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ABSTRACT
Although several spatial indexes achieve fast query processing,

they are ineffective for highly dynamic data sets because of costly

updates. On the other hand, simple structures that enable efficient

updates are slow for spatial queries. In this paper, we proposeWaffle,
a workload-aware, query-sensitive spatial index, that effectively

accommodates both update- and query-intensive workloads. Waffle

combines concepts of the space and data partitioning frameworks,

and constitutes a complete indexing solution. In addition to query

processing algorithms, it includes: (i) a novel bulk loading method

that guarantees optimal disk page utilization on static data, (ii)

algorithms for dynamic updates that guarantee zero overlapping of

nodes, and (iii) a maintenance mechanism that adjusts the trade-

off between query and update speed, based on the workload and

query distribution. An extensive experimental evaluation confirms

the superiority of Waffle against state of the art space and data

partitioning indexes on update and query efficiency.
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1 INTRODUCTION
Spatial databases manage large data sets of objects with location

information (e.g., GPS positions of smartphone users, vessel and air-

craft coordinates). Due to the sheer volume of data, and since there

is no natural ordering in multi-dimensional space, linear search

for objects that satisfy some spatial predicate (e.g., mobile users in

the city center, the closest airplanes to the airport) is impractical.

Thus, spatial indexes [17, 47, 48] have been developed to efficiently

filter and retrieve information. Spatial indexes are usually trees that

either partition the space, or the data objects. The deepest tree level

comprises data nodes, whereas the rest, including the root, consist

of directories. Each node is associated with a spatial extent (e.g., a

minimum bounding rectangle in 2D space) which covers all the
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nodes and objects in its subtree. The maximum number of children

per node is determined by the disk page size.

Among the most common spatial information processing tasks

is the range query: given a (usually rectangular or circular) region

𝑟 , output all objects in 𝑟 . Such a query is processed by accessing

the root of the spatial index and recursively retrieving all nodes

that intersect 𝑟 . Instead of a range, a point query includes a point

𝑙 , and outputs the object(s) located at 𝑙 . Another common query

is 𝑘 nearest neighbors (𝑘NNs): given a location 𝑙 and an integer 𝑘 ,

output the 𝑘 nearest objects to 𝑙 . Processing starts from the root

and visits the nodes containing possible results in a variety of

manners [20, 22, 43]. Observe that a range 𝑟 or 𝑘NN query may

follow multiple paths from the root to the leaf level because (i)

several nodes may intersect 𝑟 or contain 𝑘NNs, or (ii) the indexing

scheme allows overlapping nodes.

Although several spatial indexes (e.g., R*-Trees) enable fast query

processing, they are ineffective for highly dynamic data sets because

updates may be very expensive due to extensive reorganization of

the tree structure. Instead, simple grid-based solutions are often

preferable to hierarchical indexes for update-intensive applications

[35, 58, 59], despite their inferior query performance. Motivated by

the query vs. update cost trade-off, we proposeWaffle
1
, a novel disk-

based spatial index, which delivers excellent performance and can

accommodate both update- and query-intensive workloads. Waffle

constitutes a complete indexing solution that includes efficient

algorithms for bulk loading, dynamic updates and query processing.

Concretely, our contributions are:

(1) Waffle, a disk-based framework that auto-adapts to all spatial

indexing purposes.

(2) A novel bulk loading method that guarantees optimal disk

page utilization on static data, and emphasizes square-like

nodes.

(3) Algorithms for dynamic updates that create non-overlapping

nodes.

(4) A maintenance mechanism that monitors the query work-

load and distribution, continuously optimizing the index.

(5) An extensive experimental evaluation, which verifies that

Waffle outperforms state of the art spatial indexes on update

and query performance.

The rest of the paper is organized as follows. Section 2 overviews

related work, focusing on the spatial indexes used as benchmarks

in our experiments. Section 3 describes Waffle’s bulk loading algo-

rithm. Section 4 presents the algorithms for dynamic updates, and

Section 5 for query processing. Section 6 contains the experimental

evaluation, and Section 7 concludes the paper.

1
The name Waffle is used to emphasize the square-like nodes in our index.
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2 RELATEDWORK
Spatial indexes are usually tree structures, where (i) each leaf node

(also called data node) stores points, or minimum bounding rect-

angles (MBRs) of data objects, and pointers to the corresponding

records, and (ii) each internal node (also called directory) stores
pointers to child nodes that fall within its extent. They are classified

depending on the type of storage that they reside. Primary memory

indexes (e.g., KD-Trees [5], 2-level [55], CR-Trees [27], BLOCK [37])

are stored entirely in RAM. They are agile and suitable for relatively

small scale applications. On the other hand, secondary memory

indexes (e.g., KDB-Trees [42], the R-Tree family) reside primarily

on the disk, with commonly accessed nodes (i.e., directories) kept in

main memory for swift pointer chasing. Disk-based indexes priori-

tize minimizing the I/O cost (i.e., disk page accesses) over CPU time.

Nodes have a maximum capacity 𝐶 , which is constrained by the

disk page size. Often, they also have a minimum capacity, so that

there are guarantees on the index size and query performance. Our

focus is on disk-based spatial indexes for 2D data points because

they are ubiquitous, as they are used to capture mobile users, cars,

ship trajectories etc. Moreover, their sheer volume necessitates disk

based indexes in most applications.

Assuming that the data are given in advance, bulk loading packs

the index entries into pages, which are then used to build a compact

index. Various bulk loading methods have been proposed for spatial

data [2, 18, 24, 32, 41, 44]. Dynamic data (e.g., moving objects)

necessitate efficient insertion and deletion algorithms. Updates in

spatial indexes can be expensive because node overflows may lead

to extensive reorganization of the tree. Thus, dynamic indexes are

accompanied by construction algorithms that rearrange the tree

structure on the fly, with the aim of optimizing the index, while

minimizing the update cost. Depending on the bulk loading or

update algorithms, spatial indexes are classified as either space or
data partitioning. Space partitioning schemes generate, at each

tree level, disjoint rectangular nodes that cover the entire space.

The simplest approach is Grid [6], which decomposes the space

into equally sized, axis-parallel cells. In practice, more complex

hierarchical structures (e.g., KDB-Trees [42], Quad-Trees [15], LSD-

Trees [21], hB-Trees [34]) have better query performance. These

recursively divide the space until each page has a number of objects

between its minimum and maximum capacity. On the other hand,

data partitioning indexes (e.g., the R-Tree [19] family) generate, at

each tree level, possibly overlapping nodes that aim at minimizing

measures such as overlap between nodes, perimeter, and dead space

(i.e., empty area) inside nodes. Commonly, the node extents are

represented by MBRs, but techniques utilizing other geometric

shapes have been proposed (e.g., M-Trees [11], SS-Trees [57], SR-

Trees [26]). There also exist methods that combine data and space

partitioning (e.g., Hybrid-Trees [8]).

In the following we elaborate on common spatial indexes, used

as benchmarks in our experiments, starting with the R-Tree family.

Bulk loading R-Trees to achieve full nodes and high quality MBRs

is a well-studied problem. Several techniques sort the data objects

on an axis or by a space-filling curve (e.g., Hilbert [25]), and then

recursively group them in nodes. Sort-Tile-Recursive (STR) [32],

one of the most effective methods, first computes the number of

pages required as 𝑃 = ⌈𝑁 /𝐶⌉, where 𝑁 is the data set’s cardinality,

then sorts the data set on the 𝑥-axis, and "tiles" the points into

⌈
√
𝑃⌉ vertical slices. If the resulting slices cause an overflow, they

are sorted on the 𝑦-axis and the algorithm continues recursively.

Among the dynamic R-Tree variants (e.g., R+-Trees [49], R*-Trees

[3], RR*-Trees [4]), the most popular is the R*-Tree [3], a height-

balanced index that uses the query processing algorithms of the

original R-Tree [19], but achieves better structure through sophisti-

cated update algorithms. When a node overflows for the first time,

instead of splitting the node directly, the R*-Tree performs rein-
sertion. Reinsertion sorts the entries of the full node in increasing

order of their distance to the node center, and reinserts a percentage

(e.g., 30%) of the farthest entries. Only if the overflow persists, the

node splits. Splitting involves sorting the entries on all dimensions

in order to select the split axis, yielding the minimum perimeter

for the new nodes. Among all the groupings of entries on the split

axis that satisfy the minimum and maximum capacity constraints,

the new nodes adopt the one with the minimum overlap. Caching

techniques [51, 52] that perform updates in batches, possibly in

multiple versions of R-Trees, have been used to speed up update

and query performance. R-trees have also been employed for track-

ing moving objects [9, 10] on road networks. Although originally

proposed for R-Trees, the above techniques are applicable to all

spatial indexes based on tree structures.

The Quad-Tree is an umbrella term for a plethora of 2D space

partitioning indexes [46], in which directories maintain four chil-

dren, called quadrants. Depending on the partition strategy, dif-

ferent Quad-Trees exist. The PR-Quad-Tree
2
decomposes a node

into equally-sized quadrants. The decomposition continues recur-

sively until no data node exceeds the maximum capacity 𝐶 . The

partition occurs at the center of the node, ignoring the distribution

of the data. Point-Quad-Trees take into account the data during

partitioning. Given a set of points, the Optimized Point Quad-Tree

[15] bulk loads them in three steps: (i) the points are sorted on

the 𝑥-axis, with ties resolved by a secondary sort on the 𝑦-axis, (ii)

the median point serves as the root for the subtree, and (iii) the

remaining points are assigned to the appropriate quadrant. This

process continues recursively until all the nodes satisfy the capacity

constraints. A similar sort-based approach is used for node splits

during dynamic updates. This can lead to unbalanced trees, where

leaf nodes in dense areas are at deeper tree levels than those in

sparse areas. For the rest of paper, the term Quad-Tree refers to the

Optimized Point-Quad-Tree, used as a benchmark in our evaluation.

The KDB-Tree [42] splits nodes on the median entry of the split

axis, which alternates among dimensions. For example, in 2D, after

the first node overflow, the entries are sorted on the 𝑥-axis and the

split occurs on the 𝑥-coordinate of the median entry. The second

split is on the 𝑦-axis, the third again on the 𝑥-axis and so on. Spread

Split [16], is an improved version, which instead computes the dis-

tance between the farthest points on each dimension, and splits on

the axis with the maximum distance. In case of dynamic updates,

the KDB-Tree remains balanced through cascading splits. Specifi-

cally, when a directory is partitioned by a split 𝑠 , its entire subtree is

also divided by 𝑠 , which may lead to extensive reorganization of the

tree structure. During bulk loading, cascading splits can be avoided

2
Generally 𝐶 = 1, while bucket variants have 𝐶 > 1. We drop the term bucket for

brevity.



(a) AIS data (b) Quad-Tree (Optimized Point Quad-Tree)

(c) KDB-Tree (Spread Split) (d) R-Boost

Figure 1: Bulk loaded data nodes for the AIS data set, cardinality 𝑁 = 10
7, capacity 𝐶 = 204 points (4KB page size)

Table 1: Data node properties

Measure Quad KDB (Spread) R-Boost

#𝐷𝑎𝑡𝑎 𝑁𝑜𝑑𝑒𝑠 124342 65536 49020

𝐴𝑣𝑔. #𝑃𝑜𝑖𝑛𝑡𝑠/𝐷𝑎𝑡𝑎 𝑁𝑜𝑑𝑒 80.42 152.59 204.00

𝐴𝑣𝑔. 𝐷𝑎𝑡𝑎 𝑁𝑜𝑑𝑒 𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 2.61 1.92 3.00

using a top-down build strategy. The tree starts with a single node

covering the entire space and grows by breaking nodes at the bot-

tom level over multiple rounds until no page exceeds the capacity

𝐶 . Concretely, when a data node 𝑛0 overflows, 𝑛0 is upgraded to a

directory 𝑛1 (the superscripts denote the height of a node in the

index, e.g., 0 means leaf level). Then, 𝑛1’s space is partitioned into

two data nodes 𝑛0
1
and 𝑛0

2
. If 𝑛0

1
and 𝑛0

2
contain more than 𝐶 points

and splitting them can be accommodated by 𝑛1’s fanout, each data

node is split, so that their number doubles in each step. When 𝑛1’s

fanout is reached, this recursive process is repeated for every data

node exceeding 𝐶 . Our KDB-Tree implementation involves Spread

Split, and the above bulk loading method.

Figure 1a illustrates 10 million points corresponding to ship

locations from the AIS data set, used in our experimental evaluation.

Land masses (e.g., Africa) are empty, while popular shipping lanes

(around Cape of Hope in South Africa) contain numerous points.

Figure 1b to Figure 1d show the data nodes of the bulk loaded

Quad-Tree, KDB-Tree, and R-Boost
3
. The disk page size is set to

4KB, yielding a maximum leaf node capacity of 𝐶 = 204 points

for all indexes. A good partitioning scheme should adapt to the

data distribution. In addition, it should avoid long and thin (i.e.,

spaghetti) nodes because they have a negative impact on query

processing. Based on visual inspection, the KDB-Tree and R-Boost

outperform the Quad-Tree as they generate large nodes in empty

areas, and capture well the high density of shipping lanes with

small nodes. Observe that since R-Boost uses data partitioning, it

does not have data nodes covering some empty areas.

Table 1 verifies the visual observations of Figure 1 by including

the number of data nodes, the average number of points and perime-

ter per data node for each bulk loading method. The KDB-Tree has

65536 data nodes, compared to 124342 for the Quad-Tree. Moreover,

each leaf node of the KDB-Tree has on average 159.59 points, as

opposed to only 80.42 for the Quad-Tree. R-Boost has the minimum

number (49020) of leaf nodes, most of which are full. However,

the data nodes of R-Boost have larger average perimeter 3.00 (i.e.,

they are more spaghetti-like) compared to those of the KDB-Tree

(average perimeter 1.92). Finally, directory nodes of R-Boost may

exhibit overlap, while those of the KDB-Tree are disjoint.

Spatial indexes have also been applied to moving objects [23, 45],

spatio-temporal aggregation [54], and cloud-based partitioning of

spatial data [1]. The recent exponential growth of geo-tagged data

by GPS-capable devices (e.g, smartphones, self-driving cars, navi-

gation systems, trackers, etc.) has triggered a renewed interest on

3
R-Boost library (www.boost.org) contains a state-of-the-art bulk loading algorithm

for R-Trees that combines STR [32] and TGS [18].



Table 2: Notation

Symbol Description

𝐶 Maximum # of points per page

𝐹 Maximum directory fanout

𝑁 Data set cardinality

𝑃 # of pages in the index

𝑛 Node (data or directory)

𝑁𝑛 # of points in the subtree of node 𝑛

𝑃𝑛 # of pages in the subtree of node 𝑛

S𝑛 Set of splits in node 𝑛

𝑛ℎ Node at height ℎ

spatial indexing, especially towards learned structures that replace

internal nodes with machine learning models (e.g., artificial neural

networks), or utilize machine learning to enhance the index capa-

bilities [29]. Several multi-dimensional learned indexes (e.g., Flood

[36], Tsunami [13]) assume a known data distribution and query

workload, or involve approximate querying (e.g., RSMI [40]). More-

over, they focus primarily on in-memory operations and lack in the

spatial domain (e.g., not supporting 𝑘NN queries [36, 56]). Thus,

they do not constitute competitors to the proposed Waffle, which

is an exact disk-based index for general spatial queries, without

requiring prior knowledge of the data or the queries. LISA [33] is,

to the best of our knowledge, the only multi-dimensional learned

index focusing on disk applications.

3 WAFFLE: BULK LOADING
Waffle is a disk-based spatial index that combines concepts from

space and data partition methods. Specifically, the bulk loading and

dynamic update algorithms apply an efficient sort-based scheme

that generates non-overlapping nodes, with excellent load balance

and without causing top-down propagation of splits. As in the case

of data partition indexes, the nodes do not have to cover empty

space. The spatial extent of each directory node is an MBR that

contains the combined extent of its child nodes. Waffle involves

two parameters: data node capacity (𝐶), and directory fanout (𝐹 ).

𝐶 is the maximum number of data points per data node. 𝐹 is the

maximum number of child pointers per directory node. In this

section we present the bulk loading algorithm of Waffle. Table 2

contains the common symbols used in the rest of the paper.

3.1 Algorithm
Let 𝑛ℎ be a node at level ℎ that overflows (ℎ = 0 corresponds to the

leaf level). A split in Waffle is perpendicular to the split axis, which

corresponds to the major dimension of 𝑛ℎ , i.e., the dimension along

which its MBR stretches the most. Reducing node perimeter on the

major dimension leads to square-like nodes that are easier to pack.

Recall that Spread Split [16] also partitions the KDB-Tree nodes on

the major dimension for the same reason, but since it always divides

on the median, the data nodes are not necessarily packed to their

full capacity. Instead, the split point of Waffle corresponds to the

entry whose rank is a multiple of 𝐶 and minimizes the cardinality

gap between the nodes, i.e., the entry ranked 𝐶 ×
⌊
⌈𝑁𝑖/𝐶 ⌉

2

⌋
in the

sorted list according to the coordinate of the major dimension. This

ensures that the number of entries in at least one of the two new

data nodes is a multiple of 𝐶 . Another benefit of using multiples

of 𝐶 is that, when the median is not the last point in its data node,

splitting requires dividing the page holding the median, increasing

the total number of leaf nodes by one. Waffle, on the other hand,

ensures that the number of data nodes remains stable. Furthermore,

the two new subspaces after a split differ by at most one page.

Observe, that the major dimension of a node 𝑛ℎ in Waffle is

obtained directly by its MBR, whereas Spread Split requires com-

puting the distance between all pairs of points in 𝑛ℎ . Moreover,

for intermediate nodes 𝑛ℎ (ℎ > 0), median splitting algorithms,

including Spread Split, (i) require finding the median of all points

in 𝑛ℎ , and (ii) may lead to reorganization of the entire subtree of

𝑛ℎ through cascading splits. Waffle on the other hand, eliminates

these problems, by utilizing the first split 𝑠1 in 𝑛ℎ . The first split

partitions 𝑛ℎ end to end on the major dimension, so that all subse-

quent splits and nodes lie entirely on either side of 𝑠1. In addition

to median search, this avoids cascading splits by preserving the

existing subtree of 𝑛ℎ under the new nodes. To identify the split 𝑠1

required for partitioning 𝑛ℎ , all splits that generate child nodes of

𝑛ℎ are maintained in chronological order in 𝑛ℎ .

Based on the above observations, Waffle bulk loads the data

points using a two-step process. The first step creates the lowest

level with the data nodes, assuming that initially there is a single

data node 𝑛0 containing all data points, and a root 𝑟1 pointing to

𝑛0. To partition 𝑛0, we sort its points on the major dimension. After

determining the split point 𝑠1, entries up to 𝑠1 in the sorted list

are inserted to a new node 𝑛0
1
, and the rest to 𝑛0

2
. The MBRs of 𝑛0

1

and 𝑛0
2
are computed and inserted to 𝑟1, together with pointers to

the new nodes and 𝑠1 (split axis, position), while 𝑛
0
is deleted. If

either 𝑛0
1
or 𝑛0

2
contains more than 𝐶 points, it is partitioned again.

This recursive process continues until all data nodes hold at most

𝐶 points and can fit on a disk page. The first step concludes with

⌈𝑁 /𝐶⌉ full nodes that contain exactly 𝐶 points. If the cardinality

𝑁 is not a multiple of 𝐶 , the last data node has 𝑁%𝐶 points. The

(possibly overflowing) root 𝑟1 stores (i) pointers to all data nodes,

(ii) their MBRs, and (iii) a vector S𝑟 1 with the splits that generated

these nodes in chronological order (i.e., S𝑟 1 starts with 𝑠1). Step 1

is summarized as Procedure BulkLoad-I in Algorithm 1.

The second step of bulk loading spans over multiple rounds.

Starting bottom-up from level 1, each round splits an overflowing

root, to create a new root at the next level. Let 𝑟ℎ denote the root

at height ℎ (initially, ℎ = 1). A round begins by checking if 𝑟ℎ ’s

fanout exceeds 𝐹 , in which case 𝑟ℎ is split into two new directories

𝑛ℎ
1
and 𝑛ℎ

2
using the first split 𝑠1 in S𝑟ℎ . The contents of 𝑟ℎ (i.e.,

pointers to child nodes and splits), except 𝑠1, are distributed to 𝑛ℎ
1

and 𝑛ℎ
2
, depending on which side of 𝑠1 they lie. A new root 𝑟ℎ+1

stores pointers to 𝑛ℎ
1
, 𝑛ℎ

2
and their MBRs; 𝑠1 is inserted into the

split vector S𝑟ℎ+1 of 𝑟ℎ+1. If 𝑛ℎ1 and 𝑛ℎ
2
’s fanout exceeds 𝐹 , they are

partitioned using their respective first splits, maintained in S
𝑛ℎ
1

and S
𝑛ℎ
2

. Split nodes are replaced in 𝑟ℎ+1 with the new directories,

and the splits that created them are kept in S𝑟ℎ+1 . The MBRs of the

new directories are computed using the MBRs of their child nodes.



Algorithm 1 Procedures for the bulk loading algorithm

1: procedure BulkLoad-I(DataNode 𝑛0)
2: Int splitPos← 𝐶 ×

⌊⌈
#Points in 𝑛0

𝐶

⌉
/2

⌋
3: Split 𝑠 ← getSplit(𝑛0, splitPos)
4: Add 𝑠 to S𝑟 1
5: DataNodes {𝑛0

1
, 𝑛0

2
} ← Partition(𝑛0, 𝑠)

6: for all 𝑛 ∈ {𝑛0
1
, 𝑛0

2
} do

7: if #Points in 𝑛 > 𝐶 then
8: BulkLoad-I(𝑛)
9: else
10: Add 𝑛 to 𝑟1

11: end if
12: end for
13: end procedure

14: procedure BulkLoad-II(Directory 𝑟ℎ)
15: Split 𝑠 ← S𝑟ℎ [0]
16: Remove 𝑠 from S𝑟ℎ and add to S𝑟ℎ+1
17: Directories {𝑛ℎ

1
, 𝑛ℎ

2
} ← Partition(𝑟ℎ, 𝑠)

18: for all 𝑛 ∈ {𝑛ℎ
1
, 𝑛ℎ

2
} do

19: if #Nodes in 𝑛 > 𝐹 then
20: BulkLoad-II(𝑛)
21: else
22: Add 𝑛 to 𝑟ℎ+1

23: end if
24: end for
25: end procedure

Directory splitting and populating 𝑟ℎ+1 continues until the fanout
of all directories at level ℎ is at most 𝐹 . If after the end of the round

the fanout of 𝑟ℎ+1 exceeds 𝐹 , the process is repeated for 𝑟ℎ+1. This
recursive procedure is summarized as BulkLoad-II in Algorithm 1.

Note that Algorithm 1 presents a simplified version of the actual

implementation. The procedures are implemented so that nodes do

not need to know their parent directories.

For a given disk page size, the maximum fanout 𝐹 is lower than

themaximum number𝐶 of points per data node, because in addition

to pointers, a directory stores the split vector and MBRs, which

require two points (the opposite MBR corners) per entry. On the

other hand, if the directories are kept in main memory, any value of

𝐹 , including 𝐹 ≥ 𝐶 , is applicable. For example, if we set 𝐹 = ⌈𝑁 /𝐶⌉,
all the data nodes created by step 1 can be accommodated under

root 𝑟1, and there is no second step during bulk loading. In this

case, Waffle would degenerate to a non-uniform grid.

Figure 2 illustrates a complete example of bulk loading. Starting

with Step 1 in Figure 2a, assume 𝑁 = 8, 𝐶 = 3, 𝐹 = 2, a single data

node 𝑛0 holding all the points (i.e., 𝑝1 to 𝑝8), and the root node 𝒏1

pointing to𝑛0. 𝒏1 and𝑛0 have identical spatial extents (i.e., the MBR

of the entire data set). Since 𝑛0 overflows and is landscape oriented,

the points are sorted on the 𝑥-axis (their ids refer to their order on

𝑥), and the split is vertical. Given 𝑁 = 8 and 𝐶 = 3, the first split

point could pass through 𝑝3 or 𝑝6 because they are both multiples

of the capacity 𝐶 = 3, and yield the same cardinality difference

(5-3) for the resulting nodes. Assuming that 𝑝3 is selected, two new

(a) Step 1

(b) Step 2

Figure 2: Example of bulk loading

data nodes 𝑛0
1
(storing points 𝑝1 to 𝑝3), and 𝑛

0

2
(with the rest) are

created, while 𝑛0 is discarded. Their spatial extents are tightened

to the MBRs covering their data points. Pointers to the new data

nodes, and 𝑠1 are stored in 𝒏1. The second split occurs in 𝑛0
2
since

it exceeds the capacity 𝐶 = 3. Because 𝑛0
2
(visualized in gray) is

longer on the 𝑦-axis, 𝑠2 is drawn horizontally, and goes through 𝑝5.

Thus, 𝑛0
2
is replaced by 𝑛0

3
and 𝑛0

4
each storing the points in their

respective side of the split. Finally, 𝑛0
2
is removed, while 𝑛0

3
, 𝑛0

4
and

𝑠2 are inserted to 𝒏1. Since none of the data nodes exceeds 𝐶 , step
1 terminates.

Figure 2b presents the second step of bulk loading, where the

root 𝒏1 overflows (it contains 3 child nodes, whereas the fanout

is 𝐹 = 2). 𝒏1 is partitioned on its first split 𝑠1 (stored in step 1),

creating two new directories 𝑛1
1
and 𝑛1

2
. The new directories inherit

the nodes and splits of 𝒏1 within their spatial extents (i.e, S𝑛1

1

={ },

S𝑛1

2

={𝑠2}), except 𝑠1. Note that to distribute splits to new directories,

we also store their center point and not just their position along

their split axis. For example, to determine that 𝑠2 lies in𝑛
1

2
, we check

if the 𝑥-coordinate of its center point is to the right of 𝑠1. Similar

to Step 1, the directory nodes’ spatial extents are tightened to the

MBRs covering their children. A new root 𝒏2 is created, which

points to 𝑛1
1
, 𝑛1

2
, and stores 𝑠1. Since there are no overflows, the

process terminates.

3.2 Analysis
We analyze the I/O cost of bulk loading assuming that all directories

reside in RAM and all data nodes on the disk. The data nodes are



formed in the first step. The second step creates directory nodes

bottom up, without reading any data point or incurring top down

tree reorganization. Thus, we need only consider the first step to

estimate the total I/O cost. We have 𝑃 = ⌈𝑁 /𝐶⌉ disk pages to pack.

Given𝑀 pages of RAM, the I/O cost of external sorting 𝑃 pages is

2𝑃 (log𝑀−1 𝑃𝑀−1 + 1). In each round, a subspace is sorted on its

major dimension and divided into two equally paged subspaces (or

differing by one if the number of pages is odd). Once each subspace

has below𝑀 pages, it is further partitioned in main memory until

reaching at most 𝐶 points. Thus, out of a total of log
2
𝑃 sorting

rounds, log
2
𝑀 rounds do not incur any I/O cost leaving𝑅 = log

2
𝑃−

log
2
𝑀 = log

2
(𝑃𝑀−1) rounds to consider for the cost analysis. We

begin with a single subspace and double the number of subspaces,

each containing half the number of pages every round. After 𝑖

rounds, there are 2
𝑖
subspaces with 𝑃/2𝑖 pages each. The I/O cost of

the next round is then 2
𝑖
times the cost of sorting one such subspace,

i.e. 2
𝑖 × [2(𝑃/2𝑖 ) (log𝑀−1 ((𝑃/2𝑖 )𝑀−1) + 1)]. When summed over 𝑅

rounds, the total I/O cost is:

𝑅−1∑
𝑖=0

2
𝑖
(
2(𝑃/2𝑖 ) (log𝑀−1 ((𝑃/2𝑖 )𝑀−1) + 1)

)
= 2𝑃

𝑅−1∑
𝑖=0

(
log𝑀−1 (𝑃2−𝑖𝑀−1) + 1

)
= 2𝑃

(
𝑅 log𝑀−1 (𝑃𝑀−1) + 𝑅 −

𝑅−1∑
𝑖=0

log𝑀−1 2
𝑖

)
= 2𝑃

(
𝑅 log𝑀−1 (𝑃𝑀−1) + 𝑅 − log𝑀−1 (2

∑𝑅−1
𝑖=0 𝑖 )

)
= 2𝑃

(
𝑅 log𝑀−1 (𝑃𝑀−1) + 𝑅 − log𝑀−1 (2𝑅 (𝑅−1)/2)

)
= 2𝑃𝑅

(
log𝑀−1

𝑃𝑀−1

2
(𝑅−1)/2 + 1

)
Using the value of 𝑅 = log

2
(𝑃𝑀−1) and rearranging the terms we

obtain:

𝑃 log
2
𝑃𝑀−1 (log𝑀−1 𝑃𝑀−1 + 2)

= log
2
𝑃𝑀−1 · (sort (𝑁 ) + 2)/2 =⇒ 𝑅 · (sort (𝑁 ) + 2)/2

(1)

where sort (𝑁 ) is the I/O cost of externally sorting 𝑁 points. The

above analysis concludes that bulk loading on average requires

half the I/O cost of sorting all pages per round. Waffle guaran-

tees 𝑃 = ⌈𝑁 /𝐶⌉ data nodes (or pages) for data cardinality 𝑁 and

page capacity 𝐶 , with zero overlap between nodes at all levels. The

height of the index is 𝐻 = log𝐹 𝑃 . The number of directory nodes

is approximated as:

𝑃

𝐻∑
𝑖=1

𝐹−𝑖 = 𝑃 · 1 − 𝐹
−𝐻

𝐹 − 1

≈ 𝑃 · 1 − 𝑃
−1

𝐹 − 1 =
𝑃 − 1
𝐹 − 1

(2)

Thus, the total number of nodes in the index is approximately

𝑃 + 𝑃−1
𝐹−1 . Waffle also needs to store the splits. Since bulk loading

starts with a single node containing all data points, and each split

increases the number of data nodes by 1, the total number of splits

Figure 3: Waffle partition of the AIS data set

equals the number of data nodes minus 1: 𝑃 − 1. A split consumes 9

bytes (2 floats for location, and 1 boolean for dimension), which is

less than one-third of a node (1 pointer, 4 floats forMBR corners, and

1 integer for keeping the child node count). Using these statistics,

the total size of the index can be estimated as:

=𝑂

(
𝑃 + 𝑃

3

+ 𝑃 − 1
𝐹 − 1

)
=𝑂

(
⌈𝑁 /𝐶⌉ ·

(
4

3

+ 1

(𝐹 − 1)

)) (3)

For a fixed value of 𝐶 , the value of 𝐹 does not affect the index size

significantly.

Figure 3 visualizes the data nodes of Waffle bulk loading. The

experimental setup is identical to Figure 1. Waffle outperforms

all bulk loading methods, achieving the optimal number of data

nodes ⌈107/204⌉ = 49020 (i.e., every data node, except one, is full).

Although R-Boost also achieves the same number of data nodes,

those ofWaffle are highly square-shaped, with an average perimeter

of 1.68 comparing to 3.00 by R-Boost.

4 DYNAMIC UPDATES
For disk-based indexes, the CPU-time of common queries is usually

negligible compared to the disk I/O cost. Accordingly they priori-

tize reducing the node accesses over optimizing directory traversal.

For instance, during overflows, R*-Trees reinsert a subset of data

points to improve the index structure and enhance the efficiency

of future queries. However, frequent reinsertions may lead to slow

updates on dynamic data sets. Also, a compact structure that maxi-

mizes dead space is counter effective to update-heavy workloads

as nodes are expanded more often to fit the new data points. This

leads to a vicious cycle of contractions (through reinsertions) and

expansions especially when performing burst updates. Expansions

in R*-Trees may also result in node overlaps, some of which persist

after contractions and degrade query performance.

In contrast, Waffle delays index optimizations until required

by the query workload. Specifically, nodes that are often accessed

by queries are re-organized more frequently than those that are

prone to more updates. Consequently, different parts of the tree are

maintained according to the workload in the corresponding part

of the data space. Section 4.1 introduces update algorithms that

guarantee non-overlapping nodes, and Section 4.2 describes the

maintenance procedures.



Figure 4: Virtual container

4.1 Insertions and Deletions
Inserting a point 𝑝 to the index involves three stages.

Stage 1. Starting from the root, perform a depth-first traversal,

visiting, at each level, the node that contains 𝑝 . Consider the case

where no such node exists at some level ℎ, i.e. 𝑝 lies in dead space.

Still, 𝑝 lies on one side of each split stored in 𝑛ℎ+1 (the directory
being visited), so we compute the intersection of all such half-spaces

and obtain a virtual container over 𝑝 , as shown in Figure 4. Next,

we find the child node 𝑛ℎ that lies in this container, expand it to

fit the point and continue traversing downwards. Note that since

all nodes are formed and separated by splits, there always exists

a unique node that can be expanded to fit the data point without

overlapping any other node. Let 𝑛0 be the data node found at the

leaf level. If inserting 𝑝 to 𝑛0 does not lead to page overflow (i.e.,

𝑁𝑛0 ≤ 𝐶), finish insertion. Otherwise, proceed to stage 2.

Stage 2: Split 𝑛0 on the median of its major dimension, delete 𝑛0,

and add the two new data nodes to 𝑛1. Append the new split to S𝑛1 .

Finally, check if 𝑛1 overflows, in which case proceed to Stage 3.

Stage 3: Retrieve the first split 𝑠1 from 𝑆𝑛1 , and use it to partition

𝑛1 into two new directories. Distribute 𝑛1’s contents, except for 𝑠1,

to the new directories depending on which side of the split they lie.

Replace𝑛1 with the new directories and add 𝑠1 to𝑛
2
. If𝑛2 overflows,

repeat Stage 3 for 𝑛2.

Procedures in stages 2 and 3 are summarized in Algorithm 2.

The first split achieves a partition that is (i) near the median, (ii)

cuts the subspace end to end, and (iii) intersects with zero nodes in

the subtree, eliminating cascading splits and simplifying subtree

partitioning. While R*-Trees involve quadratic updating procedures,

Waffle employs a linear approach to find the partition that guaran-

tees zero node overlaps.

For deletions, a point query returns the data node 𝑛0 covering

the point 𝑝 to be deleted. Node 𝑛0 is scanned and 𝑝 is deleted,

potentially shrinking its MBR or deleting the node if empty. Let

𝑛1 be the parent directory of 𝑛0. When 𝑛1 becomes empty, it is

deleted, and this action is propagated upwards. During propagation,

if 𝑝 lies on the periphery of the current node’s MBR, its area is

tightened accordingly. Waffle does not involve an explicit minimum

node capacity because underflows are handled by maintenance

procedures described next.

4.2 Maintenance
After splits or deletions, nodes may have relatively few children,

leading to a large number of half-full nodes. However, for queries

Algorithm 2 Procedures for the insertion algorithm

1: procedure SplitDataNode(Directory 𝑛1, DataNode 𝑛0)
2: Sort 𝑁𝑛0 along the major dimension
3: Int splitPos← 𝑁𝑛0/2
4: Split s← getSplit(𝑛0, 𝑠𝑝𝑙𝑖𝑡𝑃𝑜𝑠)
5: Add 𝑠 to S𝑛1

6: DataNodes {𝑛0
1
, 𝑛0

2
} ← Partition(𝑛0, 𝑠)

7: Remove 𝑛0 and add 𝑛0
1
, 𝑛0

2
to 𝑛1

8: end procedure

9: procedure SplitDirectory(Directory 𝑛ℎ+1, Directory 𝑛ℎ)
10: Split 𝑠 ← S𝑛ℎ [0]
11: Remove 𝑠 from S𝑛ℎ and add to S𝑛ℎ+1
12: Directories {𝑛ℎ

1
, 𝑛ℎ

2
} ← Partition(𝑛ℎ, 𝑠)

13: Remove 𝑛ℎ and add 𝑛ℎ
1
, 𝑛ℎ

2
to 𝑛ℎ+1

14: end procedure

with large output (e.g., ranges), the data nodes accessed are pro-

portional to the query selectivity. For instance, assuming uniform

distribution, a range that retrieves 𝑥% of the points is expected to

access about 𝑥% of the data nodes. Continuing the example, accord-

ing to the number of data nodes in Table 1 (and as verified in the

experiments), the bulk loaded Quad-Tree should be much slower

than R-Boost since it has more than 2.5 times the number of data

nodes. Although such problems could be solved by some type of

node packing, re-organizing the entire index is time consuming,

and maybe redundant in the presence of update-heavy workloads.

Motivated by these observations, Waffle performs local repacking,

aimed at data node minimization, based on the ratio of queries and

updates in the corresponding part of the data space.

For each directory 𝑛, we use (i) 𝑓 𝑎𝑡 (𝑛) to measure the deteriora-

tion of 𝑛 based on the number of data nodes it contains compared

to the optimal number, and (ii) 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 (𝑛) to define a limit for the

deterioration based on the update/query ratio. Let 𝑃𝑛 and 𝑁𝑛 be

the number of data nodes (pages) and points under 𝑛, respectively.

Given capacity 𝐶 , the optimal number of pages under 𝑛 is ⌈𝑁𝑛/𝐶⌉
(𝑃𝑛 ≥ ⌈𝑁𝑛/𝐶⌉). The fat of directory 𝑛 is computed as:

fat(𝑛) = 𝑃𝑛

⌈𝑁𝑛/𝐶⌉
− 1 (4)

Intuitively, the existence of fat implies that the directory contains

more nodes than necessary to accommodate the entries in its sub-

tree. Waffle monitors the fat levels of directories and maintains

for each 𝑛, a read (𝑅𝑛) and write counter (𝑊𝑛), which are updated

every time a read or write operation is performed in that directory,

respectively. The tolerance is computed as the ratio:

tolerance(𝑛) = 𝑊𝑛

𝑅𝑛
(5)

When 𝑓 𝑎𝑡 (𝑛) exceeds 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 (𝑛), directory𝑛 is repacked. Repack-
ing involves locally bulk loading the subtree of𝑛 using the algorithm

of Section 3.1 that ensures zero fat at all levels in the subtree, while

also restoring the square-like shape of nodes. In this way, frequently

queried directories, are timely repacked to preserve the low I/O cost



of queries. On the other hand, nodes that have relatively more up-

dates, compared to queries, provide leeway to postpone repacking,

thereby enabling faster update operations.

We also experimented with more complex formulae, taking also

into account the timing of the operations (i.e., recent operations are

considered more important). However, they do not improve per-

formance significantly, while they impose additional (space/time)

complexity. Moreover, although repacking can be performed at all

levels, Waffle restricts it at height 1 because maintenance at higher

levels neutralizes the fine-grained control of lower levels. As a result,

directories at the lowest level in Waffle automatically and indepen-

dently adjust to any workload in their spatial domain. This enables

Waffle to handle a variety of workloads over different regions simul-

taneously. Finally, note that the maintenance mechanism implicitly

distinguishes the query types. For instance, a workload of point

and 𝑘NN queries, where all results are usually found within 1-2

data nodes, triggers fewer repacking operations than a workload of

ranges, even if the query/update ratio is the same in both workloads.

This is because each range query is likely to access (and increase

the read counters of) more data nodes, decreasing their tolerance.

5 QUERY PROCESSING
Similar to other spatial indexes, range and point queries are pro-

cessed using depth-first traversal. Specifically, processing starts

from the root, and recursively visits each node that overlaps with

the query point or range. When the search hits a data node, the

corresponding page is scanned and qualifying points are appended

to the output. Depth-first search can also be applied to other spa-

tial queries, by adopting existing MBR-based algorithms, mostly

developed for R-Trees. Consider for instance a spatial join: given
point sets 𝐴 and 𝐵, retrieve all pairs (𝑎, 𝑏), 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵, such that 𝑎

and 𝑏 are within distance 𝑑 from each other. Assuming that 𝐴 and

𝐵 are indexed by two Waffle indexes, the qualifying pairs can be

retrieved by traversing the two indexes in parallel, and recursively

visiting pairs of nodes whose minimum distance is at most 𝑑 [7].

The optimizations of [7], originally proposed for R-Trees, are also

applicable to Waffle.

Nearest neighbor queries follow best-first traversal [20, 22]. A

max-heap stores the 𝑘 nearest points retrieved so far, while a min-

heap maintains the nodes to be visited. In both cases, the key is

the distance between the query location and a data point (in the

max-heap) or a node (in the min-heap). Processing starts at the root,

and all its child nodes are inserted to the min-heap. The top node

of the min-heap (i.e., the one with the minimum distance to the

query) is visited, and its contents are also inserted in the min-heap.

The process is repeated until the first 𝑘 candidate nearest points

are found in some data node. The 𝑘th (farthest) candidate resides at

the top the max-heap. After this step, only nodes, whose minimum

distance is below that of the current 𝑘th NN are visited. The process

terminates when the key at the top of the min-heap exceeds the

distance of the 𝑘th NN, because unvisited nodes cannot contain

data points that are closer to the query.

Similar best-first traversal techniques are applicable to related

queries, such as𝑘 closest pairs [12]: given point sets𝐴 and 𝐵, retrieve

the 𝑘 pairs (𝑎, 𝑏), 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵 with the minimum distance from

each other. Assuming that 𝐴 and 𝐵 are indexed by two Waffle

indexes, they are traversed synchronously top down, and pairs

of nodes are inserted in a min-heap according to their minimum

distance. Candidate pairs of points are inserted in a max-heap.

Search terminates when the top of the max-heap (i.e., distance

of the 𝑘th pair) is below the top of the min heap (i.e., minimum

distance between all unvisited pairs of nodes). Other algorithms

based on best-search, originally proposed for R-Trees, that can be

easily adapted to Waffle include, Voronoi-based 𝑘NN [28], reverse
nearest neighbors [14, 30, 31, 53] and skylines [39, 50].

6 EXPERIMENTAL EVALUATION
Our experiments were performed using an AMD Ryzen Threadrip-

per 3960X 3.8GH CPU with 64GB RAM and 64-bit Ubuntu Linux

operating system. We compare Waffle with the following indexes:

(1) R-Boost: We use the state-of-the-art implementation of the

R-Tree from boost.org, which includes (i) a bulk loading

algorithm that combines STR [32] and TGS [18], and (ii) the

R*-Tree [3] algorithms for dynamic insertions.

(2) KDB-Tree: We implemented a highly optimized version of

the KDB-Tree, which utilizes (i) Spread Split [16] to select

the spit axis (and is vastly superior to the original cyclic split

of KDB-Trees), and (ii) the bulk loading algorithm presented

in Section 2 that avoids cascading splits.

(3) Quad-Tree: We implemented the PR-Quad-Tree and Opti-

mized Point-Quad-Tree. The PR-Quad-Tree has poor per-

formance and is excluded from the diagrams. We use the

shorthand Quad-Tree to denote the Optimized Point-Quad-

Tree [15].

All implementations are in C++, and executedwithoutmulti-threading.

We assume that the directories are kept in RAM, and only the data

nodes are disk-resident. The data node capacity (𝐶) is set to 204

data points corresponding to 4KB page size. R-Boost requires the

fanout (𝐹 ) to be the same as data node capacity, so we set 𝐹 = 204

for all applicable indexes. Unfortunately, we could not include LISA

[33] in our evaluation since the code provided by the authors
4
is

in Python and slow compared to the C++ implementations of the

other indexes. Moreover, learned indexes require training and their

effectiveness to highly dynamic data is questionable. We use the

following real data sets in our evaluation:

(1) AIS: 100 million records of ship coordinates around the

planet. It is privately donated by a shipping company.

(2) OSM [38]: 70 million geolocations in mainland USA.

In addition to insertion operations, our evaluation focuses on

range and 𝑘NN queries. A range is a square that covers a percentage

𝑟 per axis. The values used are 0.25%, 0.5%, 1%, and 2% (e.g., 𝑟 = 1%

defines a square that covers 10
−4

of the 2D data space). For 𝑘NN

queries, 𝑘 is a power of 2 ranging between 32 and 256.

6.1 Bulk Loading
First, we bulk load AIS and OSM, and measure the index size in

Figure 5a. Recall that R-Boost and Waffle guarantee the minimal

number of data nodes that are fully filled after bulk loading. For

the KDB and Quad-Tree, the number of data nodes depends on

the data set size and page capacity. For instance, although AIS and

4
https://github.com/pfl-cs/LISA

https://github.com/pfl-cs/LISA
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Figure 5: Bulk loading experiments

OSM have different cardinality, 𝐶 = 204 yields the same number of

data nodes in the KDB-Tree. Waffle is slightly larger than R-Boost

mainly due to the additional split vectors per directory node. Waffle

also stores the read and write counters in level 1 directories, but

this space overhead is negligible compared to the split vectors.

Next we perform 1000 𝑘NN queries uniformly spread across

the data set’s spatial extent, and report the number of data node

accesses per query in Figure 5b. According to Figure 1, AIS is highly

skewed towards the water bodies and produces many spaghetti-

like nodes for R-Boost, leading to poor 𝑘NN performance. On the

other hand, OSM is less skewed, and R-Boost outperforms the KDB-

Tree for this data set. Waffle, owing to its square-like nodes is at

least two times faster on 𝑘NN queries than the nearest competitor

for both data sets. The Quad-Tree is the slowest index. Figure 5c

illustrates the result of a similar experiment with 1000 range queries.

As discussed in Section 4.2, a small number of data nodes benefits

the performance of queries with large output. Thus, while the KDB-

Tree is competitive to Waffle and R-Boost in AIS, it is costlier for

OSM. Waffle and R-Boost also benefit by queries that fall into dead

space, costing few to zero data node accesses. Because Quad-Trees

have theworst performance in all settings, usually by awidemargin,

they are omitted from the following diagrams.

6.2 Dynamic Data
The following experiments are identified by the workload (ratio

of insertions over queries), distribution (temporal and spatial dis-

tribution of queries), and query type (range or 𝑘NN). We consider

three types of workloads, namely write-heavy (WH, 10 insertions

for every query), equal-heavy (EH, equal number of insertions and

queries) and read-heavy (RH, 10 queries for every insertion). We

assume three distribution scenarios. (i) Spatial distortion, where the

order of insertions and queries is random, and 90% of the queries are

concentrated in three regions (30% each), and the remaining 10% in

the rest of the data set. For AIS, these regions are the Gulf of Mexico,

Mediterranean Sea, and Arabian Sea; for OSM, they are centered

around Los Angeles, Chicago, and New York City. (ii) Temporal

distortion, where the queries are uniform in the data space, and in-

sertions and queries occur in cycles. In the first and third cycle, 20%

of the insertions are followed by 20% of the queries. In the second

and fourth cycle, 30% of the insertions are followed by 30% of the

queries. (iii) Spatio-temporal distortion, where the queries are both

spatially and temporally distorted. For all three cases, insertions

are uniformly distributed. The values of 𝑟 for ranges, and 𝑘 for 𝑘NN

queries, are the same as the bulk loading experiments. Each value is

used with the same probability. In summary, we consider eighteen

combinations of three workloads, three distribution, and two query

types.

To best simulate a real-life scenario, the experimental procedure

is divided into two steps. The first step stabilizes the indexes based

on the experiment profile. Since KDB-Trees and R-Trees cannot

adjust to workload or distribution, we simply insert 10 million data

points as part of their preparation. On the other hand, for Waffle,

we insert 10 million data points and execute queries, according to

the experiment profile. For example, to prepare Waffle for a write-

heavy workload with temporal distortion, 10 million insertions

and 1 million ranges are performed in four cycles. In the second

step, 1 million further insertions and the corresponding number

of queries are performed for all indexes as per the profile. Index

performance is evaluated in the second step. For each experiment,

we display two plots. The first measures the node accesses per query,

while the second plot considers all operations (queries, insertions,

and maintenance) executed during the experiment and highlights

the difference in overall performance of the indexes. Note that

the reload cost is specific to Waffle, and represents the data node

accesses for maintaining the index. For R-Boost, the maintenance

(re-insertions) is part of the insertion cost.

We first evaluate the spatial distortion case, where most queries

are concentrated on three regions of the data sets, and the order

of insertions and queries is random. Figure 6 illustrates the query

and overall performance for workloads with range queries. Ranges

in dense regions require numerous data node accesses that dom-

inate insertion and maintenance cost in all workloads. Thus, the

diagrams for overall performance follow those for range query cost.

Due to the small number of square-like data nodes Waffle has up to

40% better performance than R-Boost, which in turn slightly out-

performs the KDB-Tree. Figure 7 shows the results for 𝑘NN queries

in the same setting. Waffle again has the best query performance,

achieving up to 30% savings with respect to the next competitor,

which is the KDB-Tree for AIS, and R-Boost for OSM. Due to the

skeweness of AIS, R-Boost suffers from overlapping nodes in dense

clusters. Since 𝑘NN queries require few data node accesses com-

pared to ranges, insertions andmaintenance contribute significantly

to the overall cost for the WH and EH workloads. Thus, despite

better query performance than the KDB-Tree in OSM, R-Boost re-

quires the most node accesses per operation for these workloads.

Because optimizing query performance is not priority for update

intensive workloads, Waffle regulates its maintenance procedures

accordingly, focusing only on regions with high query rates. Thus,



0.25
0.5 1 2

200

400

600

0.25
0.5 1 2 0.25

0.5 1 2

Index
Waffle
R-Boost
KDB

Range size Range size Range size

D
N

 a
cc

es
se

s 
pe

r 
qu

er
y

Workload=WH Workload=EH Workload=RH

Waffle R-Boost KDB
0

50

100

150

200

250

Waffle R-Boost KDB Waffle R-Boost KDB

Operation
Range
Insertion
Reload

Index Index Index

D
N

 a
cc

es
se

s 
pe

r 
op

Workload=WH Workload=EH Workload=RH

(a) AIS

0.25
0.5 1 2

0

50

100

150

0.25
0.5 1 2 0.25

0.5 1 2

Index
Waffle
R-Boost
KDB

Range size Range size Range size

D
N

 a
cc

es
se

s 
pe

r 
qu

er
y

Workload=WH Workload=EH Workload=RH

Waffle R-Boost KDB
0

10

20

30

40

50

Waffle R-Boost KDB Waffle R-Boost KDB

Operation
Range
Insertion
Reload

Index Index Index

D
N

 a
cc

es
se

s 
pe

r 
op

Workload=WH Workload=EH Workload=RH

(b) OSM

Figure 6: Range queries in spatial distortion
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Figure 7: 𝑘NN queries in spatial distortion

it generates a very compact structure in some parts of the index,

while keeping the rest flexible for updates.

Figure 8 evaluates range query and overall performance in tem-

poral distortion, where ranges are uniform, but the insertions and

the queries are executed in batches. The relative performance of the

indexes is similar to the spatial distortion case. However, compared

to Figure 6, since the range queries are no longer concentrated in

dense regions, the number of node accesses drops, increasing the

relevance of maintenance costs. Therefore, although the KDB-Tree

has the worst range performance, it beats R-Boost overall for write-

and equal-heavy workloads due to the lower maintenance cost. Fig-

ure 9 contains the plots for 𝑘NN queries in these settings. Observe

that 𝑘NN queries are several times more expensive than spatial

distortion, since they may fall in sparse regions of the data space.

Maintenance procedures in R-Boost and Waffle ensure that sparse

regions are covered using the minimal number of nodes, which en-

ables fast retrieval of neighbors. In the absence of such functionality,

the KDB-Tree performs poorly for all workloads. However, for the

WHworkload, R-Boost has about double the insertion cost ofWaffle

and KDB-Tree in both range and 𝑘NN experiments. Thus, while

it performs well on queries, it suffers from unnecessary optimiza-

tions during insertions. On the other hand, while the KDB-Tree has

fast maintenance, its query performance is often very slow. Waffle

benefits from on-demand and region specific reloading, achieving

the highest efficiency in all cases.

Figure 10 compares index performance under spatio-temporal

distortion, where most range queries focus on dense regions, and

operations are executed in batches. Similar to the spatial distortion

case, ranges dominate the overall cost in RH and EH workloads.

Waffle has again the best overall performance, followed by R-Boost,
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Figure 8: Range queries in temporal distortion
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Figure 9: 𝑘NN queries in temporal distortion

except for the WH workload, where the KDB-Tree outperforms R-

Boost. The diagrams for 𝑘NN queries in Figure 11 are also similar to

Figure 7, where R-Boost is the slowest index for AIS. Even with the

improved 𝑘NN performance in OSM, it falls behind the KDB-Tree

in WH and EH workloads due to high insertion cost. Observe that

contrary to spatial distortion, Waffle incurs negligible maintenance

cost in all workloads because reloading occurs only when executing

query cycles.

Finally, Figure 12 illustrates the index size for the nine work-

load/distribution combinations on range queries. Note that R-Boost

and the KDB-Tree are insensitive to those parameters, and their

structure is fixed. Waffle consumes the least space for RH work-

loads, which incur frequent reloading. Consequently, it maintains a

compact structure that compensates for the additional split vectors.

On the other hand, Waffle is the largest index for WH workloads,

where repacking is infrequent. However, this is a desirable trade-off

as discussed in the previous experiments.

To summarize the evaluation, the Quad-Tree is consistently the

worst index for both 𝑘NN and range queries. The KDB-Tree does

not involve maintenance algorithms and exhibits rather poor query

performance for the majority of experiments with dynamic data

sets. Unlike data-partitioning indexes such as R-Boost and Waffle,

it receives little benefit when range queries are in dead space. For

R-Boost, bulk loading and insertion procedures generate spaghetti-

like and overlapping nodes in dense regions of skewed data sets,

increasing the cost of 𝑘NN queries. Moreover, expensive insertions

render R-Boost ineffective for write-heavy workloads. On the other

hand, square-like and non-overlapping nodes enable the best query

performance forWaffle. Coupled with low-cost maintenance,Waffle

prevails as the superior index.
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Figure 10: Range queries in spatio-temporal distortion
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Figure 11: 𝑘NN queries in spatio-temporal distortion
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7 CONCLUSION
This paper proposes Waffle, a disk-based framework that aims to

optimize performance for all spatial indexing purposes. For static

data, Waffle achieves the minimum number of data nodes through a

fast bulk loading algorithm that avoids cascading splits. The output

node extents have a desirable (i.e., square-like) shape that mini-

mizes their average perimeter. For dynamic data sets, it automati-

cally adjusts the balance between node packing and update speed.

Depending on the setup, local bulk loading reorganizes subtrees

of the index that deteriorate after updates. Whereas competitive

spatial indexes, such as the KDB-Tree and the R*-Tree, fail in some

settings, our experimental evaluation reveals that Waffle delivers

excellent query and update performance in all settings, and for both

static and dynamic data.
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