fUpral — lq1ql, ..., prq| — lgnq|), and therefore (due to the monotonicity of
f) adist(pr, @) = f(pjql —lq1ql, - .., |p;jql — 1g»q|) > adist(p, Q). Figure 12
shows the pseudo code for incremental SPM (the other algorithms are similar
and omitted).

The incremental output of the results is important for a memory-resident
ANN algorithm because, as shown in Section 5.1, it permits its incorporation
as a module for processing disk-resident queries. Furthermore, the incremental
property allows more general queries involving additional preferences. Assume

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Aggregate Nearest Neighbor Queries in Spatial Databases . 545

Algorithm generalized ANN (Q: set of query points, F: monotonic function)
1. Repeat

2 get the next ANN p; of Q // using any incremental ANN algorithm

3 compute Fadist(p;,Q), p,«A)

4. insert <p;, F(adis(p;,0), p/A)> into heap H

5. while the first entry p of H has F(adist(p,0), p™) < F(adist(p;,O), Viin)
6 deheap <F(adist(p,Q), p*)>; output <F(adist(p,Q), p*)>

7 end of while

8. until termination condition

Fig. 13. Generalized ANN including nonspatial preferences.

that each data point p (i.e., facility) has some nonspatial attribute(s) p# and
the goal is to find the facility that minimizes F(adist(p, @), p*), where F is
a monotone function (possibly including nonnegative weights for the relative
importance of adist(p, @) and p*). For example, if p# is the fee for using p, we
want the facility that leads to the minimum overall cost (i.e., combined aggre-
gate distance and fee). Figure 13 shows a generalized algorithm that reports
the data points in ascending order of overall cost assuming that the minimum
possible value of p2 is Uyin (Umin can be negative). The points discovered by an
incremental ANN method are inserted into a heap. Every time a point p; is
inserted, all points p such that F(adist(p, @), p*) < F(adist(p;, @), Umin) are
de-heaped and reported, because they are guaranteed to have lower cost than
any not-yet discovered point (given that the weights are nonnegative). Alterna-
tively, if the data points can be efficiently retrieved in ascending order of the p4
values (e.g., by Prefer [Hristidis and Papakonstantinou 2004]), we can integrate
the partial result with incremental MQM using the threshold, or some other
related, algorithm [Fagin et al. 2001].

Finally, note that a simple way to process memory-resident queries is to
(i) scan the data file, (ii) compute the aggregate distance of each point, and
(iii) return the k£ points with the minimum distance. This file scan method
(FSM) is general since it can deal with negative weights, any function, distance
metric and dimensionality. Furthermore, it performs sequential page accesses,
whereas the proposed methods incur random node visits. Nevertheless, it is
nonincremental and, as we show in the experimental evaluation, it is usually
very expensive due to the CPU overhead (for computing the aggregate distance
of all data points).

4. PERFORMANCE ANALYSIS

This section presents a performance study on ANN retrieval, which (i) provides
insight into the characteristics of the proposed algorithms, and thus promotes
our understanding about their behavior; (ii) leads to models that can be utilized
by query optimizers. To facilitate analysis, we present the main results with two
assumptions: (i) data points distribute uniformly in the data space (without loss
of generality, we assume each axis has range [0, 1]); (ii) all queries have the same
weight (i.e., they are equally important). We later remove these constraints
and deal with general settings. Our derivation utilizes some previous formulae
describing several properties of R-trees.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

546 . D. Papadias et al.

N SR SR SR
PDbest

)
q, q, []
® qy » o
N O ——— best o
search region SR Phest > Phest
(a) SR for 2 query points (b) SR for 4 points (¢) SR for 8 points (d) SR for 16 points

Fig. 14. The search regions for sum ANN.

Property 1 [Theodoridis et al. 2000; Bohm 2000]. For uniform data, the node
MBRs at the same level of the tree have approximately equal sizes. Specifically,
at the jth level, each MBR is a square with side length s; equal to:

sj = (max (|P|/fj+1, 1))_1/d (4.1)

where |P| is the data cardinality, / the node fan-out (i.e., average number of
entries in a node, typically 69% of the node capacity [Theodoridis et al. 2000]),
and d (= 2 in the following discussion) is the dimensionality. We assume that
leaves are at level 0.

Property 2 [Tao et al. 2004]. The number ngpr,:(s;, r) of level-j nodes whose
MBRs intersect a circle with radius r can be computed as:

nsplnt(sj,r): (|P|/fJ+1) (Sj +7‘\/7?)2 (4.2)
where s; is given in Equation (4.1).

Property 3 [Berchtold et al. 1997; Papadopoulos and Manolopoulos 1997,
Bohm 2000]. Any exact algorithm for processing a conventional 2 NN query
g, must access all nodes whose MBRs intersect a search region (SR) defined
by a circle centered at ¢ with radius |ppestq |, Where ppes; is the kth NN of ¢. In
other words, the query cost equals Z? ;(1) Nspint(Sj, | Phestq |), where h is the height
of the tree, and ng1.:(s;, | Prestq|) is given in Eq. (4.2).

Section 4.1 elaborates the search regions for ANN retrieval and derives
adistp.s, that is, the expected aggregate distance of the kth ANN (pp.s;) of Q.
Sections 4.2 and 4.3 develop cost models for MQM, SPM, and MBM. Finally,
Section 4.4 discusses the application of the models to arbitrary data and queries.

4.1 Optimal Search Regions

Similar to previous work on conventional NN queries [Berchtold et al. 1997;
Papadopoulos and Manolopoulos 1997; Bohm 2000], we first derive the search
region SR, the area of the data space that may contain candidate results. In
particular, the SR is defined by its shape and extent, which depends on the
expected adistpes; of the best? ANN py.,;. Consider the sum ANN query with @ =
{g1, g2} of Figure 14(a) and k& = 1. Then, adistp.s; = adist(Ppess, R) = | Prestq1| +

ZNote that pp,g; is the final ANN, whereas best NN (used in the description of the algorithms) is
the best aggregate neighbor discovered so far, that is, pp,; is the last best NN before termination.
The same relation holds between adisty,s and best_dist.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Aggregate Nearest Neighbor Queries in Spatial Databases . 547

o .
Dbest adisteest

SR SR

N

9,

.
‘ adisteest

(a) SR for max (b) SR for min

Fig. 15. The search regions for max and min ANN.

| prestq2|. The shaded area corresponds to the SR containing all possible points
px satisfying adist(p,, @) < adistpes;. For n = 2, the boundary of SR is the
ellipse |p:qi| + |pxq2|l = adistpes;. For n > 2, the search region is no longer
bounded by an ellipse, but has an irregular shape that depends on the query
cardinality and distribution. Figures 14(b)-14(d) illustrate the SR for (sum)
ANN queries with n = 4, 8, 16 query points, respectively.

Any ANN algorithm for processing ¢ must access all nodes that intersect
the SR of @. To understand this, assume that py.; has been found; before
it can be returned as the best ANN, however, we must ascertain that there
does not exist another point with even smaller adist. For this purpose, a node
(e.g., N7 in Figure 14(a)) whose MBR is disjoint with the SR, can be safely
pruned from consideration (all points p, in N7 lie outside the SR, and hence,
adist(py, @) > adist(ppest, @)). On the other hand, a node that intersects the
SR must be visited because it may contain potential candidates. For example,
although both points in Ny fall outside SR (i.e., they have larger aggregate
distance than pp.s), this cannot be verified without retrieving the content of No.

The concept of SR extends to other aggregation types (e.g., min, max). In
general, SR is the locus of points p, satisfying the inequality adist(p,, @) <
adistpest, based on the corresponding aggregate function. For £2-ANN, the SR
contains exactly the £2-ANNs and its boundary crosses the kth best ANN.
Figure 15(a) demonstrates the SR for max (assuming n = 2, k = 1), which is
the intersection of two circles with radii adistyes/(=max?_|prestqil = |Pvestqzl)
centered at q1,gq, respectively. Node NNV, for example, should not be visited
(even though it intersects the circle of g) because, for any point p, in its MBR,
adist(py, @) = |pxq1| > adistpes;. Figure 15(b) illustrates the SR for min, which
is the union of two circles (centered at q1, g2) with radii adistpes; = | Ppestq1] =
mini2:1 |pbestqi|-

Let Cg be the minimum enclosing circle that contains all points of @, and ¢
be the center of Cq. The following lemma provides the shape of the SR.

Lemma 4.1. When Q contains an infinite number of points uniformly dis-
tributed in Cq, the SR is a circle centered at q for sum and max.

Proor. Since n — oo, every point in Cgq is a query. To prove that the SR is a
circle, it suffices to show that the adist of any two points p; and p}, which are
equally distant to the center q, is identical. Let q; be a query point. Since there
are infinite query points in Cg, we can find a “mirror” ¢} (see Figure 16) such
that (i) |[p1q1| = |p}q;l, (i) angle /p; qq; (i.e., bounded by segments p:q and qq;)

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

548 . D. Papadias et al.

Fig. 16. Proof of Lemma 4.1

RS =

L

(a) Sum aggregate function (a) Max aggregate function

Fig. 17. Shape of the SR for finite queries.

equals /pqq}, and (iii) /p1gp| = /q1qq]. Following the above methodology, we
can derive for each g; € @ the corresponding mirror q; € € such that (i) |[p1g;| =
|piq;| and (ii) if g; # g, then g} # q’;. Hence, adist(p1, @) = adist(p}, @), thus
completing the proof. O

Although Lemma 4.1 is quite restrictive since it requires that n — oo, for the
sake of cost analysis, the SR can be well estimated (for sum and max but not
for min) as a circle, even for relatively small n. For instance, in Figure 14, the
SR (for sum) becomes more circular as n increases and almost forms a perfect
circle for n = 8. In order to verify that this estimation is still valid even if the
query points are nonuniform and have weights, we generated 16 query points
following skewed distribution in a rectangle located at the center and covering
10% of the data space. Each query is associated with a weight uniformly dis-
tributed in the range [1, 100]. The “concentric” shapes in Figures 17(a) (sum)
and 17(b) (max) correspond to points that have the same aggregate distance,
which can be approximated as circles centered at the aggregate centroid q.

Now it remains to clarify the computation of adisty.s:, that is, the estimated
aggregate distance of py.s. In the case of sum and max, let rsg be the radius
of the (circular) SR that contains exactly £ data points. Similar to the analysis
of conventional NN queries, for uniform data in a unit space, the area cov-
ered by the SR is proportional to %; thus: nrgR = k/|P| = rsg = Vk/(7.|p)).
Therefore, the expected adistp.s; can be obtained by generating an arbitrary

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Aggregate Nearest Neighbor Queries in Spatial Databases . 549

Algorithm estimate_adisty,.(k: number ANNS, n: cardinality of Q, |P): cardinality of P, f: monotonic function)
1. if f= sum or f= max

2. generate an arbitrary point p with distance \[k/(z-|P|) from the centroid ¢

3. return adist(p,Q)

4. iff=min

5. return \[k/(z|Pn)

End estimate_ adisty,

Fig. 18. Algorithm for predicting adistp,g;.

point with distance \/k/(z.|p|) from ¢ and computing its aggregate distance.
Another interesting property (elaborated further in Section 6) is that the ag-
gregate distance of a point p is expected to increase monotonically with the
(Euclidean) distance |pq|.

On the other hand, for min, the SR is the union of n circles centered at the
query points. Assuming that the n circles that constitute the SR contain %2 data
points and do not intersect each other, the area covered by each one equals
k/(|P] - n), that is, the radius of the circle (also the value of adist.s;) equals
VE /(@ - |p|) - n. For instance, if £ = 1, |P| = 10% and n = 64, the SR consists of
64 tiny circles (with radius 2.23 x 10~4) distributed inside Cg. Note that given
the small size of the individual circles, the assumption that they do not intersect
is valid for most practical settings. Furthermore, Lemma 4.1 still holds for min
and n — oo because the n circles essentially cover the entire SR.

Based on the above discussion, the pseudocode of Figure 18 returns the esti-
mated adistpes;. Unlike conventional NN queries where the SR provides a tight
lower bound for the number of node accesses (achieved by BF traversal), as
discussed in the following sections, the cost for each ANN algorithm is higher
and depends on the characteristics of the method.

4.2 Cost Models for MQM and SPM

MQM performs an incremental NN search for each query point ¢;(1 <i < n),
and continuously updates its threshold ¢;, which equals the distance between g;
and its last retrieved NN. The algorithm terminates when T' = f(¢1,%s, ..., t,)
reaches (or exceeds) adisty.s;. For uniform data, each query is expected to re-
trieve the same number of NNs (before termination) and the distance between
a query point and its NN is roughly the same regardless of the query’s lo-
cation [Berchtold et al. 1997]. As a result, the final thresholds of all queries
are approximately equal. We utilize this fact to predict ¢; based on the es-
timation of adistp.s; (as shown in Figure 18). For sum, when MQM termi-

nates, Y 1, . adist;,;, and thus ¢; ~ t; ~ ... = t, ~ adisty,, /n. For max,
eventually, ¢; ~ f(¢1,¢2,...,4,) =~ adistj.; for all 1 < i < n. Similarly, for
min,t; ~ f(t1, b2, ..., t,) ~ adist .

The overhead of MQM equals the cost of n NN queries. By Property 3, the
number of nodes accessed by each query is Z?;(l) Nepint(Sj,t), where t is the

expected threshold value computed as discussed above. Therefore, the total
cost of MQM is:
h—1
costyom =1 - Z Nopint(Sj, 1) (4.3)
j=0
ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

550 . D. Papadias et al.

the pruning region after
ﬁndlngpbesl uSlng q

opheu

O
.,_.

/ >
\ qlq q2

the pruning region afir \ - -
Jinding p; using q,

Fig. 19. The search region for SPM.

Before termination SPM must visit all data points in a circle centered at the
centroid g with radius rgpy, determined as follows (recall the form of Heuristic
1 for individual functions):

(adistyey + Y i 119q;1)/n for sum
rspy = { adisty.e +min;_11qq;| for max (4.4)

adist;’ + max?_,1qq;| for min

Thus, its cost can be estimated as costspy = Z?;(l, Nepint(Sj, rspm). For in-
stance, to predict the cost of a sum ANN query (the case of min/max is similar),
the optimizer can compute rspy by using the estimate of adisty.s; and calculat-
ing Y, lgg;|. SPM is expected to outperform MQM in most cases, especially
for large n due to the linear increase of MQM’s cost with n. The only exception
occurs for min retrieval and sparse query points. In this case, MQM is better
because each of the (n) NN queries searches a very small area (with radius
adist"™ ~ (), while SPM must access all the nodes intersecting a large circle
(with radius adistj + max™_,|qq;]).

Finally, note that the cost of SPM is sensitive to the selection of the
query centroid. Consider, for instance, Figure 19 which shows a sum query
@ = {q1,q2} and two MBRs N, Ny (ppes: lies in N3). Assuming that the cen-
troid is g, the first point discovered is indeed pp,s;. All the node MBRs (includ-
ing N;p) outside the dashed circle (centered at g with radius adist(ppes:, @) +
> " 1lgg;]) can be pruned. On the other hand, if we select g1 as the cen-
troid of SPM, the first potential result is p;, which leads to the pruning re-
gion corresponding to the solid circle with radius adist(p1, @) + > i lg1q1l.
SPM still needs to access Ny in order to discover pp.s;. The cost differ-
ence between g and ¢; cannot be reflected by Eq. (4.4) since they both re-
sult in the same Y/ ;1gq:| = Ig1g2|.- The implication is that a good aggre-
gate centroid should, in addition to minimizing Y, |gq;|, also be close to

Dbest -

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Aggregate Nearest Neighbor Queries in Spatial Databases . 551

Fig. 20. Search region of MBM (sum).

4.3 Cost Model for MBM

Given an aggregate function f, MBM processes nodes N in ascending order
of their amindist(N, @) and terminates when the inequality amindist(N, @) >
adistp.s; holds for all nonprocessed nodes. In the sequel, we present the analysis
for sum, max, min aggregates separately, due to their different characteristics.

Analysis of sum. We first deal with a related problem: given a MBR N
with side length s; (i.e., the average node extent at tree level j computed by
Eq. (4.1)) that distributes uniformly in the data space, what is the expected
amindist(N, @) as a function of mindist(N, q)? Figure 20 shows a quarter of
the MBRs having the same mindist(N,q) = x. The locus of the lower-left cor-
ners of these MBRs constitutes arc AB (on the circle centered at ¢ with radius
x), plus a horizontal segment BC with length s;. We use 6 to denote the an-
gle bounded by the x-axis and the segment connecting g with the lower-left
corner of N. Obviously, (for the demonstrated locus) 6 uniformly distributes in
range [0,/CqA], where /CqA (denoted as £ in the sequel) is the angle between
segments Cq and gA and its value equals /2 + tg~1(s; /x).

Let mindist(0, x, q;) be the mindist of a node N, whose location is decided
by 6 and x, with respect to a query point g; in Cgq. Similarly, amindist(0, x) is
the sum of mindist(with respect to all query points) as a function of 6 and x.
Assuming that the query points distribute uniformly in Cg (with radiusrg), the
average mindist(9, x,q;) is 1/(x -r%) Jqiec,(mindist(0, x, g;))dgq;. Consequently,
amindist(0,x) = n/(x -r(%) Jqieco(mindist(0, x, qi))dq;, leading to the following
formula for the expected amindist(x) (i.e., the amindist of a node N, whose
mindist from q is x):

&
Lz/ / (mindist(,x,q;))dq;do

&
amindist(x)= l / amindist(0, x)d 0 =
E T - %‘ . rQ

0 0 qieCq

(4.5)

where & = /2 +tg1(sj /x). Although the above equation is obtained by consid-
ering a quarter of all MBRs satisfying mindist(N, g) = x, it also represents the
overall expected amindist since the derivation for the other quarters is exactly
the same (due to symmetry). Using Eq. (4.5), we could formulate the search

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

552 . D. Papadias et al.

ext(N.y,0)

Fig. 21. Search region of MBM (max).

region of MBM at the jth level as the circle whose radius® rypgy— ; satisfies
amindist(rypy—;j) = adistpes;. Deriving rypy—; from Eq. (4.5), however, is non-
trivial due to the fact that the solution cannot be written in closed form, but
must be solved by numerical approaches that incur high cost.

To remedy this problem, we propose an alternative method that efficiently
obtains a rough estimate rypy— ; based on the half-narrowing technique [Press
et al. 2002]. Specifically, an initial solution range [x_,x.] = [0,c - rq] is
selected, where ¢ is a constant (in our experiments, ¢ = 3). Then, we set
xn = (x- + x4)/2, and formulate a MBR N with side length s; such that
(1) mindist(N,q) = x;, and (ii) the segment connecting ¢ with the lower-
left corner of N is horizontal (i.e., 8 = 0 in Figure 20). Next we compute
amindist(N, @) (i.e., using the actual query points in @), and compare it
with adistpes;. If amindist(N, Q) > adistpest, the solution range is updated to
[x_,x,] = [x_, x3]; otherwise, [x_,x,] = [xp, 2,]. The new xp = (x_ + x,)/2 is
calculated and the above process is repeated until amindist(N, @) and adistpes
differ by less than a certain threshold. The final x; constitutes the value of
rupm—; for computing the cost of MBM: Costyau Z};;}J Npint(Sj, rmBm—j;). It is
worth mentioning that the above half-narrowing method does not require uni-
form distribution of the query points in Cg. However, unlike the derivation
based on Eq. (4.5), it is not rigorous, namely, it aims at quickly finding an ap-
proximation for g (instead of providing a theoretically-sound estimate).

Analysis of max. Similar to the sum case, we need to represent amindist(IN,
@) as a function of mindist(N, q). Towards this, let us first fix the location of N
such that (i) mindist(N,q) = x and (ii) the angle between the horizontal axis
and the segment connecting g with the lower-left corner of N equals 6. As shown
in Figure 21, we obtain a region ext (N, y) by extending N towards all directions
by distance y (ext (N, y)is called the Minkowski region of N). Let g; be a query
point uniformly distributed inside Cq. Then, mindist(N, q;) < y if and only if
q; falls in ext (N, y), and hence, the probability p(x, y,) that mindist(N, g;) <
y equals area(ext(IN, y) N Cq)/area(Cq). Since amindist(N, Q) < y if and
only if every query point g; satisfies mindist(N,q;) < y, the probability for
amindist(N, @) to be no more than y is p(x, y, 6)".

3Note that the radius ryppr_ ; differs at various levels of the tree because, as shown in Figure 20,
it depends on the MBR extent s; at each level.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Aggregate Nearest Neighbor Queries in Spatial Databases . 553

Recall that, so far, we have fixed N at angle 0; thus, the probability that
amindist(x) < y (provided that mindist(N,q) = x) can be obtained by in-
tegrating p(x, vy, 0)" over all 9, or formally: (1/5)ff) plx, y,0)'do, where & =
7/2 +tg~l(s;/x), as derived earlier using Figure 20. Thus:

£
d 1 [rareawextN,yoncq) " a0
£ areaiCq)

o0
amindist(x) =f y - 0 dy. (4.6)
0 dy

The level-j search region of MBM under max is a circle centered at g with
radius rypy—; that satisfies amindist(rypy—;) = adistpes:, where amindist is
represented in Eq. (4.6) and the average node extents are provided by Eq. (4.1).
The cost of MBM is costypy = Z;‘-;(l) Nspint(Sj, ruBM-—;). Given adistyes:, a quick
estimate of rypy—; can be obtained using the half-narrowing technique dis-
cussed earlier for the sum case.

Analysis of min. In case of min, the probability P,._; that alevel-;j node N
is accessed equals the probability that ext (N, adist.s:) covers any of the n query
points, where ext (N, adistpes) is the region extended from N (see Figure 21)
after replacing y with adistpes: = v/£/(7w - |P| - n). In order to derive Pgs_;, we
first consider Pg._;(p), which equals the probability that ext(IN(p), adistpes:)
covers any query point, provided that the center of N locates at point p. As
derived in the analysis for the max case, the probability for one query point
to fall into ext(IN (p), adistpes:) is area (ext(N(p), adistpes:) N Cq)/area(Cq). As a
result, the probability that a query point is not covered by ext(N (p), adistpes:)
equals [1—area(ext(IN (p), adistpes:) NCq)/area(Cq)]. Therefore, Pycs— ;(p) can be
represented as: Pyes—j(p) = 1 — [1 — area(ext(N (p), adistpes:) N Cq)/area(Cq)]".
Having obtained Pges—j(p), Pacs—; can be computed by integrating P,es—;(p)
over all possible positions p for the center of N, which constitute a square
with the same center as the data space, but side length 1 — s; (where s; is
the size of a node at the jth tree level). Therefore, Py j = 1/(1 —s;)% [peDS
Pacs—j (p)dp-

The above formula of P,._; can be simplified using the following observa-
tion. For most locations p (i.e., the center of N), Pycs— ;(p) = 0 because ext(N (p),
adistpes:) simply does not intersect Cg at all. As a result, the integral range
“p € DS” can be shrunk to the area in which Pg._j(p) # 0. To illustrate
this, Figure 22 shows the centers A, B,C of 3 MBRs whose extended re-
gions ext(N(A), adistpes), ext(N (B), adistpes), ext(N(C), adisty.s;) are tangent
with Cg. Arc ABC (the dashed curve) shows a quarter of the boundary for
the actual shape of the shrunk integral region where P._;(p) # 0. Since such
an actual shape is irregular, in our implementation, we approximate it us-
ing the circle centered at ¢ with radius rq + adists.s: (We denote the circle as
ext(Cq,rq + adistpest)).

To verify that this approximation does not cause significant error, observe
that, for any point p in the region not captured by ext(Cq, adists.s:) (the area
between the boundary of ext(Cgq, adistpes:) and arc ABC), Pycs—;(p) has very
low value, since the intersection of ext(N(B), adistp.s;) and Cq is very small.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

554 . D. Papadias et al.

ext(Co, adlistpes
adistpesi

5j/2
Fig. 22. Approximate integral region.

Therefore, P,.s—; can be accurately represented using Eq. (4.7).

1 1 |:1 B area(ext(N(P), adistpes:) N CQ):| dp

T (1 —s5)2 area(Cgq)
peext(Cq ,adistpest)

4.7)

The cost of MBM is costypy = Z?;éﬂPl/f”l - Pyes—j), where |P|/f /! is the
number of level j nodes (f is the average node fan-out). Finally, although the
above analysis is based on the assumption that queries distribute uniformly
inside Cgq, it can be easily adapted to general query distribution with the fol-
lowing changes: Py.s—j(p) = 1 if N(p) (i.e., the center of N lies at location p)
covers any of the actual query points in @, and 0 otherwise.

4.4 Capturing Weighted Queries and Arbitrary Data Distribution

As demonstrated in Figure 17, if the queries are associated with weights, the SR
region can still be approximated as a circle for sum and max queries, permitting
the direct application of algorithm estimate_adistp.s; (Figure 18). Estimating
adistyes; for min, however, is more complicated. In this case, SR is still the
union of n circles, but with different sizes. Specifically, the radius r; of each
circle is such that r; ~ adisty.s;/w; based on the intuition that search around
each query point terminates when adisty.s is reached. Given the fact that the
sum of the areas of all circles equals k/|P|, we have Y [; 7 - (adistpest Jw;)?.

Therefore, adistpes; = \/k/(|P| > (n/wi)z) (i.e., line 5 in Figure 18 should be
replaced with this estimate), and as a corollary,r; = \/k/(|1P|- > I ; (7w /w;)2)/wi.

Similarly, the cost of MQM consists of the overhead of n NN queries such that
adistpesy ~ W1 -t X W -ty X -+« X Wy, - t,. For sum, w; - t; = adistyes;/n, while for
max and min, w; -t = adistyes:. Hence, costzs‘%‘M =y, Z?;(l) NpInt(Sj, adistpes:/

(w; -n)) and costz’{}[‘gM = costz’{%M = Z:-Lzl Z?;(l)nsplnt(sj,adistbest/wi). The
analysis of SPM follows exactly that in Section 4.2, that is, costspyy =
Zf‘;ol Nspint(Si, rspm), Where rgpyy is given in Eq. (4.4). Assuming that all weights

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Aggregate Nearest Neighbor Queries in Spatial Databases . 555
are in the range [0, W], for MBM (sum) we first modify Eq. (4.5) as follows:

w &
amindist(x) = S / f / (mindist(0, x, q;))dg;dodw (4.8)
T - W-. é . r%
0 0 qi€Cq
For max, the only change is that the probability for amindist(N, @), as a func-
tion of x and 6, to be no more than y is [, p(x, ¥ /w;, 0). For min, the MBM
formulas are the same as in the unweighted case.

Nonuniform data can be processed using multidimensional histograms that
divide the data space into a set of (disjoint) rectangular buckets. Each bucket b
stores the number of points n; in its extent a;. Given an ANN query g, we obtain
the n, and ap of those buckets that intersect its bounding circle Cq. Then, the
query cost is computed using directly the uniform model, by setting the dataset
cardinality) 7/ ap. The intuition is that the “local” distribution inside a
small region is almost uniform. Furthermore, the nodes accessed in processing
q are mostly around Cgq, or equivalently, for the purpose of query estimation,
the data outside Cq can be ignored without causing significant error.

5. ANN ALGORITHMS FOR DISK-RESIDENT QUERY SETS

For disk-resident query sets, we consider that, in addition to monotone, the
aggregate function f is also decomposable. Formally, f is decomposable, if
it can be computed by another function g as follows: f(x1,x2,...,%,) =
g(f(xy,...,x), [(xey41,...,%,)) where x can be any integer between 1 and n.
Most practical aggregate functions, including sum, max and min, satisfy this
property. For example, in case of sum, g = f = sum, that is, adist(p, @) =
Zqite lpq;| + quem Ipg ;| for any partition of @ into two sets @1 and Q.

Similarly, (i) for max: adist(p, @) = max(max,icq1Ipg;|, maxyeq2lpg;|) (i-e.,
g = [= max) and (ii) for min: adist(p, @) = min(mingicq1lpg;|, mingecqz2lpq ;|
(i.e., g = f = min).* It can be easily verified that decomposability also

holds for weighted versions of these functions, for example, ZqieQ w; - |pg;l =
Zqite wi - pg;| + Zqieéﬂ w; -|pq . Sections 5.1 and 5.2 present two algorithms
for ANN queries based on MQM and MBM, respectively. Section 5.3 concludes
with a discussion about alternative methods.

5.1 File—Multiple Query Method

MQM can be applied directly for disk-resident @ with, however, very high cost
due to the large number of individual queries that must be performed (as dis-
cussed in Section 4.2, its cost increases linearly with the cardinality of @). In or-
der to overcome this problem, we propose F-MQM (file-multiple query method).
F-MQM initially splits @ into blocks {®1, @2, ..., @} such that each Q; fits
in memory. For every block, it computes the ANN (according to the f function)

4 Although for sum, max and min, it holds that f = g, this is not necessarily true for other decompos-
able functions. For example, count(x1, xg, ..., x,) = sum(count(xy, ..., x), count(x, 1, ..., %n)) = n.
Furthermore, note that if f is monotonic, g must also be monotonic.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

556 . D. Papadias et al.

Algorithm F-MQM ({0, .., O,,}: blocks of query points that fit in memory, f: monotonic decomposable function)
best NN = NULL; best dist = oo; T=0; /* initialization
while (7 < best_dist)
read next block Q;
get the next aggregate nearest neighbor p; of block Q; / by incremental MBM
curr_dist(p;)= adist(p;, Q)
t; = adist(p;,0)); update T; // T=g(t, t, ..., ty)
if this is one of the first m iterations of the loop
for each current neighbor p; of O; (1<i<j) /* update distance of other NNs
9. curr_dist(p;)= g(curr_dist(p;), adist(p;,0)))
10. else /*local NNs have been computed for all m blocks
1. for each current neighbor p; of O, (1<i<m,i#j) /* update distance of other NNs
12. curr_dist(p;)= g(curr_dist(p;), adist(p;,Q))) ;
13. next=(j+1) modulo m; /* block whose ANN global dist. is complete
14. if curr_dist(p,e.)<best_dist
15. best NN =pye; best dist = curr_dist(ppe) /* update the global ANN of Q
16. next=(j+1) modulo m; /*next block to process
17. end while

PN PR

Fig. 23. The F-MQM algorithm.

using one of the main memory algorithms, and combines their results using
MQM (this time, according to the g function).

Algorithm. The complication of F-MQM is that once the ANN of a block
has been retrieved, we cannot directly compute its global aggregate distance
(i.e., with respect to all query points). Instead, we follow a lazy approach: first,
we find the ANN p; of the first block @1; then, we load in memory the sec-
ond block @3 and retrieve its ANN py. At the same time, we also compute
the distance between p; and @2, whose current aggregate distance becomes
curr_dist(p1) = g(adist(p1, 1), adist(p1, @2)). Similarly, when we load @ 3, we
update the current distances of p; and ps taking into account the objects of the
third block. After the end of the first round, we only have one data point (p;)
whose global distance with respect to all query points has been computed. This
point is the first best_ NN.

The process is repeated in a round robin fashion and at each step a new global
distance is derived. For instance, when we read again the first block (to retrieve
its second ANN), the distance of ps (first ANN of @2) is completed with respect
to all blocks. Between p; and ps, the point with the minimum global distance
becomes the best_NN. The threshold ¢; for each block € ; equals adist(p;, Q;),
where p; is the last aggregate neighbor of € ;. The global threshold T is the
value of function g on the individual thresholds, i.e., T = g(1,¢to,...,tn).
F-MQM terminates when T becomes equal or larger than the global distance
of the best ANN found so far.

Figure 23 illustrates the pseudocode for F-MQM. The method for retrieving
the ANN of individual blocks should be incremental because the termination
condition is not known in advance. In our implementation, we apply BF MBM
due to its superior performance (see experimental evaluation). Weighted
queries simply require the corresponding adist and g functions for each case.
For the min function and £ > 1, instead of retrieving ANNs for each query
block @; in a round-robin fashion, we compute in each step the next ANN

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Aggregate Nearest Neighbor Queries in Spatial Databases . 557

of the block @; that corresponds to the minimum threshold # because it
leads to the earliest termination (the same optimization is used for MQM on
memory-resident queries).

Proof of Correctness

Lemma 5.1. F-MQ®M correctly reports the point of P with the minimum ag-
gregate distance from Q.

Proor. The proof is similar to that of MQM. In particular, F-MQM ter-
minates when T = f(#,...,t,) > adistpes, where adistp.s; is the minimum
aggregate distance of all the points discovered by the algorithm. For all non-
encountered points p € P it holds that adist(p, @ ;) > ¢; foreach 1 < j < m be-
cause, otherwise, p would have been discovered by the incremental ANN search
for some query block. Due to the monotonicity and decomposability properties:
adist(p, Q) = g(f(p, R1), ..., [(p, @n)) > g(t1,...,tn) = T > adistpes;. Thus,
adist(p, @) > adistp.s; and p cannot belong to the result. The proof can be easily
applied in the presence of weights. O

5.2 File—Minimum Bounding Method

Next we describe F-MBM, an adaptation of the minimum bounding method.
The basic differences with respect to MBM are: (i) there exist multiple (instead
of one) query MBRs and (ii) each aggregate distance computation (for data
points) incurs I/O overhead since @ is disk-resident. The first fact necessitates
an alternative pruning strategy, while the second one motivates heuristics for
eliminating data points without having to compute their complete distances.

Algorithm. First, the points of @ are sorted by their Hilbert value and are
inserted in pages according to this order. Each block @; consists of a number
of consecutive pages that fit in memory. Due to the proximity preservation of
Hilbert sorting (or any other space filling curve), each block MBR M; is expected
to be relatively small compared to the MBR of the entire @. We keep in memory
the MBRs M; (but not their contents) and, depending on f, some additional
aggregate information for the points in each block, for example, for sum we
also maintain in memory the number n; of points in each ;. Then, F-MBM
descends the R-tree of P (using DF or BF traversal), only visiting nodes that
may contain qualifying points. Given that we have the values of M; for each
query block in memory, we identify qualifying nodes as follows.

Heuristic 4. Let best_dist be the aggregate distance of the best ANN found
so far and M; be the MBR of block @;. A node N can be safely pruned if:

glamindist(N, My), ...,amindist(N, M,,)) > best _dist

where amindist(N,M;) = [f(mindist(N,M;),..., mindist(N,M;)), that is,
mindist(N, M;) appears n; times as parameter of f, where n; is the cardinality
of @;. Figure 24 shows an example for sum, where five query points are split
into two blocks with MBRs M, My and best_dist = 20. According to Heuristic
4, N is pruned because: sum(2 - mindist(N, M) + 3 - mindist(N, Ms)) = 20 >
best_dist, and it cannot contain a better ANN. On the other hand, for max:

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

558 . D. Papadias et al.

mindist(N,M |

N =

mindist(N,M,)=4 1\
best NN

best NN

Fig. 25. Example of Heuristic 5.

max(mindist(N, M), mindist(N, M3)) = 4 < best_dist = 8 and N has to be
visited. For min: min(mindist(N, M1), mindist(N, Ms)) = 4 > best_dist = 1
and N is pruned.

When a leaf node N is reached, we have to compute the global aggregate
distance of its data points with all blocks. Heuristic 4 also applies for data points;
that is, p € N can be pruned if: glamindist(p, M1), ...,amindist(p, M,,)) >
best_dist, thus, avoiding the distance computations with respect to all query
points. For points that pass this heuristic, we initially set the current distance
curr_dist(p) to 0. Then, for each new block @;(1 < i < m) that is loaded in
memory, curr_dist(p) is updated to g(curr_dist(p), adist(p, @;)). We reduce the
CPU overhead of the distance computations based on the following heuristic.

Heuristic 5. Let curr_dist(p) be the accumulated distance of data point p
with respect to blocks @1, ..., @;_1. Then, p can be safely excluded from further
consideration if:

g(curr_dist(p), amindist(p, M;), ...,amindist(p, M ,,)) > best_dist,

where amindist(p, M;) = [f(mindist(p, M;), ..., mindist(p, M;)). Figure 25
shows an example of Heuristic 5 in the sum case, where the first block @1 has
been processed and curr_dist(p) = adist(p, @ 1) = 5+ 3. Point p is not compared
with the query points of @2, since 8 + 3 -mindist(p;, M2) = 20 > best_dist = 20;
that is, p cannot lead to closer aggregate distance than the current result.
For max: max(curr_dist(p), amindist(p, M3)) = max(5,4) < best_dist = 8 and

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Aggregate Nearest Neighbor Queries in Spatial Databases . 559

Algorithm F-MBM(Node: R-tree node, {Q,.., O,}: blocks of query points that fit in memory, £ monotonic
decomposable function)
1. if Node is an intermediate node

2 sort entries N; in Node (in ascending order of g(amindist(N;,M,), ..., amindist(N;,M,,)) in list;
3 repeat

4. get_next entry N; from /ist;

5. if g(amindist(N,M,), ..., amindist(N;,M,,)) < best_dist /*N; passes Heuristic 4

6 F-MBM(N,, {O,,.., Ou}, f) ; /* Recursion

7 until g(amindist(N;,M,), ..., amindist(N;,M,,)) > best_dist or end of list;

8. else// Node is a leaf

9. for each point p; in Node

10. if g(amindist(p;,M,), ..., amindist(p;,M,,))< best_dist /*p; passes Heuristic 4 for points
1. insert p; in list and set curr_dist(p;)=0; /* initialization

12. while /ist is not empty and not end of blocks

13. read next block Q;(1<i<m)

14. for each point p; in /ist

15. curr_dist(p;)= g(curr_dist(p;), adist(p;,0;))

16. if g(curr_dist(p;), amindist(N,M;,), ..., amindist(N,M,,)) > best_dist

17. remove p; from list; /* p; fails Heuristic 5

18. end while

19. for each point p that remains in list /*after termination of loops

20. if curr_dist(p)< best_dist

21. best NN = p; best_dist= curr_dist(p) //Update current ANN

Fig. 26. The F-MBM algorithm.

adist(p, @ 2) must be computed. For min: min(curr_dist(p), amindist(p, M3)) =
min(3,4) > best_dist = 1 and p is pruned.

The handling of weights is straightforward. The only difference occurs in
the case of weighted sum, where for each block @;, instead of the cardinal-
ity n;, we store the sum of weights of points in it: W; = >, o, w;. Then
amindist(N, M;) = W; - mindist(N, M;) and the inequality of Heuristic 4 takes
the form of) ;" ; W; - mindist(N, M;) > best_dist. Similarly, the pruning crite-
rion of Heuristic 5 becomes curr_dist(p)+ ;- ; W, -mindist(N, M) > best dist.
Figure 26 shows the pseudocode of DF F-MBM. Starting from the root of the
R-tree of P, entries are sorted in a list by g(amindist(N, My),...,amindist
(N, M,,)), and visited (recursively) in this order. The intuition is that a small
value of g(amindist(N, M1), ...,amindist(N, M,,)) is likely to lead to neighbors
with small global distance, increasing the effectiveness of Heuristic 4. Once the
first node that fails Heuristic 4 is found, all subsequent nodes in the sorted list
can also be pruned. For leaf nodes, if a point violates Heuristic 5, it is removed
from the list and is not compared with subsequent blocks.

Proof of Correctness

Lemma 5.2. F-MBM correctly reports the point of P with the minimum ag-
gregate distance from Q.

Proor. First, we show that for every point p in a pruned node N it holds
that adist(p, Q) > best_dist:

adist(p, Q) = gladist(p, Q1), ...,adist(p, @m)) decomposability of f
> glamindist(p, M1), ...,amindist(p, My)) V1 <i < madist(p, Q;) > amindist(p, M;)—monotonicity of g
> glamindist(N, M), ...,amindist(N, M,)) V1 <i < m amindist(p, M;) > amindist(p, M; —monotonicity of g
> best_dist definition of Heuristic 4

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

560 . D. Papadias et al.

P SR ——

Fig. 27. Shortcomings of Hilbert sorting for F-MQM.

The version of Heuristic 4 for points (lines 9—11) is also safe since adist(p, @) >
glamindist(p, M;), ...,amindist(p, M,,)) > best_dist. In addition, the proof
applies to Heuristic 5 (based on the monotonicity of f, g and the fact that
adist(p, @;) > amindist(N,M;)V1 < i < m) and holds in the presence of
weights. O

5.3 Discussion

Several function-specific optimizations are possible for both F-MQM and
F-MBM. In the case of min F-MQM, for instance, we can terminate the search
for a block if the corresponding local threshold exceeds best_dist, even if the
query has not retrieved any ANN. For F-MBM, the first leaf node visited during
the processing of a sum query, requires reading the entire query set. Gradually,
as best_dist decreases, so does the number of blocks that need to be loaded since
numerous data points can be pruned just by using the block MBRs (instead of
their contents). Because blocks that are far away from the node are likely to
prune numerous data points (thus, saving the distance computations for these
points with respect to other blocks), we can load each block @; in descend-
ing order of amindist(N, M;). Furthermore, we could compute the aggregate
distances for points in multiple nodes by loading the query set only once. For
generality, we do not focus on such function-specific optimizations.

In Papadias et al. [2004], before the application of F-MQM, we perform
Hilbert sorting on the query file in order to obtain blocks with small MBRs
(i.e., similar to F-MBM). Interestingly, this approach is worse than the one pre-
sented here (i.e., without Hilbert sorting). Figure 27 demonstrates this with an
example where there exist four query blocks with disjoint MBRs, whose union
covers the entire universe. For sum and max, the ANN p; of each block @; lies
somewhere near the centroid of M;. On the other hand, the best ANN (ppes:)
lies near the center of the data space. Thus, it is likely that each incremental
ANN query will retrieve a large number of points before pp.s; is discovered as
an ANN of some block. On the other hand, if the query points in each block
distribute in the entire data space, their individual ANNs are likely to be near
the center, leading to the early discovery of ppes;. Furthermore, as in the case
of (main-memory) MQM, F-MQM may perform redundant computations, if it
encounters the same data point as a nearest neighbor of different query blocks.
A possible optimization is to keep the id of each point discovered so far, and
ignore it if it is encountered later through another block (i.e., continue with the
next ANN of the block). This however, may not be possible if the main memory
size is limited.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Aggregate Nearest Neighbor Queries in Spatial Databases . 561

Similar to MQM and MBM, SPM can also be applied to disk-resident queries.
The difference in this case is that the computation of the aggregate centroid
may require multiple passes of @. For instance, the gradient descent method
(used for sum) needs to compute the aggregate distance for each new centroid
in order to evaluate if it constitutes an improvement over the previous one.
Likewise, the derivation of the minimum enclosing circle (for max) must also
read @ several times. In order to avoid these problems, we can use directly the
geometric centroid for both sum and max. Nevertheless, F-SPM, similar to F-
MBM, has to scan § when the aggregate distance of a data point is computed.
Heuristic 5 can be applied in this case, to eliminate points without computing
their complete aggregate distance. Since the relative performance of F-SPM and
F-MBM is expected to be similar as in the case of memory-resident queries, we
omit it from the experimental evaluation.

Assuming that @ is also indexed by an R-tree, in Papadias et al. [2004],
we propose GCP, an adaptation of the incremental closest pairs algorithm (see
Section 2.1), for the sum function. GCP can be easily extended to any monotonic
and decomposable function, but it is efficient only for f = min, since the ANN is
the data point p; in the first output pair < p1, g; >. For other functions (such as
sum), where the computation of adist(p, @) requires all the individual distances
|pq;IVq; € @, GCP incurs very high cost and extreme space requirements for
managing the heap (usually in the same order as the cartesian product P x).
Therefore, we do not consider this algorithm further.

Finally, note that ANN for disk-resident queries is essentially a join problem
that can be answered by computing the aggregate distance of each tuple in P
(with respect to all points in @) and then returning the % best tuples. Thus,
it can be processed by a straightforward application of the block nested loops
(BNL) algorithm. Specifically, given an input buffer of B main memory pages,
BNL allocates B-1 pages to P and 1 page to @. Let b be the number of resulting
blocks (with size B-1 pages) of P. For every block of P, BNL scans @, computing
the aggregate distance of all points in the block, that is, it reads P only once
and scans @ a total of b times. Compared to the previous algorithms, BNL may
have better I/O performance for a small number of blocks® because (i) F-MQM
may access the same R-tree node of P and load the same query block multiple
times (through different queries or for each neighbor retrieved), while (ii) F-
MBM has to scan @ every time a leaf node of the data R-tree is visited. On
the other hand, the CPU cost of BNL is likely to be high because the algorithm
involves |P| - n distance computations. BNL is experimentally compared with
F-MQM and F-MBM in Section 7.2.

6. APPROXIMATE ANN ALGORITHMS

In general, if both the data and the query sets are large, the processing of
ANN queries incurs high cost since in the worst case it may lead to |P| - n
distance computations and multiple reads of the query file (or accesses to
the same R-tree node in the case of F-MQM). In this section, we compromise

5If P fits in memory BNL reads @ exactly once, therefore, it is expected to have the best performance
for memory-resident datasets and disk-resident queries.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

562 . D. Papadias et al.

N
pl p pz
amindist'(N,Q) 1\ }mlndlst(N,Q)
ql q2
the ellipse crossing p
(a) Sum aggregate function (b) Max aggregate function

Fig. 28. Metric amindist?.

accuracy for efficiency, by proposing methods for fast but approximate ANN
retrieval.

The first method is based on coalescing the query points in a smaller set that
fits in memory. Consider, for instance, that the available memory can accommo-
date n’ < n query points. The coalescing approximate method (CAM) reads the
first n’ query points in memory, which constitute the initial set @ = {q}, ..., q,,}
such that q; = q;. Each subsequent point gj,n’ < j < n, is combined with the
closest g/ (in terms of the Euclidean distance). In particular, the combination
replaces g; with a new point that lies on the line segment g ;q; and its distance
from the two end-points is inversely proportional to w; and wj; (i.e., biased to-
wards the more important one). The weight of the new point becomes w; + w;.
After the process terminates, the ANNs are retrieved by a memory-resident
algorithm using the revised set @’. Note that CAM is sensitive to the order
according to which the query points are considered. Techniques based on clus-
tering or k-medoids could potentially lead to a @’ that better preserves the
distribution of the original query set. However, such methods require reading
@ several times and incur prohibitive cost (as shown in Section 7.3, CAM is
already very expensive for large query sets).

Before we proceed with the second method, we define amindist*(N, Q@) as
the minimum adist of all possible points in a node N. For sum and max,
amindist®(N , Q) > amindist(N, @). As an example, consider the sum query
@ = {q1, g2} in Figure 28(a), where amindist(N, @) = |p1q1| + | p2qz| (obtained
using two points p1, pe in N), while amindist*(N, Q) = lpq1l + lpgsl, that is,
the point p achieving amindist® lies on the smallest ellipse that has q1, g2 as
its foci, and intersects N. Similarly, for max (Figure 28(b)), amindist®(N , Q) =
Ipq1| = |pqsl > amindist(N, @) = max(|p1q1l, |p2qz|) = |p2qzl, that is, point p
lies on the perpendicular bisector of segment g1qs.

Assuming that we can compute amindist?, we can obtain a tight MBR-based
heuristic a follows: if amindist*(N , @) < best_dist, visit N ; otherwise, reject
it. The combination of best-first traversal with this heuristic would lead to
an I/O optimal® method (for the same reasons that BF is optimal for conven-
tional NN queries). However, for sum and max, the point p in N minimizing
amindist*(N, @) cannot be computed exactly. In the case of sum, finding p
is equivalent to locating the Fermat—Weber point, but this time in a region

6MBM is optimal for min because amindistA(N, Q) = min]_;mindist(N, q;) = amindist(N, Q).

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Aggregate Nearest Neighbor Queries in Spatial Databases . 563

constrained by the node MBR, which, as discussed in Section 3.2, can only be
solved numerically (i.e., approximately). Similarly, for max, finding p is equiv-
alent to obtaining the minimum enclosing circle whose center lies in the node
MBR.

Motivated by the above observations we propose an algorithm for sum and
max based on approximations of amindist®. As discussed in Section 4.1, for both
functions, the SR can be regarded as a circle centered at the centroid q. Further-
more, the aggregate distance adist(p, @) of a point p increases monotonically
with |pq|. Thus, we can obtain a rather accurate estimation of amindist(N, Q)
as follows. If N contains g we set amindist*(N, Q) = adist(q, Q) because
the query centroid is assumed to minimize the aggregate distance. Otherwise,
amindist*(N, Q) = adist(p, @) where p is the point minimizing mindist(N, q)
(i.e., pisthe point at the boundary of N thatis closest to q). We call the resulting
algorithm A-SPM (for approximate SPM) because the order of node traversal is
the same as that of SPM (i.e., according to mindist from g), but the termination
condition is different (A-SPM terminates after it retrieves the £ conventional
NN of q, potentially missing some actual ANNs).

A-SPM, similar to CAM, first reads the query file in order to obtain the
centroid g (or the geometric centroid, in order to avoid multiple reads of @).
Then, it simply retrieves the £ Euclidean NNs of ¢q. Finally, A-SPM and CAM
have to read the query file again in order to compute the aggregate distance
of the results. Assuming typical values of £ (i.e., the £ NNs fit in memory), all
aggregate distance computations can be combined in a single scan of @. Both
algorithms are applicable to sum and max but not min because (i) a data point p
retrieved by CAM, may not be close to any real query point (although p is close
to some point of @’), and (i1) A-SPM is based on the assumption of a single SR
around q, whereas (as discussed in Section 4.1) the SR of min consists of n small
circles. A trivial approximation method for min, would simply select a random
subset @' C @ of query points that fit in memory, and return the ANN of @'.

Naturally, both approximate algorithms may incur error because (i) for CAM,
Q' is only a coarse estimation of @; (ii) for A-SPM, the SR is not exactly a circle
and ¢ may not be the point with the minimum aggregate distance. However,
it is difficult to provide guarantees for the quality of the approximation since
the error depends on factors, such as the distribution of the query points (and
their weights), that cannot be quantified. In the next section, we experimentally
evaluate the efficiency of all algorithms and the accuracy of the approximation.

7. EXPERIMENTAL EVALUATION

We evaluate the efficiency of the proposed algorithms with a Pentium 3 GHz
CPU assuming a page size of 4 KBytes. We use a uniform dataset (UNI)
with 108 points, and the real datasets of Figure 29: LA and TS available at
wwuw.rtreeportal.org. The datasets are indexed by R*-trees [Beckmann et al.
1990] with a capacity of 204 entries per node. All algorithmic implementa-
tions are based on best-first traversal. Section 7.1 focuses on memory-resident
queries, Section 7.2 on disk-resident queries, and Section 7.3 evaluates approx-
imate algorithms.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

564 . D. Papadias et al.

‘\\
(a) LA (1,314,620 points) (b) TS (194,971 points)
Fig. 29. Real datasets.
MQM SPM MBM FSM
(| O |] Actual
- —— —h Estimated
1E+6 1E+6. . 1E+4 /O cost
) /O cost .] /O cost "/
1E: /’/ 1E "/
1B+ psm A1 1B+ psm —
1E+ il 1E+
10 | | | | oK 10
10 10 ||
! 2 T 16 64 256 1024 ! 2 T 16 64 256 1024
n n
(a) f=sum (b) f = max

Fig. 30. Actual and estimated I/O cost vs. cardinality n of @ (UNI, Ag = 8%,k = 4).

7.1 Evaluation of Memory-Resident Queries

We compare MQM, SPM, MBM and the simple file scan method (FSM), dis-
cussed in Section 3.4, using workloads of 100 (unweighted) queries on UNI and
LA. For UNI, the query points follow zipf distribution (parameter ¢ = 0.8) in
a circle Cq. For LA, the query points are uniformly distributed in Cq. Each
workload has two parameters: the number n of query points and the area Ag
of Cq. The only change between two queries in the same workload is the po-
sition of the center of Cg, which distributes uniformly in the data space. The
reported cost corresponds to the average of all queries in the workload. For the
LA dataset, we apply a regular grid [Theodoridis et al. 2000] of size 100 x 100
to keep statistics’ about the data distribution (to be used by the cost models as
discussed in Section 4.4). For UNI, our models are applied directly to produce
the estimated number of node accesses.

First, we study the effect of the cardinality n of @, by fixing Ag to 8% of the
data space and the number % of retrieved ANNSs to 4. Figures 30 and 31 show

"We use the grid approach because of its simplicity. More sophisticated multidimensional his-
tograms (e.g., Acharya et al. [1999]) are expected to produce better results under limited memory.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Aggregate Nearest Neighbor Queries in Spatial Databases . 565

AV]

-
1E+ o] 1E+

1E+

\

\1

1E+6 1o cost 1E3 1/O cost 1E+4] /O cost

ESM —

1E+ 1E+ 1 ~t

1E+4 Fsm

—-/

il

1 L | L | L | 1 L | L | L | L
4 16 64 256 1024 4 16 64 256 1024

- S

(a)f=nsum (b)f=nmax

Fig. 31. Actual and estimated I/O cost vs. cardinality n of @ (LA, Ag = 8%,k = 4).

MQM SPM MBM FSM

oo m —

10007 CPU cost (sec) 1000) cpy cost (sec)

4 16 64 256 1024 4 16 64 256 1024
n n

(a)f = sum (b) f =max (©)f=min
Fig. 32. CPU cost vs. cardinality n of @ (UNI, Aqg = 8%,k = 4).

the actual and estimated I/O cost (R-tree node accesses for MQM, SPM, MBM
and page accesses for FSM), for UNI and LA, respectively. MQM is the worst
method for sum and max due to the multiple NN queries, some of which access
the same nodes and retrieve the same points. As predicted by the models of
Section 4 its cost increases linearly with n, whereas the query cardinality has
little or no effect on the other algorithms. On the other hand, for low values of n
and the min function, MQM outperforms SPM (and FSM) because it searches
a few, very small circles (around the query points) as opposed to a large cir-
cle defined by the pruning condition: mindist(N,q) > best_dist + max]_;|q;q|
of SPM. Nevertheless, SPM is still insensitive to n and eventually surpasses
MQM.

MBM is the best method in all cases. Its cost increases with n only for min,
because in this case heuristic 2 becomes min]_;mindist(N, q;) > best_dist, that
is, a node is visited if it is close to any query point. The results are similar
for both Figures 30 and 31 despite the different data and query distributions,
suggesting the generality of the above observations. The cost models capture
the performance accurately; the relative error is usually around 5%-10% and
it does not exceed 20% in any case. The inaccuracy is slightly larger for LA due
to the error introduced by the grid histogram.

Figures 32 (UNI) and 33 (LA) measure the CPU time of all algorithms under
the same setting as Figures 30 and 31. The main difference is that now the over-
head of FSM, SPM and MBM increases with n for all functions. This happens
because, although the number of accesses may remain approximately the same
for different values of n, the CPU cost for computing the aggregate distance of
the data points is proportional to n. The relative performance of the algorithms

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

566 . D. Papadias et al.

10001CPU cost (sec)

4 16 64 256 1024 ’ 4 16 64 256 1024
n n

(a) f = sum (b) f= max (c)f=nmin

Fig. 33. CPU cost vs. cardinality n of @ (LA, Ag = 8%,k = 4).

MQM SPM MBM FSM

0 O [] Actual
- —— —h Estimated
1E+5, //O cost 1E+6, 10 cost 1E+4I 1O cost
1E+ 1E*zl
FSM 1E+
1E+ I—I FSM. —]
1E+
10
10!
10. 10
1
% % 8% 16% 32% R % 4% % 6% 32%
Aq Aq A
(a) f=sum (b) f=max (c)f =min

Fig. 34. Actual and estimated I/O cost vs. area Ag of @ (UNI, n =64,k = 4).

1E+5 /O cost 1E+5//0 cost 1E+4] 1/O cost
P e I i
1E-
* A - /ﬂ/ﬂ/ﬂ/
=

100§

1

1
! 2% 4% 8% 16% 32% 2% 4% SA% 16% 2%
Q

(b). = max (©)f = min
Fig. 35. Actual and estimated I/O cost vs. area Aq of @ (LA, n =64,k =4).

is the same as the previous experiments. In the rest of the subsection, we omit
the CPU diagrams since they are similar to the ones for I/O cost in all cases.

In order to measure the effect of the area covered by @, we setn =64,k =4
and vary Ag from 2% to 32% of the data space. As shown in Figures 34
(UNI) and 35 (LA), the I/O cost of MQM, SPM and MBM increases with Ag for
sum and max. For MQM, the termination condition is that the global threshold
T (i.e., sum/max of thresholds for each query point) should exceed best_dist,
which increases with the query area. For SPM and MBM, the reason is the
degradation of the pruning power of the heuristics. In the min case, however,
only SPM is affected significantly by Aq because the factor max?_, |q;q|involved
in the pruning heuristic increases with the query size. The cost of FSM is obvi-
ously independent of Ag.

In Figures 36 (UNI) and 37 (LA), we set n = 64, Ag = 8% and vary the
number % of retrieved neighbors from 1 to 16. The value of £ does not influence

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Aggregate Nearest Neighbor Queries in Spatial Databases . 567

MQM SPM MBM FSM

0 O B — dowa
- 0 —h Estimated
1E+5, /O cost 1E+5, /O cost 1E+4] /0 cost
J 1] W M TSN
1E
1E+ ‘ + r - 1E+3
1E+ 1E+
100 .
100, 100]
L L L L
10 10 10
1 L L || | 1 || L | || ;
1 2 4 8 16 1 2 4 8 16
k k k
(a) f =sum (b) f = max (¢)f =min
Fig. 36. Actual and estimated I/O cost vs. number k£ of ANNs (UNI, n = 64, Ag = 8%).
1E+i| 1/O cost 1E+j| /O cost 1E+41/0 cost
= = = = __ __ FSM
1E+ |_| FSM 1E+4 [esmt 1E+3
1E+ 1 1 ~t 1E+ el el] | _| | _|
100
100 100
10 10 19
| || o L,
R e I I S S B R e B a e
Kk K
(a) f=sum (b) f = max (¢)f = min
Fig. 37. Actual and estimated I/O cost vs. number & of ANNs (LA, n = 64, Ag = 8%).
MQM SPM MBM FSM
o m —
1000] overall cost (sec) 100! a‘éf»f” casta(ssn:c) - 100]0,/5,5,,005, (sec) o
2% 90% 101 |_| g 86% a8%
100 |_| 81% |—| || = 85%
|_| = 64% 85%

0% 5% 10% 15% 20% 0% T TR 0% 0% 5% 0% 5% 20%
buffer size utter size buffer size
() f = sum (b) f = max (¢)f=min

Fig. 38. Overall cost vs. buffer size (UNI, n =64,k =4, Ag = 8%).

10007 overall cost (sec) 10007 overall cost (sec) 100] overall cost (sec) 83%

92% 0% 94% %%

ol B g & ae

01 0% 5% 10% 15% 20% 0% 5% 10% 15% 20%
buffer size buffer size buffer size
(a) f=sum (b) f=max (¢)f=min

Fig. 39. Overall cost vs. buffer size (LA, n =64,k =4, Ag = 8%).

the cost of any method significantly, because in most cases all neighbors are
found in a few leaf nodes.

Figures 38 (UNI) and 39 (LA) study the total running time in the presence
of an LRU buffer that can accommodate 0% to 20% of the cumulative number

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

568 . D. Papadias et al.

of pages in the R-tree of P. We set n = 64, £ = 4, Ag = 8% and measure the
sum of I/O and CPU costs, charging 10 milliseconds for each page fault. The
percentage of the overhead corresponding to I/O appears above each column.
SPM and MBM do not benefit from the existence of the buffer, since they process
each node of the R-tree of P at most once. The cost of FSM is also constant
because it reads each page of P exactly once and it incurs a fixed amount (i.e.,
|P| -n) of aggregate distance computations. On the other hand, MQM improves
significantly for larger buffer sizes because of the locality of node visits for
conventional NN queries. The experiment confirms again the superiority of
MBM under all settings and functions. Thus, it is the method of choice for
centralized databases indexed by R-trees (or other data-partition methods).
MQM could be used for distributed systems, where each query point is processed
locally and the individual results are combined to produce the final output. SPM
does not have any obvious advantages over MBM, but as discussed in Section
6 and verified in 7.3, it motivates an effective approximate algorithm. Finally,
FSM is applicable for nonincremental processing on nonindexed datasets.

7.2 Evaluation of Disk-Resident Queries

For this set of experiments, we use T'S and LA alternatively as query (@) and
data (P) sets. We compare F-MQM, F-MBM, and BNL assuming that the main
memory can accommodate 50,000 data points (i.e., 196 pages). P is indexed
by an R*-tree (except for the case of BNL) and @ is stored as a flat file (LA
occupies 5136 and T'S 762 pages). The I/O cost corresponds to the sum of R-tree
node visits and page accesses for reading @. When P = LA (1,314,620 points),
there are 27 data blocks and the cost of BNL is 5136 + 27 - 762, whereas, if
P =TS (194,971 points) the number of blocks is 4 and the cost of BNL becomes
762 + 4 - 5136 (these costs are independent of the query parameters). F-MQM
applies MBM to compute the ANN of each block because, as shown in Section
7.1, it is the most efficient method for memory-resident queries. The I/O in the
diagrams also includes the cost of sorting @ (according to Hilbert values) in
F-MBM.

Since now the query cardinality n is fixed to that of the corresponding dataset,
we perform experiments by varying the relative data spaces of P and Q. First,
we assume that the spaces of P and @ have the same centroid, but the area
Ag of @ varies between 2% and 32% of the data space of P (similar to the
experiments of Figures 34 and 35, but now the query points are enclosed by
an MBR instead of a circle). Figure 40 (41) shows the I/O cost as a function of
query size assuming that the query dataset is TS (LA) and 2 = 4. In general,
BNL has the lowest cost for sum and max (except for very small Ag) because
it reads the data file only once. F-MQM is the best method for min since it
retrieves the ANN of the block that corresponds to the minimum threshold,
leading to the earliest termination of the algorithm. For sum, F-MBM out-
performs F-MQM because it can prune nodes N “far” from the query centroid
based on Heuristic 4: sum(amindist(N, M4), ...,amindist(N, M,,)) > best_dist.
Especially, for the case that @ = LA (Figure 41), each of the 27 query blocks
occupies a small part of the data space (due to Hilbert sorting), enhancing the

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Aggregate Nearest Neighbor Queries in Spatial Databases . 569

F-MQM F-MBM BNL

1B+ 10 cost 1E+6, /0 cost 1E+6, 1/O cost
1E+6 1E+S
1E+5
1E+5 1E+4
1E+4
1E+4 1E+3
1E+3 1E+3 1E+2)
2% 4% 6% ~ 32% 2% 4% 16% 32% 2% 4% 6% 32%

o 1 o 8% 1
MBR area of Q MBRarea of Q MBR area of Q

(a) f = sum (b) f= max (¢) f=min
Fig. 40. 1/O cost vs. area Ag of @ (P =LA, @ =TS,k =4).

1E+71 /O cost 1E+6, /O cost 1E+6; 1/0 cost
1E+6
1E+S 1E+5
1E+5
1E+4. 1E+4
1E+4
1E+3 8% o 1E+3 1E+3

2% 4% % 16% 32% 2% 4% 8% 16% 32% 2% 4% 8% 16% = 32%
MBR area of Q MBR area of Q MBR area of Q
(a)f =sum (b) f = max (¢)f=min

Fig. 41. T/O cost vs. area Ag of @ (P =TS, @ =LA, k =4).

F-MQM F-MBM BNL

1E+5, CPU cost (sec) 1E+5, CPU cost (sec) 1E+5, CpU cost (sec)
1E+4 1E+4 1E+4
1E+3 1E+3 1E+3
100 100 100
10 10 10
1 1 1

2% 4% 8% 16% 32% 2% 4% 8% 16% 32% 2% 4% 8% 16% 32%
MBR area of Q MBR area of Q MBR area of Q
(a)f=sum (b) f=max (¢)f=min

Fig. 42. CPU cost vs. area Ag of @ (P =LA, @ =TS,k =4).

pruning power of the heuristic. In case of max, the relative performance of the
two methods depends on the problem: F-MBM is better for @ = LA (for the
reason mentioned above), but worse than F-MQM for @ = TS (since there exist
only 4 query blocks and the pruning power of the heuristic is lower).

Figures 42 and 43 compare the CPU costs of the methods for the same set-
tings as Figures 40 and 41, respectively. In this case, BNL is the worst algorithm
due to the exhaustive distance computations for all data-query point pairs. Sim-
ilar to I/O diagrams, F-MQM is again the best method for min. For sum and max,
the winner depends on the cardinality of the query dataset: (i) when @ =TS, itis
F-MQM since it efficiently combines the ANNSs of only 4 blocks and (ii) when @ =
LA, the winner is F-MBM because of the enhanced pruning power of Heuristic 4
and the higher cost of F-MQM (for combining the results of 27 groups).

In order to further investigate the effect of the relative data space positions,
for the next set of experiments we assume that both datasets lie in spaces of the

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

570 .

1E+5, cPU cost (sec)
1E+4
1E+3
100
10

1

2% 4% 8% 16% 32%

MBR area of Q

(a) f =sum

D. Papadias et al.

1E+5 1 CPU cost (sec)
1E+4
1E+3

100

10

1
2% 4% 8% 16% 32%
MBR area of Q

(b) f=max

1E+S CPU cost (sec)
1E+4
1E+3

100

10

2% 4% 8% 16% 32%
MBR area of Q

(¢)f=min

Fig. 43. CPU cost vs. area Ag of @ (P =TS, @ =LA, k =4).

F-MQM F-MBM BNL

O m O
1B+ 10 cost 1E+7, /O cost 1E+6, 10 cost
1E+7 1E+6
1E+5
1E+6 1E+5
1E+5 1E+4
1E+4
1E+4 1E+3
1B 25% 50% 75% 100% ~ 'E*2 1E+3
0% 25% 50% /5% 100% 0% 26% 50% 75% 100%
overlap area overlap area overlap area
(a) f=sum (b) f=max (¢)f=min
Fig. 44. 1/O cost vs. overlap area (P = LA, @ =TS, k = 4).

1E+71 /O cost 1E+7, 1/O cost 1E+6, /O cost

1E+6 1E+6
1E+5
1E+5 1E+5
1E+4 1E+4
1E+4
1E+3 1E+3
B2 25% 50% 75% 100% ~ 1E*2 1E+3
1 0% 25% 50% 75% 100% 0% 25% 50% 75% 100%
overlap area overlap area overiap area
(a) f=sum (b) f=max (¢)f=min
Fig. 45. 1/O cost vs. overlap area (P =TS, @ = LA, k = 4).

same size, and vary their overlap area from 0% (i.e., P and @ are totally disjoint)
to 100% (i.e., on top of each other). Intermediate values are obtained by starting
from the 100% case and shifting the query dataset on both axes. Figure 44 (45)
shows the cost of the algorithms assuming that @ = TS (LA). For sum and
max, F-MQM is the best method for 0% overlap, but its cost grows fast with the
overlap area. To explain this, let us consider the 0% overlap case assuming that
the query space starts at the upper-right corner of the data space. The nearest
neighbors of all query blocks must lie near this upper-right corner, since such
points minimize the aggregate distance. Therefore, F-MQM can find the best
ANN relatively fast, and terminate when all the points in or near the corner
have been encountered. On the other hand, as the overlap area increases, so
does the number of data points that need to be considered. F-MBM is not very
sensitive to the overlap area since, intuitively, its performance depends more
on the relative position of R-tree nodes with respect to the query blocks. BNL
is the best algorithm for sum and max in the case of overlap areas exceeding
25%, whereas F-MQM is the winner in the remaining settings.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Aggregate Nearest Neighbor Queries in Spatial Databases . 571

F-MQM F-MBM BNL

1E+5, CPU cost (sec) 1E+5, CPU cost (sec) 1E+5, CPU cost (sec)
1E+4 1E+4 1E+4
1E+3 1E+3 1E+3
100 100 100
10 10 10
1 1 1
0% 25% 50% 75% 100% 0% 25% 50% 75% 100% 0% 25% 50% 75% 100%
overlap area overlap area overlap area
(a)f = sum (b).f = max (¢)f = min

Fig. 46. CPU cost vs. overlap area (P =LA, @ =TS, k =4).

1E+5, CPU cost (sec) 1E+5, CPU cost (sec) 1E+5, CPU cost (sec)
1E+4 1E+4 1E+4
1E+3 1E+3 1E+3
100 100 100
10 10 10
1 1
0% 25% ~ 50% "~ 75% ~ 100% 0% 25% 50% 75% 100% 1 "0% 25% 50% 75% 100%
overlap area overlap area overlap area
(a) f = sum (b) f = max (¢)f =min

Fig. 47. CPU cost vs. overlap area (P =TS, @ = LA,k =4).

F-MQM F-MBM BNL

O m O

1E+5| overall cost (sec) 1E+5| overall cost (sec) 1E+51 overall cost (sec)

1E+4
1E+4

1E+3

1E+3 100

0% 5% 10% 15% 20% 0% 5% 10% 15% 20% 100
buffer size buffer size

0% 5% 10% 15% 20%
buffer size

(a) f'= sum (b)f = max (¢)f=min

Fig. 48. Overall cost vs. buffer size (P =LA, @ =TS,k =4, Aqg = 8%).

Figures 46 and 47 show the CPU cost vs. the overlap area. Similar to Figures
42 and 43, BNL has the highest CPU overhead and F-MQM the lowest cost for
min. For sum and max the winner is F-MQM if @ = TS, and F-MBM when
= LA. We also performed experiments by varying the number of neighbors
retrieved, while keeping the other parameters fixed. As in the case of main-
memory queries, £ does not have a significant effect on the performance (and
the diagrams are omitted).

In Figure 48 (49), we measure the overall cost (including I/O and CPU time)
in the presence of an LRU buffer, for P = LA (TS), @ = TS (LA) and £ = 4. The
spaces of P and @ have the same centroid and Agq is set to 8%. The buffer is
dedicated to disk pages of P. Caching is pointless for @, because it is always
scanned linearly. Similar to Figures 38 and 39, the buffer size varies between 0%
and 20% of the total number of pages in P, and each page fault corresponds to
10 milliseconds. The percentage above each column indicates the I/O overhead.
The performance of F-MBM (BNL) is independent of the buffer size, because

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

572 . D. Papadias et al.

1E+5] overall cost (sec) 1E+5| overall cost (sec) 1E+5] overall cost (sec)

2% 2% 2% 2% 2%

1E+4.

1E+3

0% 5% 10% 15% 20% 100 0% 5% 10% 15% 20%

buffer size buffer size buffer size

(a) f = sum (b) f = max (¢)f =min
Fig. 49. Overall cost vs. buffer size (P =TS, @ =LA,k =4, Ag = 8%).

it accesses each page of P at most once (exactly once). On the other hand,
F-MQM improves slightly when a buffer is available, but the enhancement is
negligible because its I/O cost is largely dominated by reading the query set @.
As opposed to algorithms for memory-resident queries, which are I/O bound,
for disk resident queries often the CPU-time corresponds to a large part of the
total cost (i.e., 97-98% for BNL, 85-97% for F-MQM and the min function).

In summary, unlike the case of main-memory queries, where there is a clear
winner (MBM), the best method for disk-resident queries depends on the prob-
lem characteristics. F-MQM is always preferable for min, and performs well
for max given few query blocks. F-MBM is best for sum and to a lesser extend
for max, especially for large query sets. BNL has balanced performance and
could be the method of choice for sum and max, if the data and query sets cover
the same space. An important observation from the above experiments refers
to the high cost of the disk-resident queries, which motivates the approximate
algorithms, evaluated in the next section.

7.3 Evaluation of Approximate Algorithms

For approximate algorithms, in addition to performance, we have to evaluate
the quality of approximation. Let p,,, be the 2&th ANN retrieved by an approx-
imate algorithm andadist’s.s; be its aggregate distance. We define the error as:
(adist'pes — adistpest)/adistpest, Where adistp,s; is the aggregate distance of the
actual 2th ANN (note that adist'pes; > adistpes;). CAM and A-SPM are com-
pared on disk-resident queries using the datasets LA and TS alternatively as
query points. Both algorithms read @ twice: the first time for computing @’
(CAM) or the geometric centroid (A-SPM) and the second time for computing
the actual aggregate distance of the retrieved ANNs.

Figures 50 and 51 illustrate the I/O cost as a function of the area Ag of @.
Similar to Figures 40 and 41, we assume that the data spaces of P and @ have
the same centroid, but the MBR of @ ranges between 2% and 32% of the data
space of P. The two methods have almost the same overhead because their
I/O cost is dominated by reading @ and the node accesses to the data R-tree
have little effect on performance. The diagram also includes the error of the
algorithms at the top of the corresponding column. A-SPM incurs small error
for sum (maximum value 6.51%) because the SR can be well approximated by a
circle around the geometric centroid. The quality of approximation is lower for
@ = LA due to the higher skeweness of the dataset (compared to TS). On the

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

1E+4

1E+3

10

=]

Aggregate Nearest Neighbor Queries in Spatial Databases . 573
CAM A-SPM
H O

/O Cost

0.84% 0.32% 062% 0.03% 0.31% 0.10% 065% 0.49% 0.39% 0.04%

L

8% 32%

1E+4

1

1E+3
10
1
2% 4%

/0 Cost

0.35% 2.75% 1.08% 2.07% 363% 1.82% 585% 3.88% 568% 8.85%

UL

8% 32%

=]

o

MBR area of Q MBR area of Q
(a) f = sum (b) f = max
Fig. 50. I/O cost vs. area Ag of @ (P =LA, Q@ =TS,k =4).
1E+5, /O Cost 1E+5, /O Cost
1E+4 28.62% 3.91% 27.60% 4.36% 23.86% 6.35% 20.19% 651% 16.69% 5.84% 1E+4 0.19% 33.50% 3.03% 34.41% 567% 3260% 9.33% 31.56% 13.99% 32.74%
1000 1000
100 100
10 10
1 1
2% 4% 8% 16% 32% 2% 4% 8% 16% 32%
MBR area of Q MBR area of Q
(@) f=sum (b) f=max
Fig. 51. T/O cost vs. area Ag of @ (P =TS, @ =LA, k =4).
CAM A-SPM
1E+3, CPU cost (sec) 1E+3, CPU cost (sec)

10

<]

o

LLL

8% 16% 32%

2% 4%
MBR area of Q

(@) f=sum

10

<]

L

8% 16% 32%

2% 4%
MBR area of Q

(b)f = max

Fig. 52. CPU cost vs. area Ag of Q@ (P =LA, @ =TS,k =4).

other hand, CAM is better for max because the SR has a more irregular shape
(see Figure 17).

The last experiment (Figures 52 and 53) measures the CPU time of the
approximate algorithms. A-SPM is better than CAM because finding the Eu-
clidean NNs of ¢ involves processing just a few nodes, whereas coalescing
query points is CPU-intensive. Especially for @ = LA (Figure 53), the CPU
overhead of CAM exceeds that of the best exact algorithm (Figure 43) and the
method is ineffective. In general, A-SPM is far more efficient (and, for sum, more
accurate). CAM should be used only for max, provided that the query dataset
is relatively small.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

574 . D. Papadias et al.

1E+4, CPU cost (sec) 1E+4, CPU cost (sec)
1E+3. 1E+3.
100. 100
10 10
1 1
2% 4% 8% 16% 32% 2% 4% 8% 16% 32%
MBR area of Q MBR area of Q
(a) f = sum (b) f=max

Fig. 53. CPU cost vs. area Ag of @ (P =TS, @ =LA,k =4).

8. CONCLUSIONS

In this article, we propose the novel problem of aggregate nearest neighbor
retrieval, a generalized form of NN search, where there are multiple query
points and the optimization goal depends on an input function . ANN is impor-
tant both as a standalone query type in spatial applications (e.g., GIS, VLSI),
as well as a module for efficient clustering-related methods. We provide algo-
rithms for memory-resident queries and cost models that accurately predict
their performance in terms of node accesses. As a second step, we also develop
methods for disk-resident query sets and approximate retrieval. We evaluate
all the proposed techniques through extensive experiments.

In the future, we intend to explore the application of related techniques to
variations of ANN search. Consider, for instance, that @ represents a set of
facilities and the goal is to assign each object of P to a single facility so that the
sum of distances (of each object to its nearest facility) is minimized. Additional
constraints (e.g., a facility may serve at most £ users) may further complicate
the solutions. Similar problems have been studied in the context of clustering
and resource allocation, but the existing methods are different from the ones
presented in this article (as they do not rely on spatial indexing). Finally, we
plan to study analytically ANN retrieval for disk-resident sets. In this case,
the derivation of cost models is more complex than memory-resident queries
because of the multiple reads of @ required by the processing techniques.

REFERENCES

ACHARYA, S., PoosaLa, V., AND Ramaswamy, S. 1999. Selectivity estimation in spatial databases. In
Proceedings of ACM Conference on the Management of Data (SIGMOD) (Philadelphia, Pa., June),
ACM, New York, 13-24.

Accrawar, C. anp Yu, P. 2001. Outlier detection for high dimensional data. In Proceedings of ACM
Conference on the Management of Data (SIGMOD) (Santa Barbara, Calif., May). ACM, New York,
37-47.

ARrva, S., Mount, D., NETanvaHU, N., SivERMAN, R., AND WU, A. 1998. An optimal algorithm for
approximate nearest neighbor searching. J ACM 45, 6, 891-923.

BreckMANN, N., KriEGEL, H., SCHNEIDER, R., AND SEEGER, B. 1990. The R*-tree: An efficient and
robust access method for points and rectangles. In Proceedings of ACM Conference on the Man-
agement of Data (SIGMOD) (Atlantic City, N.J., May). ACM, New York, 322—-331.

BeNETIS, R., JENSEN, C., KARCIAUSKAS, G., AND SALTENIS, S. 2002. Nearest neighbor and reverse near-
est neighbor queries for moving objects. In Proceedings of International Database Engineering
and Applications Symposium (IDEAS) (Edmonton, Ont., Canada, July). 44-53.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Aggregate Nearest Neighbor Queries in Spatial Databases . 575

BercaTOLD, S., BonM, C., KEmv, D.A., anD KrikceL, H. 1997. A cost model for nearest neighbor
saearch in high-dimensional data space. In Proceedings of ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS) (Tucson, Az. May). ACM, New York,
78-86.

BevER, K., GOLDSTEIN, J., RAMAKRISHNAN, R., AND SHAFT, U. 1999. When is nearest neighbor mean-
ingful? In Proceedings of International Conference on Database Theory (ICDT) (Jerusalem, Israel,
Jan.). 217-235.

BonmMm, C. 2000. A cost model for query processing in high dimensional data spaces. ACM Trans.
Datab. Syst. 25, 2, 129-178.

Bruno, N., CHAUDHURI, S., AND GRAVANO, L. 2002. Top-k selection queries over relational databases:
Mapping strategies and performance evaluation. ACM Trans. Datab. Syst. 27, 2, 153—-187.

CHaNG, Y., BEraMaN, L., CasteLul, V., Li, C., Lo, M., aND SmiTH, J. 2000. The onion technique:
Indexing for linear optimization queries. In Proceedings of ACM Conference on the Management
of Data (SIGMOD) (Dallas, Tex., May). ACM, New York, 391-402.

CHEUNG, K. anD Fu, A, 1998. Enhanced nearest neighbour search on the R-tree. SIGMOD Record
27, 3, 16-21.

CoRRAL, A., MaNoLOPOULOS, Y., THEODORIDIS, Y., AND VassiLakopouLos, M. 2000. Closest pair queries
in spatial databases. In Proceedings of ACM Conference on the Management of Data (SIGMOD)
(Dallas, Tex., May). ACM, New York, 189-200.

FaciNy, R. 2002. Combining fuzzy information: An overview. SIGMOD Rec. 31, 2, 109-
118.

Facin, R., LoteMm, A., AND Naor, M. 2001. Optimal aggregation algorithms for middleware. In
Proceedings of ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS) (Santa Barbara, Calif., May). ACM, New York, 102-113.

GuttMmAN, A. 1984. R-Trees: A dynamic index structure for spatial searching. In Proceedings of
ACM Conference on the Management of Data (SIGMOD) (Boston, Mass., June). ACM, New York,
47-57.

JaN, A., MurTHy, M., aND FrynN, P. 1999. Data clustering: A review. ACM Comput. Surv. 31, 3,
264-323.

HenricH, A. 1994. A distance scan algorithm for spatial access structures. In Proceedings of ACM
Workshop on Geographic Information Systems (ACM GIS) (Gaithersburg, Md., Dec.). ACM, New
York, 136-143.

Hiarrason, G. AND SAMET, H. 1998. Incremental distance join algorithms for spatial databases. In
Proceedings of ACM Conference on the Management of Data (SIGMOD) (Seattle, Wash., June).
ACM, New York, 237-248.

Hiarrason, G. AND SAMET, H. 1999. Distance browsing in spatial databases. ACM Trans. Datab.
Syst. 24, 2, 265-318.

HOCHREITER, S., YOUNGER, A. S., AND CoNWELL, P. 2001. Learning tolearn using gradient descent. In
Proceedings of International Conference on Artificial Neural Networks (ICANN) (Vienna, Austria,
Aug.). 87-94.

Hristipis, V. AND PAPAKONSTANTINOU, Y. 2004. Algorithms and applications for answering ranked
queries using ranked views. VLDB JJ. 13, 1, 49-70.

Koraupouzan, M. anD SHAHABI, C. 2004. Voronoi-based K nearest neighbor search for spatial
network databases. In Proceedings of Very Large Data Bases Conference (VLDB) (Toronto, Ont.,
Canada, Aug.). 840-851.

Kotrios, G., GuNnopuLos, D., AND TsoTtras, V. 1999. Nearest neighbor queries in mobile environ-
ment. In International Workshop on Spatio-Temporal Database Management (STDBM) (Edin-
burgh, Scotland, Sept.). 119-134.

Korn, F., PaceL, B., anp Favoutrsos, C. 2001. On the “Dimensionality Curse” and the “Self-
Similarity Blessing.” IEEE Trans. Knowl. Data Eng. 13,1, 96-111.

Liu, X. anD FErHATOSMANOGLU, H. 2003. Efficient k-NN search on streaming data series. In Pro-
ceedings of International Symposium on Advances in Spatial and Temporal Databases (SSTD)
(Santorini Island, Greece, July). 83-101.

Nagrano, K. anp Orariy, S. 1997. An optimal algorithm for the angle-restricted all nearest neigh-
bor problem on the reconfigurable mesh, with applications. IEEE Trans. Paral. Distrib. Syst. 8,
9, 983-990.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

576 . D. Papadias et al.

Ng, R. anp HaNn, J. 1994, Efficient and effective clustering methods for spatial data mining. In
Proceedings of Very Large Data Bases Conference (VLDB) (San Francisco, Calif., Sept.). 144-155.

Parapias, D., SHEN, Q., Tao, Y., anD Mouratinis, K. 2004. Group nearest neighbor queries. In
Proceedings of IEEE International Conference on Data Engineering (ICDE) (Boston, Mass., Mar.).
IEEE Computer Society Press, Los Alamitos, Calif., 301-312.

Papapias, D., ZHaNg, J., MamouLis, N., aND Tao, Y. 2003. Query processing in spatial network
databases. In Proceedings of Very Large Data Bases Conference (VLDB) (Berlin, Germany, Sept.).
802-813.

Paraporouros, A. aND Manororouros, Y. 1997. Performance of nearest neighbor queries in
R-trees. In Proceedings of International Conference on Database Theory (ICDT) (Delphi, Greece,
Jan.). 394-408.

Press, W., FLANNERY, B., TEUKOLSKY, S., AND VETTERLING, W. 2002. Numerical recipes in C++ (second
edition). Cambridge University Press, ISBN 0-521-75034-2.

Roussoroutos, N., KeLLy, S., AND VINCENT, F. 1995. Nearest neighbor queries. In Proceedings of
ACM Conference on the Management of Data (SIGMOD) (San Jose, Calif., May). ACM, New York,
71-79.

SAKURAL Y., YosHIKAWA, M., UEMURA, S., AND Kogima, H. 2000. The A-tree: An index structure for
high-dimensional spaces using relative approximation. In Proceedings of Very Large Data Bases
Conference (VLDB) (Cairo, Egypt, Sept.). 516-526.

SHAN, J., ZHANG, D., AND SALZBERG, B. 2003. On spatial-range closest-pair query. In Proceedings
of International Symposium on Advances in Spatial and Temporal Databases (SSTD) (Santorini
Island, Greece, July). 252—269.

Song, Z. anp Roussopouros, N. 2001. K-nearest neighbor search for moving query point. In Pro-
ceedings of International Symposium on Advances in Spatial and Temporal Databases (SSTD)
(Redondo Beach, Calif., July). 79-96.

SprouLL, R. 1991. Refinements to nearest neighbor searching in K-dimensional trees. Algorith-
mica 6, 4, 579-589.

Tao, Y. aND Parabias, D. 2003. Spatial queries in dynamic environments. ACM Trans. Syst. 28,
2,101-139.

Tao, Y., ZHANG, dJ., Papapias, D., AND MamouLis, N. 2004. An efficient cost model for optimization of
nearest neighbor search in low and medium dimensional spaces. IEEE Trans. Knowl. Data Eng.
16, 10, 1169-1184.

THEODORIDIS, Y., STEFANAKIS, E., AND SELLIS, T. 2000. Efficient cost models for spatial queries using
R-trees. IEEE Trans. Knowl. Data Eng. 12, 1, 19-32.

WEBER, R., ScHEK, H. J., AND BLoTT, S. 1998. A quantitative analysis and performance study for
similarity-search methods in high-dimensional spaces. In Proceedings of Very Large Data Bases
Conference (VLDB) (New York, N.Y., Aug.). 194-205.

WEeLzL, E. 1991. Smallest enclosing disks (balls and ellipsoids). In New Results and New Trends
in Computer Science. Springer-Verlag, Lecture Notes in Computer Science, vol. 555. New York,
359-370.

WesoLowsky, G. 1993. The Weber problem: History and perspectives. Loc. Sci. 1, 1, 5-23.

X10NG, X., MOKBEL, M., AND AREF, W. 2005. SEA-CNN: Scalable processing of continuous K-nearest
neighbor queries in spatio-temporal databases. In Proceedings of IEEE International Conference
on Data Engineering (ICDE) (Tokyo, Japan, Apr.). IEEE Computer Society Press, Los Alamitos,
Calif., 643-654.

Yy, C., Oor, B, Tan, K., aND JagapisH, H. 2001. Indexing the distance: An efficient method to KNN
processing. In Proceedings of Very Large Data Bases Conference (VLDB) (Rome, Italy, Sept.).
421-430.

Yy, X., Py, K., anD Koupas, N. 2005. Monitoring K-nearest neighbor queries over moving objects.
In Proceedings of IEEE International Conference on Data Engineering (ICDE) (Tokyo, Japan,
Apr.). IEEE Computer Society Press, Los Alamitos, Calif., 631-642.

Received July 2004; revised December 2004; accepted December 2004

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

