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Abstract

Given a multi-dimensional point, areversek nearest neighbofRkNN) query retrieves all the data
points that have as one of theik nearest neighbors. Existing methods for processing suetiegihave
at least one of the following deficiencies: they (i) do noton arbitrary values of, (ii) cannot deal
efficiently with database updates, (iii) are applicableydnl 2D data but not to higher dimensionality,
and (iv) retrieve only approximate results. Motivated bgsh shortcomings, we develop algorithms for
exactRkNN processing witharbitrary values ofk ondynamic, multi-dimensionalatasets. Our methods
utilize a conventional data-partitioning index on the dataand do not require any pre-computation. As
a second step, we extend the proposed techniquasnttnuousRkNN search, which returns thetdRIN
results for every point on a line segment. We evaluate tlectifeness of our algorithms with extensive
experiments using both real and synthetic datasets.
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1 Introduction

Given a multi-dimensional datasBtand a poiny; ¢ P, areversek nearest neighbofRkNN) query retrieves

all the pointsp € P which haveq as one of theik nearest neighbors (NN) [10]. Formalligk NN (q) =

{p € P | dist(p,q) < dist(p,p’)}, wheredist is a distance metric (we assume Euclidean distance), and
p’ the k-th farthest NN ofp in P. Figure 1 shows a dataset with 4 poipts ps, ..., p4, Where each point is
associated with a circle covering its two NNs (e.qg., theleioentered ap, encloses, andps). The result

of a R2NN queryy includes the “owners” (i.eps, p4) of the circles that contain. Let kNN (q) be the set

of k& nearest neighbors @f Note thatp € kNN (q) does not necessarily imply € REN N (q), and vice
versa. For instanc& N N (q) = {p1,ps}, butp; does not belong t&2N N(q). On the other hand, although
ps € R2NN(q), itisnotin2N N (q).

Figure 1: 2NN and R2NN examples

RENN search is important both as a stand-alone query in Sjiai@bases, and a component in applications
involving profile-based marketing. For example, assumgtheapoints in Figure 1 correspond to records of
houses on sale, and the two dimensions capture the size iaetbpeach house. Given a new propeytyn
the market, the real estate company wants to notify the mest® potentially interested in An effective
way is to retrieve the stk N N (¢), and then contact the customers that have previously esguiésterest in

p € RENN(q). Note that a RNN query is more appropriate than NN searcbhe$tt N N (¢) is determined
by the neighborhood of each data pgireind not strictly by the distance betwegandp. For instance, in
Figure 1, although, is farther fromg thanp;, customers interested i, may be more attracted tp(than
those ofp,) because they have fewer options matching their prefeserCkearly, the discussion applies to
space of higherx 2) dimensionality, if more factors (e.g., security ratingtlé neighborhood, etc.) affect
customers’ decisions.

RENN processing has received considerable attention [2,2,0,3, 15, 16, 20] in recent years. As surveyed
in Section 2, however, all the existing methods have at leretof the following deficiencies: they (i) do not
support arbitrary values @f, (ii) cannot deal efficiently with database updates, (ii§ applicable only to 2D



Figure 2: A continuous RNN query

data but not to higher dimensionality, and (iv) retrieveyoapproximate results (i.e., potentially incurring
false missés In other words, these methods address restricted versiotine problem without providing a
general solution. Motivated by these shortcomings, weldpwdynamicalgorithms (i.e., supporting updates)
for exactprocessing of RNN queries witharbitrary values oft on multi-dimensionatlatasets. Our methods
are based on a data-partitioning index (e.g., R-trees [4}e¥s [3]), and do not require any pre-processing.
Similar to the existing algorithms, we follow a filter-refment framework. Specifically, the filter step
retrieves a set of candidate results that is guaranteedliadm all the actual reverse nearest neighbors; the
subsequent refinement step eliminates the false hits. Toest®ps are integrated in a seamless way that
avoids multiple accesses to the same index node (i.e., emhig visited at most once).

As a second step, we extend our methodologgauatinuous reversé nearest neighbo(C-RkNN) search,
which retrieves the RNNs of every point on a query segmentgz. Interestingly, although there are infinite
points ong aqp, the number of distinct results is finite. Specifically, theput of a C-R:NN query contains
a set of<R, T> tuples, whereR is the set of RNNs for (all the points in) the segmefit C gagp. In
Figure 2, for instance, the C-RNN query retufrs{p1 }, [q4, $1)>, <{p1,p4},[s1, 52)>, <{pa},[s2, $3)>,
<{ps,pa}, [s3,54)>, <ps, [s4,qB]>}, which means that point; is the RNN for sub-segmeifj, s1), ats;
pointp,4 also becomes a RNN, and is the only RNN for[ss, s3), etc. The points (i.es1, s2, s3, s4) Where
there is a change of the RNN set are cabptit points Benetis at al. [2] solve the problem for single RNN
retrieval in 2D space. Our solution applies to any dimeraignand value of.

The rest of the paper is organized as follows. Section 2 gamedated work on NN and RNN search. Sec-
tion 3 presents a new algorithm for single RNN £ 1) retrieval, and Section 4 generalizes the solution
to arbitrary values ok. Section 5 discusses continuougNRN processing. Section 6 contains an exten-
sive experimental evaluation that demonstrates the sarigrof the proposed techniques over the previous
algorithms. Section 7 concludes the paper with directionduture work.
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Figure 3: Example of an R-tree and a NN query

2 Background

Although our solutions can be used with various indexed)ersequel, we assume that the dataset is indexed
by an R-tree due to the popularity of this structure in therditure. Section 2.1 briefly overviews the R-tree
and algorithms for nearest neighbor search. Section 2v2gsithe previous studies orkRN queries.

2.1 Algorithmsfor NN Search Using R-Trees

The R-tree [8] and its variants (most notably the R*-tre§ fHn be thought of as extensions of B-trees in
multi-dimensional space. Figure 3a shows a set of pdintsps, ..., p12 } indexed by an R-tree (Figure 3b)
assuming a capacity of three entries per node. Points alospace (e.gp1, po, p3) are clustered in the
same leaf node (e.glV3). Nodes are then recursively grouped together with the gameiple until the top
level, which consists of a single root. An intermediate mdeatry contains theninimum bounding rectangle
(MBR) of its child node, together with a pointer to the pageevehthe node is stored. A leaf entry stores the
coordinates of a data point and (optionally) a pointer tocireesponding record.

A nearest neighbor query retrieves the data ppitfiat is closest tq. The NN algorithms on R-trees utilize
some bounds to prune the search spacen{i)dist(N, q), which corresponds to the minimum possible dis-
tance between and any point in (the subtree of) nodg (ii) maxdist(N, q), which denotes the maximum
possible distance betweegrmand any point inV, and (iii) minmazdist(N, ¢), which gives an upper bound of
the distance betweenand its closest point itV In particular, the derivation ofiinmazdist(N, q) is based
on the fact that each edge of the MBR &f contains at least one data point. Henegnmaxdist(N, q)
equals the smallest of the maximum distances between abddfyV) andq. Figure 3a shows these pruning
bounds between poigtand nodesVy, Ns.



Existing NN methods are based on either depth-first (DF) st-fiest (BF) traversal. DF algorithms [14, 5]
start from the root and visit recursively the node with theaBestmindistfrom ¢. In Figure 3, for instance,
the first 3 nodes accessed are (in this order) the répaand N, where the first potential nearest neighpgr
is found. During backtracking to the upper levels, DF onlgads entries whose minimum distanceg/to
are smaller than the distance of the NN already retrievedekample, after discovering;, DF backtracks
to the root level (without visitingVs becausenindist(Ns, q) > dist(ps,q)), and then follows the pathys,
Ng where the actual NM1; is found.

The BF algorithm [9] maintains a hedp containing the entries visited so far, sorted in ascendidgroof
their mindist In Figure 3, for instance, BF starts by inserting the rodties into # = { N1, N»}. Then, at
each step, BF visits the node #hwith the smallestnindist Continuing the example, the algorithm retrieves
the content ofV; and inserts its entries ifl, after whichH = { Ny, N4, N3}. Similarly, the next two nodes
accessed ar®/; and Ng (inserted inH after visiting N>), in which py; is discovered as the current NN. At
this time, BF terminates (with;; as the final result) since the next entiy in H is farther (fromgq) than
p11- Both DF and BF can be extended for the retrievakof 1 nearest neighbors. Furthermore, BF is
“incremental”, i.e., it reports the nearest neighbors iceasling order of their distances to the query.

2.2 RNN Algorithms

We first illustrate the RNN algorithms using 2D data ang 1, and then clarify their applicability to higher
dimensionality and:. We refer to each method using the authors’ initials. KM [fa§-computes, for every
data pointp, its nearest neighba N (p). Then,p is associated with &icinity circle centered at it with
radius equal to the distance betweeand N N (p). The MBRs of all circles are indexed by an R-tree, called
the RNN-tree. Using this structure, the reverse neareghbers ofg can be efficiently retrieved by a point
location query, which returns all circles containipgFigure 4a illustrates the concept using four data points;
sinceq falls in the circles ofps andps, RN N (q) = {ps, p4}.

Because the RNN-tree is optimized for RNN, but not NN seakahn and Muthukrishnan [10] use an ad-
ditional (conventional) R-tree on the data points for neaneighbors and other spatial queries. In order to
avoid the maintenance of two separate structures, YL [2@8]bioes the two indexes in the RANN-tree. Sim-
ilar to the RNN-tree, a leaf entry of the RANN-tree contalms ¥icinity circle of a data point. On the other
hand, an intermediate entry contains the MBR of the undwglyioints (not their vicinity circles), together
with the maximum distance from a point in the subtree to irest neighbor. As shown in the experiments
of [20], the RANN-tree is efficient for both RNN and NN querkarause, intuitively, it incorporates all the
information of the RNN-tree, and has the same structuren@ole MBRSs) as a conventional R-tree. MVZ
[13] is another pre-computation method that is applicalilly o 2D space and focuses on asymptotical
worst case bounds (rather than experimental comparisdnotiier approaches).



(a) RNN processing with pre-computation (b) Problem withatpes

Figure 4: lllustration of KM method

The problem of KM, YL, MVZ (and, in general, all techniquesathrely on pre-processing) is that they
cannot deal efficiently with updates. This is because eagdriiion or deletion may affect the vicinity circles
of several points. Consider Figure 4b, where we want to irs&ew pointps in the database. First, we
have to perform a RNN query to find all objects (in this cagendp,) that haveps as their new nearest
neighbor. Then, we update the vicinity circles of these aj the index. Finally, we compute the NN of
ps (i.e., ps) and insert the corresponding circle. Similarly, each ilemust update the vicinity circles of
the affected objects. In order to alleviate the problem,dtial. [12] propose a technique for bulk insertions
in the RANN-tree.

Stanoi et al. [16] eliminate the need for pre-computing alls\by utilizing some interesting properties of
RNN retrieval. Consider Figure 5, which divides the spacaiad a query; into 6 equal regions; to Sg.
Let p be the NN ofg in some regionS; (1 < i < 6); it can be proved that either ¢ RN N(q) or there is
no RNN ofq in S;. For instance, in Figure 5, the NN gfin Sy is point p;. However, the NN ofs is pq;
consequently, there is no RNN gfin .S; and we do not need to search further in this region. Similaudy
result can exist irby, S3 (p4, ps are NNs of each otherfys (the NN ofps3 is p7), andSg (no data points).
The actualRN N(q) contains onlypg (in S;). Based on the above property, SAA [16] adopts a two-step
processing method. First, six‘constrained NN queries’rédiieve the nearest neighborsqin regionssS;

to S¢. These points constitute the candidate result. Then, atandestep, a NN query is applied to find the
NN p’ of each candidatg. If dist(p,q) < dist(p,p’), p belongs to the actual result; otherwise, it is a false
hit and discarded.

Singh et al. [15] show that the number of regions to be sedrébrecandidate results increases exponen-
tially with the dimensionality, rendering SAA inefficienten for three dimensions. Motivated by this, they
propose SFT, a multi-step algorithm that (i) finds (using atneiR) a large numbek” of NNs of the query,
which constitute the initial RNN candidates, (ii) elimieatthe candidates that are closer to each other than
to ¢, and (iii) determines the final RNNs from the remaining orié®e value ofK should be larger than the
numberk of RNNs requested by every query. Consider, for instanee(dimgle) RNN query of Figure 6, as-



Figure 6: Illustration of SFT method

sumingK = 4. SFT first retrieves the 4 NNs gf pg, p4, p5 andps. The second step discarggsandps since
they are closer to each other thamtal'he third step verifies whethgs (pg) is a real RNN ofg by checking

if there is any point in the shaded circle centereghdiys) crossingg. This involves a “boolean range query”,
which is similar to a range search except that it terminasesoan as (i) the first data point is found, or (ii) an
edge of a node MBR lies within the circle entirely. For ingt@anasminmaxzdist(Ny, p2) < dist(p2,q), N1
contains at least a poiptwith dist(p2, p) < dist(p2,q), indicating thatp, is a false hit. Since the boolean
query ofpg returns empty, SFT reporig as the only RNN. The major shortcoming of the method is that it
may incur false misses. In Figure 6, althoyghis a RNN ofq, it does not belong to the 4 NNs of the query
and will not be retrieved.

Table 1 summarizes the properties of each algorithm. Asidssd before, pre-computation methods cannot
efficiently handle updates. MVZ focuses exclusively on 2Bcgp while SAA is practically inapplicable for

3 or more dimensions. SFT incurs false misses, the numbehighvdepends on the paramef€r a large
value of K decreases the chance of false misses but increases sighyfittee processing cost. Regarding
the applicability of the existing algorithms to arbitraky pre-computation methods only support a specific
value (typically 1), used to determine the vicinity circl&=T can support the retrieval okRINs by setting

a large value of (>> k) and adapting boolean queries for deciding whether therataleast: objects in

a search region. The extension of SAA to arbitrarlias not been studied before, but we will discuss it in
Section 4.3.



Support dynamic data | Arbitrary dimensionality | Exact result
KM, YL No Yes Yes
MVZ No No Yes
SAA Yes No Yes
SFT Yes Yes No

Table 1. Summary of the properties of RNN algorithms

Figure 7: lllustration of BJKS method

The only existing method BJKS [2] for continuous RNN quersdsased on the SAA algorithm. We illustrate
the algorithm using Figure 7, where the dataset consistoiotgp;, ..., p4 and the C-RNN query is the
segmeniy4gp. In the filter step, BJKS considers (conceptually) evernpgion segment 4qp. For each
such point, it divides the data space into 6 partitions (thase;) and retrieves the NN af in each partition.
Due to symmetry, let us focus on the partition bounded by wee upward rays (see Figure 7). When
belongs to the segmefits, a1 ), the NN ofg is p;. The NN isp, for ¢ belonging to segmerit, as), andps

for ¢ in [a2, gp) (poOsitionas is equally distant tps andps). For each of the candidates; ( p2, p3) returned

by the filter phase, the refinement step of BJKS obtains its INKhe entire data space), and examines the
corresponding vicinity circle (e.g., the circle for crosses its NNb;). The candidate is a final result if and
only if its circle intersects the query segment. In Figur@s/andps are false hits because their circles are
disjoint with g4g5. On the other handy; is the RNN for every point on segmefats, s1), wheres; is the
intersection between its circle and the query segment. eTiseno RNN for any point offis1, ¢p|. Since
BJKS is based on SAA, its applicability is restricted to 2.

It is worth mentioning that all the above algorithms (as veallour solutions) aim ahonochromatidRNN
retrieval in [10]. Stanoi et al. [17] considbichromaticRNN search: given two data s&8, P, and a query
point ¢ € P;, a bichromatic RNN query retrieves all the poipts € P, that are closer tg than to any
other object inP;, i.e., dist(q,p2) < dist(p1,p2) for anyp; € P, andp; # q. If VC(q) is the Voronoi
cell coveringg in the Voronoi diagram [4] computed frol,, the query result contains all the pointsii
that fall insideV' C(q). Based on this observation, SRAA [17] first comput&S(q) using an R-tree o,
and then retrieves the query result using another R-treB,01This approach is not directly applicable to

8
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Figure 8: lllustration of half-space pruning

monochromatic search (which involves a single dataset)thauconcept of Voronoi cells is related to our
solutions, as clarified in Section 3.3.

3 Single RNN Processing

In this section, we focus on single RNN retrievil-€ 1). Section 3.1 illustrates some problem characteristics
that motivate our algorithm, which is presented in Sectigh $ection 3.3 analyzes the performance of the
proposed technigues with respect to existing methods.

3.1 Problem Characteristics

Consider the perpendicular bisectofp, ¢) between the query and an arbitrary data poiptas shown in
Figure 8a. The bisector divides the data space into twodmaltesH S, (p, ¢) that containg, andH .S, (p, q)
that containg. Any point (e.g.p’) in HS,(p, ¢) cannot be a RNN of because it is closer tpthan tog.
Similarly, a node MBR (e.g./V;) that falls completely in.S,(p, ¢) cannot contain any results. In some
cases, the pruning of an MBR requires multiple half-spaées.example, in Figure 8b, althougk, does
not fall completely inH S, (p1,q) or HS,,(p2, q), it can still be pruned since it lies entirely in the union of
the two half-spaces.

In general, ifpy, p2, ..., pn. aren. data points, then any nod€ whose MBR falls insideJ’c, H.S,, (pi, q)
cannot contain any RNN af Let theresidual polygonV7<s” be the area of MBRV outsideU | HS,,. (pi, q),
i.e., the part of the MBR that may cover RNNs. Théhgcan be pruned if and only iV = (. A non-
empty N5 is a convex polygon bounded by the edges\bfand the bisectord (p;,q) (1 < i < ny).
We illustrate its computation using Figure 9a with = 3. Initially, N"¢*" is set toN, and then we trim
it incrementally with each bisector in turn. In particultire trimming with L (p;, ¢) results in a newN"¢s"
corresponding to the part of the previodé*** inside the half-spacél S, (p;, q). The shaded trapezoid in
Figure 9a is theV" " after being trimmed withL (py, q). Figure 9b shows the fin@/"**" after processing
all bisectors.
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Figure 10: Computing the residual MBR

The above computation aV"*"’ has two problems. First, in the worst case, each bisector inmey-
duce an additional vertex ty"**””. Consequently, processing tixh (1 < i < n.) bisector takes (i)
time because it may need to examine all edges in the prewists”. Thus, the total computation cost is
O(n?), i.e., quadratic to the number of bisectors. Second, thitadedoes not scale with the dimensional-
ity because computing the intersection of a half-space dngar-polyhedron is prohibitively expensive in
high-dimensional space [4].

Therefore, we propose a simpler trimming strategy thatireqwnly O(n.) time. The idea is to bound
NTesP py aresidual MBRN¢*M | Figure 10 illustrates the residual MBR computation ushegexample in
Figure 9. Figure 10a shows the trimming with{p:, ¢) where, instead of keeping the exact shapa&/of’,

we computeN"**M (i.e., the shaded rectangle). In general, bisectqs;, ) updatesN"**M to the MBR of
the region in the previoud/es that is in HS,(p;, ). Figures 10b and 10c illustrate the residual MBRs
after processing.(p2, ¢) and L (ps, q), respectively. Note that the final"**M is not necessarily the MBR
of the finalN"¢s”" (compare Figures 10c and 9b). Trimmed MBRs can be effici@utigputed (for arbitrary
dimensionality) using thelipping algorithmof [7].

Figure 11 presents the pseudo-code for the above appraximiaiming procedures. IN"¢sM exists,trim
returns the minimum distance betwegand N"¢*; otherwise, it returnso. SinceN"**M always encloses
NresP NresM- — () necessarily leads to/"**"” = (). This property guarantees that pruning is “safe”,

10



Algorithm Trim (q, {p1,p2, -, Pn.},» N)
I* qis the query pointpy, pa, ..., pn, are arbitrary data pointsy is a rectangle being trimmed */
1. Nresl% =N
2. fori=1ton.//consider each data point in turn
3. NresM = clipping(N"*M  HS,(p:,q))
Ilalgorithm of [7]: obtain the MBR for the part df"*** in the half-spacéi S, (p;, q)
4. if NTesM = () then returmo
5. returnmindist(N"**M q)

Figure 11: The trim algorithm

meaning thatrim never eliminates a node that may contain query results. [foeitam also captures points
as MBRs with zero extents. In this case, it will return theuattlistance between a point apdif the point
is closer tog than to all other candidates), es otherwise.

An interesting question is: iIN"¢*M £ (), canN"**"’ be empty (i.e.trim fails to prune an MBR that could
have been eliminated i#"**"" was computed)? Interestingly, it turns out that the answeegative in 2D
space as illustrated in the next lemma, which establisheyemstronger result:

Lemma 1. Given a query poing and an MBRN in 2D space, letV"**” be the part (residual polygon) of
N satisfying a sef of half-spaces, an&/"**™ the residual MBR computed (by the algorithm in Figure 11)
using the half-spaces ifi. Then,mindist(N"**M q) = mindist(N"**" ¢) in all cases.

Proof. Presented in the appendix. O

As an illustration of the lemma, note thatindist(N"**" q) in Figure 9b is equivalent tovindist( N"*M

q) in Figure 10c. Our RNN algorithm, discussed in the next sectaims at examining the nodés of

an R-tree in ascending order of theirindist(N"*F q). SinceN"**" is expensive to compute in general,
we decide the access order basedramdist(N"*M | ¢), which, as indicated by Lemma 1, has the same
effect as usingnindist(N"**" q) in 2D space. It is worth mentioning that the lemma does nod i
dimensionalities higher than 2 (in this cag9é’**™ may exist even iftN"**" does not [7]). Nevertheless,
pruning based omindist(N"**M ¢) is still safe because, as mentioned earléf¢* is eliminated only

if N7esP is empty.

3.2 TheTPL Algorithm

Based on the above discussion, we adopt a two-step framdharriirst retrieves a set of candidate RNNs
(filter step) and then removes the false hits (refinemeni).st&s opposed to SAA and SFT that require
multiple queries for each step, the filtering and refinemeotg@sses are combined into a single traversal of
the R-tree. In particular, our algorithm (hereafter, @hlledPL) traverses the R-tree in a best-first manner,
retrieving potential candidates in ascending order ofrtbisitance to the query poigtbecause the RNNs

11
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Figure 12: lllustration of the TPL algorithm

are likely to be neag. The concept of half-spaces is used to prune nodes (datsspthat cannot contain
(be) candidates. Next we discuss TPL using the example afr€&ifj2, which shows a set of data points
(numbered in ascending order of their distance from theyjusard the corresponding R-tree (the contents
of some nodes are omitted for clarity). The query resultaimstonly pointps.

Initially, TPL visits the root of the R-tree and inserts itstiées N1g, N1, N1 into a heapH sorted in
ascending order of themindistfrom ¢. Then, the algorithm de-heap§,q (top of H), visits its child node,
and inserts intdd the entries thereH{ = { N3, N11, N2, N1, N12}). Similarly, the next node accessed is leaf
N3, and H becomes (after inserting the points\y): {p1, Ni1,ps, N2, N1, N12}. Sincep; is the top of
H, it is the first candidate added to the candidateSsgt. The next de-heaped entry ;. As S.,.q # 0,
TPL usedtrim (Figure 11) to check ifVy; can be pruned. Part df; lies in HS,(p1,q) (i.e., trim returns
mindist(N]7¢*M | q) # o), and thus it has to be visited.

Among the three MBRs in nod®;, N4 and N fall completely inH S, (p1, q), indicating that they cannot
contain any candidates. Therefof€; and Ng are not inserted irf, but are added to theefinement set
Srrn- In general, all the points and nodes that are not pruned dytime filter step are preserved 8. s,,,
and will be used in the refinement step to verify candidaf@s the other handy; (an MBR in nodeNy4)
falls partially in HS,(p1,q), and is inserted intdd using mindist(Nt*M q) as the sorting keyH =
{Ns, ps, N2, N1, N12}). The rationale of this choice, insteadwfindist(Ns, ¢), is that since our aim is to
discover candidates according to their proximitygtdhe node visiting order should not take into account
the part of the MBR that cannot contain candidates.

TPL proceeds to de-heap the tdf of H, and retrieves its child node, where pojntis added toH =
{pg,pg,Ng, Nl,ng}, andpﬁ to Srfn = {N4, Nﬁ,p6} (pﬁ is in HSpl (pl,q), and hence, cannot be a RNN

12



Algorithm TPL-filter (q) //q is the query point.

1. initialize a min-heag accepting entries of the form,(key)
2. initialize setsS¢,,q =0, Sy =0

3. insert (R-tree root, 0) tél

4. while H is no longer empty

5. de-heap the top entry,(key) of H

6. if (trim(g, Scnd, €) = 00) thensS, ¢, = Sy f,, U {e}

7. else /lentry may be or contain a candidate

8. if e is data poinp

9. Scnd = Scnd U {p}

10. else ife points to a leaf nodév

11. for each poinp in N

12. if (trim(g, Scna, p) = o0) thenS, ¢, = Sy pn U {p}
13. else inserty, dist(p, q)) in H

14. else / points to an intermediate nodé

15. for each entryV; in N

16. mindist(N7*M q) =trim(q, Send, N;)

17. if (mindist(N/**M  q) = o0) thensS,r, = S U{N;}
18. else insertl;, mindist(N7*™ q))in H

Figure 13: The TPL filter algorithm

of ¢). Then,p, is removed fromH, and becomes the second candidate, Kg,q = {p1,p2}. Pointps
(now top of H), however, is added t8, s, because it lies inf1.S,, (p1,q). Similarly, the next processed
entry N, is also inserted irf, ¢, (without visiting nodelN,). Part of Ny, on the other hand, appears in
HS,(p1,q) U HSy(p2,q) and TPL accesses its child node, leadingStn; = {p1,p2,ps} and S,¢, =
{Na2, N4, Ng, ps, p3, pr}. Finally, N1, is also inserted int®, ¢, as it falls completely in/7.S,, (p2,q). The
filter step terminates wheH = ().

Figure 13 illustrates the pseudo-code for the filter stegeNwattrim is applied twice for each nod€: when

N is inserted into the heap and when it is de-heaped, respbctiVhe second test is necessary, becadvise
may be pruned by some candidate that was discovered aftieistréion of V into H. Similarly, when a leaf
node is visited, its non-pruned points are inserted Hitinstead ofS..,,;) and processed in ascending order
of their distance t@. This heuristic maximizes the chance that some points wilbsequently pruned by
not-yet discovered candidates that are closer to the gbenge reducing the size 6%.,,4, and the cost of
the subsequent refinement step.

After the termination of the filter step, we have aSg}, of candidates and a st s, of node MBRs and data
points. LetP, s, (IV,r,) be the set of points (MBRs) ifi, r,. The refinement step is performedrounds
Figure 14 shows the pseudo-code for each round, where wéatienthe maximum number of candidates
from S.,,4 without visiting additional nodes. Specifically, a poinE S..,,q can be discarded as a false hit, if
(i) there is a poinp’ € P, s, such thatdist(p, p') < dist(p, q), or (i) there is a node MBRV € N, ¢,, such
thatminmaxdist(p, N) < dist(p, q) (i.e., N is guaranteed to contain a point that is closeps thang). For
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Algorithm refinement-round(q, Scna, Prn, Nrn)

* g is the query pointS.,q is the set of candidates that have not been verified sd&fay,; (V, s,) contains
the points (nodes) that will be used in this round for caniidarification */
1. foreach poinp € S.q

2. foreach poinp’ € P, s,

3 if dist(p,p’) < dist(p,q)

4, Send = Sena — {p} /lfalse hit

5. goto 1 //test next candidate

6 for each MBRNV in Vs,

7 if minmaxdist(p, N) < dist(p, q)

8. Send = Sena — {p} //false hit

9. goto 1 //test next candidate

10. for each node MBRV € N,

11. if mindist(p, N) < dist(p, q) then addV to p.toVisit

12. ifp.toVisit = @ thenSe,q = Sena — {p} and reporp /factual result

Figure 14: The refinement-round algorithm

instance, in Figure 12, the first condition prungsecauses € P, r,, anddist(p1, p3) < dist(p1,q). Lines
2-9 of Figure 14 prune false hits according to the above obsiens.

On the other hand, a poipte S.,q can be reported as an actual result without any extra nodssses, if

(i) there is no poinp’ € P, s, such thatdist(p, p') < dist(p,q) and (ii) for every nodeV € N, ,, it holds
thatmindist(p, N) > dist(p,q). In Figure 12, candidatg; satisfies these conditions and is validated as
a final RNN (also removed frorfi.,,;). Each remaining point in S.,4 (€.9.,p2) must undergo additional
refinement rounds because there may exist poptsif some not-yet visited nodesV() that invalidate

it. In this case, the validation qf requires accessing the gsetoVisit of nodesN € N,, that satisfy
mindist(p, N) < dist(p,q). After computingtoVisit for all the candidatesp, s, and N, s, are reset to
empty.

Next, TPL accesses a node selected from¢thiéisit of the candidates. Continuing the running example,
after the first roung; is eliminatedps is reported (as an actual result), agl; = {p2}. The nodes that may
contain NNs ofpy areps.toVisit = { N4, N12}. We choose to access a lowest level node first (in this case
Ny), because it can achieve better pruning since it eitheiosasldata points or MBRs with small extents
(therefore, thaninmaxdistpruning at line 7 of Figure 14 is more effective). In case oieaite., multiple
nodes of the same low level), we access the one that appetims tinl/isit lists of the largest number of
candidates.

If the nodeV visited is a leaf, therP, ¢, contains the data points iN, and N, s, is set to). Otherwise {V
is an intermediate node);, s, includes the MBRs ofV, and P, ,, is 0. In our example, the parameters for
the second round ar€.,,; = {p2}, Prfn = {p4,ps} (points of N,), and N, s, = (. Pointp, eliminatesps,
and the algorithm terminates. Figure 15 shows the pseude-obthe TPL refinement step. Lines 2-4 prune
candidates that are closer to each other than the query @@intsimilar to the second step of SFT). This
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Algorithm TPL-refinement(q, Scna, Srn)

* g is the query pointS.,q andS, s, are the candidate and refinement sets returned from thesfitipr/
1. foreach poinp € S.q

2. for each other point’ € S.,.4

3 if dist(p,p’) < dist(p,q)

4. Scnd = Scnd - {p}, goto 1

5. if pis not eliminated initializey.toVisit = ()

6. Py, =the setof points itb, ¢,,; N, t,, = the set of MBRS inS; ¢,

7. repeat

8. refinement-roun@, Scna, Prtn, Nytn)

9. if S¢pg = 0 return //terminate

10. letN be the lowest level node that appears in the largest numbetdfisit for p € S.pq
11. removeN from all p.toVisit and accessV

12. P,f, = Ny, = 0 //for the next round

13. if Nis aleaf node

14. P, ={p|p € N} /IP.;, contains only the points iV

15. else

16. N,pp ={N'| N’ € N}/IN,;, contains the MBRs iV

Figure 15: The TPL refinement algorithm

test is required only once and therefore, is not includegfinement-roundh order to avoid repeating it for
every round.

To verify the correctness of TPL, observe that the filter stieyays retrieves a superset of the actual result
(i.e., it does not incur false misses), siriden only prunes node MBRs (data points) that cannot contain (be)
RNNs. Every false hip is subsequently eliminated during the refinement step bypeoimg it with each
data point retrieved during the filter step and each MBR thay potentially contain NNs of. Hence, the
algorithm returns the exact set of RNNs.

3.3 Analytical Comparison with the Previous Solutions

TPL and the existing techniques that do not require preqasing (SAA, SFT) are based on the filter-
refinement framework. Interestingly, the two steps arepedéent in the sense that the filtering algorithm of
one technigue can be combined with the refinement mecharfiamother. For instance, the boolean range
queries of SFT can replace the conventional NN queries is¢lcend step of SAA, and vice versa. In this
section we show that, in addition to being more general, Thore effective than SAA and SFT in terms
of both filtering and refinement, i.e., it retrieves fewerdidates and eliminates false hits with lower cost.

In order to compare the efficiency of our filter step with refge SAA, we first present an improvement
of that method. Consider the space partitioning of SAA inuFéggl6a and the corresponding NNs in each
partition (points are numbered according to their distanom ¢). Since the angle betwegn andp is
smaller than 60 degrees apglis farther tharp,, point p; cannot be a RNN of. In fact, the discovery of
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Figure 16: Superiority of TPL over SAA

p1 (i.e., the first NN of the query) can prune all the points lyinghe regionV (p;) extending 60 degrees
on both sides of line segmentq (upper shaded region in Figure 16a). Based on this obsenvatie only
need to search for other candidates outSitip;). Let p3 be the next NN of; in the constrained region of
the data space (i.e., not including(p;)). Similar top;, ps prunes all the points iV (p3). The algorithm
terminates when the entire data space is pruned. Althowgm#gximum number of candidates is still 6 (e.qg.,
if all candidates lie on the boundaries of the 6 space pams)i, in practice it is smaller (in this example, the
number is 3, i.e.p1, p3, andpg).

Going one step further, the filter step of TPL is even moreiefiicthan that of the improved SAA. Consider
Figure 16b where is the NN ofq. The improved SAA prunes the regidn(p) bounded by ray$, andls.

On the other hand, our algorithm prunes the entire halfepas, (p, ¢), which includesV (p) except for the
part below L (p, ). Consider the circle centered @with radiusdist(p, q). It can be easily shown that the
circle crosses the intersection pointbfp, ¢) andi; (I2). Note that all the nodes intersecting this circle have
already been visited in order to fipda property of our filter step and all best-first NN algorithimgeneral).

In other words, all the non-visited nodes that can be prune® (p) can also be pruned b§ S, (p, q). As

a corollary, the maximum number of candidates retrieved Bl iB also bounded by a constant depending
only on the dimensionality (e.g., 6 in 2D space). FurtheendiPL supports arbitrary dimensionality in a
natural way, since it does not make any assumption aboutuhwer or the shape of space partitions (as
opposed to SAA).

The comparison with the filter step of SFT depends on the valug, i.e., the number of NNs af that
constitute the candidate set. Assume that in Figure 12, wevkn advance that the actual RNNs of the
query (in this cases) are among theX = 5 NNs of q. SFT would perform a 5NN query and insert all
the retrieved pointgy, ..., p5 t0 S.,q4, Whereas TPL inserts only the non-pruned poiits; = {p1, p2, ps}-
Furthermore, the number of candidates in TPL is bounded dylitmensionality, while the choice &f in
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SFT is arbitrary and does not provide any guarantees abeujudlity of the result. Consider, for instance,
the (skewed) dataset and query point of Figure 17. A highevafus will lead to the retrieval of numerous
false hits (e.g., data points in partitiéh), but no actual reverse nearest neighborg dfhe problem becomes
more serious in higher dimensional space.

One point worth mentioning is that although TPL is expectectrieve fewer candidates than SAA and SFT,
this does not necessarily imply that it incurs fewer nodeeases during the filter step. For instance, assume
that the query poing lies within the boundary of a leaf nod€, and all 6 candidates of SAA are i¥. Then,

as suggested in [16] the NN queries can be combined in a dimgld¢raversal, which can potentially find all
these candidates by following a single path from the rod¥t@A similar situation may occur with SFT if all

K NNs of g are contained in the same leaf node. On the other hand, tleeanodsses of TPL depend on the
relative position of the candidates and the resulting bpifees. Nevertheless, the small size of the candidate
set reduces the cost of the refinement step since each cendidat be verified.

Regarding the refinement step, it suffices to compare TPL 8#F, since boolean ranges are more efficient
than the conventional NN queries of SAA. Although Singh efHb] propose some optimization techniques
for minimizing the number of node accesses, a boolean ramyestil access a node that has already been
visited during the filter step or by a previous boolean qué@mw.the other hand, the seamless integration of
the filter and refinement steps in TPL (i) re-uses informatibout the nodes visited during the filter step,
and (ii) eliminates multiple accesses to the same node.hier etords, a node is visited at most once. This
integrated mechanism can also be applied to the methodsla§iSAA and SFT. In particular, all the nodes
and points eliminated by the filter step (constrained NN iggan SAA, akKNN query in SFT) are inserted

in S, s, and our refinement algorithm is performed directly (insteMN or boolean queries).

The concept of bisectors is closely related to Voronoi ¢®fS) used in [17] for bichromatic queries. In fact,
a possible solution for finding RNNs in 2D space is to first obthe setSy (¢) of points from the datase®,
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Figure 18: The connection between TPL and Voronoi cells

whose bisectors with the query pointontribute to an edge of the VC coveripdin the Voronoi diagram
computed fromPU{q}). For example, in Figure 1&(¢) equals{pi, p2, p3, p4}, andV C(q) is the shaded
region. Any point (e.g.ps) that does not belong 68y (¢) cannot be a RNN, because it lies outsidé€'(q),
and must be closer to at least one point (ig),in Sy (¢) than tog. Therefore, in the refinement step, it
suffices to verify whether the points By (¢) are the true RNNs.

However, this approach is limited to 2D space because cangpubronoi cells in higher dimensional space
is very expensive [4]. Furthermore, its applicatiorkts 1 requires calculating ordér\oronoi cells, which

is complex and costly even in 2D space [4]. TPL avoids thesblems by retrieving candidates that are not
necessarily points iV C(q), but are sufficient for eliminating the remaining data. Rartmore, note that
some objects iV C(q) may not be discovered by TPL as candidates. For instancegime=18, TPL will
procesg, beforeps since the former is closer i After addingps to the candidate sepg will be pruned
because it falls in the half-spadés,, (¢, p2). In this case, the candidate set returned by the filter step of
TPL includes onlypy, p2, andpy.

4 RKENN Processing

Section 4.1 presents properties that permit pruning of élaech space for arbitrary values/afSection 4.2
extends TPL to RNN queries. Section 4.3 discusses an alternative solutisadon the previous work, and
clarifies the superiority of TPL.

4.1 Problem Characteristics

The half-space pruning strategy of Section 3.1 extendditrany values of. Figure 19a shows an example
with & = 2, where the shaded region corresponds to the intersefiy) (p1, q) N HSp, (p2, q). Pointp is

not a R2NN ofg, since bothp; andp, are closer to it thaig. Similarly, a node MBR (e.g.V;) inside the
shaded area cannot contain any results. In some casesldeiéispace intersections are needed to prune
a node. Assume the R2ZNN quejyand the three data points of Figure 19b. Each pair of pointeigees

an intersection of half-spaces: ® S, (p1,q) N HS,,(p2,q) (i.e., polygonI ECB), (ii) HSp, (p1,9) N

18



0(R, 9)

(@) HSy, (p1,9) N HS,, (p2,q) (b) All intersection pairs

Figure 19: Examples of R2NN queries

HS,, (ps, q) (polygonADC B), and (iii) H Sy, (p1,q) VH Sy, (p3, ¢) (polygonI FGH B). The shaded region
is the union of these 3 intersections (i.E5;CBU ADCB U IFGH B). A node MBR (e.g.N,) inside this
region can be pruned, although it is not totally covered hyiadividual intersection area.

In general, assume akRIN query andn. > k data pointspy, p2, ..., pn, (€.9., in Figure 19, = 3 and

k = 2). Let{o1,09,...,01} be any subset ofpy,p2,...,pn.}. The subset prunes the intersection area
N*_,HS,,(0i,q). The entire region that can be eliminated corresponds tartte of the intersection areas
of all () subsets. Examining}*) subsets is expensive for largeandn.. In order to reduce the cost, we
restrict the number of inspected subsets using the follpWweuristic. First, all the points are sorted according
to their Hilbert values; let the sorted order pg po, ..., pn.. Then, we consider only the intersection areas
computed from the:. subsets{pi,...,px}, {P2,---s Pkt1}s s {Pnes - Pk—1}, Dased on the rationale that
points close to each other tend to produce a large prunirgg arbe tradeoff is that we may occasionally
mis-judge an MBRYV to be un-prunable, whil&/ could be eliminated if all thé; <) subsets were considered.
Similar totrim in Figure 11 k-trim aims at returning the minimum distance from queny the partN ¥

of N that cannot be pruned. Siné&<" is difficult to compute, we bound it with a residual MBR" M |
andk-trim reports themindistfrom ¢ to N™¢M _ If N"¢sM does not existk-trim returnsoo, and N is pruned.

The above discussion leads to taérim algorithm in Figure 20.InitiallyN"¢*M is set toN, and is updated
incrementally according to each of the subsets examined. Specifically, given a sul{set o, ..., o },
we first compute, for each point; (1 < j < k), the MBRN; for the part of the currentv™e*M that falls

in HS,(0;,q). Then, the newN"¢*M pecomes the union of theMBRs Ny, No, ..., Ni. We illustrate the
computation using Figure 21 where the currdfits™ is rectangleABC D, and the subset being examined
is {p1,p2} (i.e.,k = 2). For bisectorL (py, q), we use the algorithm in [7] to obtain the MBR; (polygon
ADJI) for the area ofN"**M falling in HS,(p1,q). Similarly, for bisectorL (ps, ), the algorithm of [7]
returnsNy = ADFE (MBR for the part of N"*sM in HS,(p2,q)). Hence, the new ¥ is the union of
N, andNs, i.e., rectangled DF E. Notice that every point that is in the original™*™ but not inADFE
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Algorithm k-trim (q, {p1,p2, .-, Pn, }» N)
I* qis the query pointpy, pa, ..., pn, are arbitrary data points, amg > k; N is the MBR being trimmed; */
1. sortthen. data points in ascending order of their Hilbert values (amsthe sorted order, p2, ..., pn,)
2. Nres]\ff =N
3. fori =1 ton, //consider each subset containingonsecutive point§o, o2, ..., o } in the sorted order
4. forj=1tok
5. N;=clippingN"*M, HS,(0;,9))

//algorithm of [7]: obtain the MBR for the part d¥"¢** in the half-spacéiS,(c;, q)

6. Nres]\ff _ U;?:le
7. if N7¢M = () then returmo
8. returnmindist(N"*M q)

Figure 20: Thek-trim algorithm
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Figure 21: Computingv"¢** for R2NN processing

cannot be a R2NN of, because it must lie in botH S, (p1, ¢) and H .S, (p2, q).
4.2 TheTPL Algorithm for RENN Search

To solve a RNN query, we adopt the framework of Section 3. Specificalig, filter step of TPL initially
accesses the nodes of the R-tree in ascending order ofrttiedlistto the queryq, and finds an initial
candidate seb.,,; which contains the&: points nearest tq. Then, the algorithm decides the node access
order (for the MBRs subsequently encountered) based onstende computed bi-trim. MBRs and data
points pruned (i.e k-trim returnsoo) are kept in the refinement sét,,. The filter phase finishes when all
the nodes that may include candidates have been accessed.

The refinement step is also executed in rounds, which arealtymescribed in Figure 22. The first round
is invoked with P, r,, and V,.f,, that contain the points and MBRs #).;,, respectively, and we attempt to
eliminate (validate) as many false hits (finatl®Ns) from S.,,; as possible. The elimination and validation
rules, however, are different froth = 1 because a point € S.,4 can be pruned (validated) only if there
are at least (fewer thark) points within distancelist(p, ¢) from p. Thus, we associate with a counter
p.counter (initially set tok), and decrease it every time we find a pgihsatisfyingdist(p, p') < dist(p, q).
We eliminatep as a false hit when its counter becomes 0.
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Algorithm k-refinement-round(q, Scnd, Prn, Nrsn)

* g is the query pointS.,q is the set of candidates that have not been verified sd&fay,; (V, s,) contains
the points (nodes) that will be used in this round for caniidarification */

1. foreach poinp € S.q

2. foreach poinp’ € P, s,

3 if dist(p,p’) < dist(p,q)

4, p.counter = p.counter — 1

5. if p.counter =0

6 Send = Sena — {p} /lfalse hit
7 goto 1 //test next candidate
8. foreachnode MBRV € N, ¢,

9. if maxdist(p, N) < dist(p,q) andf! . > p.counter /Il is the level ofN
10. Scnd = Scnd - {p}
11. goto 1 //test next candidate

12. for each node MBRV € N,

13. if mindist(p, N) < dist(p, q) then addV in setp.toVisit
14. ifp.toVisit =)

15.  Scnd = Sena — {p} and reporp //actual result

Figure 22: The refinement round of TPL for> 1

Recall that, fork = 1, TPL claims a poinp to be a false hit as long asinmaxdist(p, N) < dist(p, q) for
anodeN € N,y,. Fork > 1, this heuristic is replaced with an alternative that utizhemaxdistbetween

p andN, and a lower bound for the number of pointsih If maxzdist(p, N) < dist(p,q), then there are
at Ieastf,lnm points (in the subtree a¥) that are closer tp thang, wheref,,;, is the minimum node fanout
(for R-trees, 40% of the node capacity), drttle level of NV (counting from the leaf level as level 0). Hence,
p can be pruned if!

min = D-counter.

After a round, TPL accesses a noleselected from theéoVisit lists of the remaining candidates by the
same criteria as in the case/of= 1. Then, depending on whethéf is a leaf or intermediate nodé, f,,

or N,y is filled with the entries inV, and another round is performed. The refinement phase tatesin
after all the points inS,,, have been eliminated or verified. We omit the pseudo-coddkeofilter and
main refinement algorithms fdr > 1 because they are (almost) the same as those in Figures 13%and 1

respectively, except for the differences mentioned aarlie
4.3 Discussion

Although SAA was originally proposed for single RNN reti@vit can be extended to arbitrary valueskof
based on the following lemma:

Lemma 2. Given a 2D RNN querygq, divide the space aroung into 6 equal partitions as in Figure 5.
Then, thek NNs ofg in each partition are the only possible resultsqofFurthermore, in the worst case, all
these points may be the actuati®Ns.
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Figure 23: lllustration of Lemma 2
Proof. Presented in the appendix. O

As a corollary, for any query point in 2D space, the maximumbar of RiNNs equals6k. Figure 23
illustrates the lemma using an example with= 2. The candidates of include {p1, p2, p4,ps5,p6} (€.9.,
ps3 is not a candidate since it is the 3rd NN in partitiSy). Based on Lemma 2, the filter step of SAA may
execute 6 constraindeNN queries [6] in each partition. Then, the refinement stefigs or eliminates each
candidate with &NN search. This approach, however, has the same problene asigfnal SAA, i.e. the
number of partitions to be searched increases expongntiéh the dimensionality.

As mentioned in Section 2.2, SFT can suppokfNR! by setting a large value df (> k), and adapting a
boolean range query to verify whether there are at lkasiints closer to a candidate than the query point
g. Similar to the case of = 1, various boolean queries may access the same node muiltiige, twhich is
avoided in TPL.

5 Continuous RENN Processing

Given a segmeniaqp, a CkENN query aims at reporting thedRINs for every point on the segment. As
discussed in Section 1, the objective is to find a set of spiihtp that partitionggp into disjoint sub-
segments, such that all points in the same sub-segment deviicel ReNNs. Section 5.1 first explains the
pruning heuristics, and then Section 5.2 illustrates theie algorithms.

5.1 Problem Characteristics

We first provide the rationale behind our solutions assunting 1 and 2D space, before presenting the
formal results for arbitrary and dimensionality. Consider Figure 24a, where we dravslineand/p that
are vertical to the query segment, and cross the two endspginénd ¢, respectively. These two lines
divide the data space into 3 areas: to the left gfbetween/ 4 andip, and to the right ofz. Letp be a
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Figure 24: Pruning regions for continuous RNN

data point to the left of 4. The bisectorl (g4, p) intersects the left boundary of the data spacd aand

it intersects lind4 at B. Then, the polygodBF'E cannot contain any query result. To understand this,
consider an arbitrary point; in ABF E, and any poiny; on segmeng4qp. The distance betweegn andg

is at leastlist(p1, ¢4) (the minimum distance fromy to the query segment), which is larger th&rt(p1, p)
(sincep; is in HSy,(qa,p)). Thereforep is closer top; thang, i.e.,p; is not a RNN ofg. BisectorL(gg, p),

on the other hand, intersects the bottom of the data spabeaad linelp at C'. By the same reasoning (of
eliminating ABF'E), no point (e.g.ps) in the triangleC'G D can be a query result.

Pointp also prunes a region between lirgsand/p. To formulate this region, we need the locus of points
(betweenl 4 andig) that are equi-distant tp andg4qp. The locus is a parabola, i.e., the dashed curve in
Figure 24a. All points (e.gp2) bounded by 4, I 5, and the parabola can be safely discarded. In fact, for any
pointq onqaqp, dist(pz, q) is at leastdist(p2, H), whereH is the projection ops ongaqp. Segmenp, H
intersects the parabola at poih&nd, by the parabola definitiod;st(p, I) = dist(I, H). Sincedist(p2, H)

is the sum ofdist(po, I) anddist(I, H), dist(ps, H) = dist(pe,I) + dist(p,I) > dist(p,p2) (triangle
inequality). Thereforep is closer tgp, thang, or equivalentlyp, is not a RNN ofg.

Therefore p prunes a region that is bounded by two line segmeiits C D, and curveB(C, i.e., any node
N that falls completely in this region does not need to be amzks Unfortunately, checking whethar
lies in this region is inefficient due to the existence of a-tinear boundaryBC'. We avoid this problem by
examining if NV is contained in the intersection of half-spaces, which le@mntsolved in the previous sections.
Specifically, we decrease the pruning region by replaciedgtiundary curvé3C with a line segmenBC,
resulting in a new region corresponding to the shaded aregure 24a. All points/MBRs falling in the area
can be safely eliminated because it is entirely containgddrexact pruning region.

By symmetry, a poinp lying to the right ofl/ 5 produces a pruning area that can be derived in the same way as
in Figure 24a. Next, we elaborate the case wheasdbetweerl 4 andis (see Figure 24b). Bisectors(g4, p)
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and L (¢p,p) define polygonsABFE and GC' D H that cannot contain query results (the reasoning is the
same as eliminatingl BF' E andC DG in Figure 24a). The curvBC in Figure 24b is a parabola including
points that are equally distant frogmgg andp. Similar to Figure 24a, all the points betwelgnandi g that

are below the parabola can be pruned. To facilitate praogsgie again approximate curveC' with a line
segmentBC, and as a result, the pruning region introduceg lgyalso a polygon (the shaded area) bounded
by 1(qa,p), L(¢p,p) and segmenBC.

As a heuristic, the parabolas in Figures 24a and 24b can be atourately approximated using multiple
segments in order to reduce the difference between thexdppate and exact pruning regions. For example,
in Figure 24b, instead of segmeB{, we can bound the approximate pruning region with segmBitand

1C, wherel is an arbitrary point on the parabola. For simplicity, in geguel, we always approximate a
parabola using a single segment, but extending our dismussiusing multiple segments is straightforward.

In general, for any dimensionality the pruning region defined by a pojwis decided by threg-dimensional
planes, two of which are the bisector plane§; 4, p) and_L(gg, p), respectively. To identify the third one,
we first obtain twod-dimensional planed. 4, Lp that are perpendicular to segmentgz, and cross;,
gp respectively (in Figure 24 wheré = 2, L, and L are linesl4 andlg, respectively). Planes 4
and L (g4, p) intersect into ad — 1)-dimensional pland/,, and similarly, Lp and L(¢p,p) produce a
(d — 1)-dimensional pland’;; (in Figure 24,L’, and L', are pointsB andC, respectively). As shown in
the following lemma, there existsd@adimensional plane passing batly andL’;, and this is the 3rd plane
bounding the pruning region.

Lemma 3. BothZ’, and L', belong to ad-dimensional plane satisfying the following equation:

- - Uk
> (@il = aalil = anfil) -l + 3 (aalil - anlil - 251 ) =0 )
=1

i=1 2
wherez[i] denotes theé-th (1 < ¢ < d) coordinate of a point in the plane, and similariyi], qali], ¢B[]
describe the coordinates of g4, andqg, respectively.

Proof. Presented in the appendix. O

The next lemma establishes the correctness of the prungignréormulated earlier.

Lemma4. Given a query segmentgp and a data poinp, consider half-space& S,(q4,p), HSy(qB,p)
(decided by the bisectors(g4, p) and L(gg, p)), and the half-spacéf S, (L) that is bounded by the plane
L of Equation 1 and containg. Then, no point i S,(ga,p) N HS,(qB,p) N HS,(L) can be a RNN of

any pointg ong4qz.
Proof. Presented in the appendix. O
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We are ready to clarify the details of pruning an MBR given a setS of n. points{p, ..., p,.}. Atthe
beginning, we setv ¢ (the residual MBR) taV. For eachp; (1 < i < n.), we incrementally update
N7esM ysing 3 half-space#l;, Ho, Hs that are “complement” to those in Lemma 4. Specificatfy, and
H, correspond td1 S, (qa,pi) andH S, (¢B, pi) respectively, and{s is the half-space that is decided by
thed-dimensional plane of Equation 1 (replacingvith p;), and containg (Hs can be represented with an
inequality that replaces the “=" in Equation 1 witke™). For everyH; (1 < j < 3), we apply the clipping
algorithm of [7] to obtain the MBRV; for the part of the previous/"*s lying in H;, after whichN"sM

is updated taJ?_; N;. To understand the correctness of the resulfiff§*", notice that any poing, which
belongs to the originaN"*** but notU3_, N;, does not fall in any off,, Hy, andH3, indicating thap lies

in the pruning region formulated in Lemma 4. M pecomes empty, no query result can exist in the
subtree ofV, and N can be eliminated.

The extension to general valuesfofs straightforward. Following the methodology of Sectiat,4ve sort
the points inS according to their Hilbert values. Given the sorted {ist, ..., p,.}, we examine thes,
subsetsp1, ..., p by {P2, oo Pht1 br ooor {Prs -y P—1} IN turn, and updateVe*M incrementally after each
examination. Specifically, given a subdet;, o5, ..., oy }, we obtain, for each point; (1 < i < k), three
half-spacedd;,, H;», H;3 as described earlier for the caseiof= 1. For each of thek half-spaces;;
(1 <i<k 1< 5 <3), we compute the MBRY;; for the part of (the previousN" M in H;;. Then,
the newN"*sM (after examining{o1, 02, ..., o1 }) equals the union of thek MBRs N;; (1 < i < k and
1 < j < 3). Figure 25 presents the trimming algorithm for any value: ofThis algorithm returnsc if
the final N7¢sM after considering all the,. subsets of5 is empty. Otherwise N **™ £ (), it returns the
minimum distance betweeN"*** and the query segmeaiii¢s (see [2] for computing the distance between
a segment and a rectangle for arbitrary dimensionality).

5.2 TheC-TPL algorithm

We proceed to elaborate the proposed algorithm, C-TPL, 88N queries. As with TPL, C-TPL also
has a filter and a refinement step for retrieving and verifydagdidates, respectively. However, unlike
conventional RNN search where the actual NNs of the verified candidates tdoeed to be retrieved, as
illustrated shortly, this is necessary for G4RN retrieval in order to obtain the split points. Therefogz,
TPL includes a third phase, telitting step for computing the split points. In the sequel, we explaifi @l
using a 2D example wittk = 1. Since C-TPL is similar to TPL, our discussion focuses onifgiag the
differences between the two algorithms.

Consider Figure 26a, which shows part of a dataset and thedviBRe corresponding R-tree in Figure 26c¢.
The filter step of C-TPL visits the entries in ascending omfetheir mindistto ¢4¢g, and maintains the
encountered entries in a heah The first few nodes accessed are the régt, and Ny, leading toH =
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Algorithm c-k-trim (qagqs, {p1,p2, -, Pn.} N)
I* qaqp is the query segmengt; , po, ..., pn, are arbitrary data points, amd > k; NV is the MBR being
trimmed,; */
sort then,. data points in ascending order of their Hilbert values (assthe sorted orden, po, ..., pn.)
2. Nres]\ff =N
3. fori =1 ton, //consider each subset containingonsecutive point§o, o2, ..., o } in the sorted order
4. forj=1tok
5. N1 =clipping(N"¢*™, HS,, (c},q4))
/lalgorithm of [7]: obtain the MBR for the part df ¢} in the half-spacéiS,, (o, qa)
Nj2 = clipping(N"**™, HS,, (0, 45))
Njs = clipping(N"*M, H)
I/H is the half-space that is bounded by the plane of Equatioad&cingp with o), and containg 4
8. N'eM=Uj_ (Nj1UNj2UNjs)
9. if NvesM = () then returmo
10.returnmindist(N"**M  q.qp)
/lalgorithm of [2]: obtain the minimum distance betweenaaagleN"**™ and a segment,qp

=

No

Figure 25: The trimming algorithm for C#RNN search

{p1, N2, N5, ps, N3, Ng}. Then,p; is removed fromH, and becomes the first candidatedp,;. By the
reasoning of Figure 24a,; prunes polygorC LRF D, where segment§'L and RF’ lie on L(p;,q4) and
1 (p1,qB) respectively, and point (R) is on the line perpendicular tp.qp passingz4 (¢z)-

SincesS,,,q is not empty, for every MBR/point de-heaped subsequentlJPC attempts to prune it using the
algorithmc-k-trim of Figure 25. Continuing the example, C-TPL visits nadg where Ng cannot contain
any query result (it falls in polygo@ LRF D, i.e., c-k-trim returnsmindist(qaqp, N;**M) = oc), and is
added to the refinement s6t,. On the other hand)N; and Ng (MBRs in nodeN;) are inserted td7

(= {N7, N5, p3, N3, Ng, Ng}), usingmindist(qaqs, N**M) and mindist(qaqp, N;**M) as the sorting
keys. The algorithm proceeds by accessivig taking p» (found in N;) as the second candidate (which
eliminates polygor{ M Q EG), and insertingVs, p3, ps to S, ¢y, (they fall in the union of polygon§' LRF' D
and HMQFEG). Then, C-TPL visits node&'s;, Nyg, includesp, as a candidate (which prunes polygon
ABJKI), and adds all the remaining entriesfinto S, ¢, = {Ng, N5, Ns, Ng, N11, p3, ps, p7 }, terminating
the filter step.

We illustrate the refinement step using Figure 26b (whiclhwshepome data points hidden from Figure 26a).
A candidatep is a final result if and only if no other data point exists in tirele centered gt with a radius
mindist(qaqp,p) (the shaded areas represent the circles of the 3 candidates p,). C-TPL invalidates

a candidate immediately if its circle contains another @ate. In Figure 26b, since no candidate can be
pruned this way, C-TPL associates each candidate with & YaNidist, initialized as its distance to another
nearest candidate. In particular,. N Ndist = po.NNdist = dist(p1,p2) (they are closer to each other
than top,), andpy. N Ndist = dist(py, p1).

The remaining refinement is performed in rounds. The firshdois invoked withP,;, = {p3,ps,p7}
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Figure 26: lllustration of the C-TPL algorithm

and N, s, = {Ng, N5, Ng, Ng, N11} including the points and MBRs i, s,,, respectively. For every point

p € P.r,, C-TPL checks (i) if it falls in the circle of any candidatee(i eliminating the candidate), and (ii)

if it can update theV Ndist of any candidate. In our example, no pointfy,, satisfies (i), bup;.N Ndist

is modified todist(p1,p3) (i.e., p3 is the NN ofp; among all the data points seen in the refinement step).
Similarly, p2. N Ndist andp,.N N dist becomelist(ps, ps) anddist(ps4, p7), respectively.

For each MBRN € N,.,, C-TPL first examines whether itainmaxdisto a candidate is smaller than the
radius of the candidate’s shaded circle. In Figure 26b, idi@ edge of /N1, lies inside the circle opy,
which discardsp, as a false hit /17 is guaranteed to contain a point that is closepidhang). Then,
C-TPL populates theoVisit list of each remaining candidate with those MBRs intersectis circle, i.e.,
toVisit(p1) = N5 andtoVisit(p2) = 0 (indicating thatp, is a final result). In TPL, nodes d¥, s, that
do not appear in anyoVisit list can be discarded, while C-TPL collects (among such spd#o a set
Sspir those that may contain the NN of a candidate. In our exanflg; containsNg and Ny because
mindist(Ng, p1) andmindist(Ng,p1) are smaller than the currept. N Ndist andpy.N Ndist, respec-
tively. Note thatNV; is not collected (even thoughindist(p,, N5) < p1.N Ndist) because it belongs to
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Algorithm C-k-refinement-round(gaqg, Srsit, Sends Prfns Nrfn, Sspit)

I* qaqp is the query segmens,.,;; is the set of points confirmed to be the query reslts; is the set of candidates
that have not been verified;. ¢, (N, ) contains the points (nodes) that will be used for candidetgication in this
round; S, is the set of nodes to be processed in the splitting step*/

1. foreach poinp € S.pq U Srsi

2. foreachpoinp’ € P, s,

3 if dist(p,p’) < p.NNdist then

4. updatep. Sy n, Which contains thé& NNs of p among the points seen in the refinement step so far

5 if p.Snn has less thak points therp. N Ndist = oo

6 elsep. N Ndist = the distance betwegnand the farthest point ip.Syx

pr € Scnd

8-18. these lines are identical to Lines 3-13 in Figure 22

19. ifp.toVisit = 0 thenSe,q = Sena — {p} andS,sx = Sreiz U {p}

20. for each nodéV that is inV,r, but notin anytoVisit list

21. for each poinp in S.,,q andS,. 4

22. if mindist(N,p) < p.NNdist thenSgp;, = Sspie U {N} and go to 19

Algorithm C-TPL-refinement(gags, Scnd, Srfn)
I* qaqp is the query segmens,.,.; andS.,4 are the candidate and refinement sets returned by the fifer’st
1. Spsit = Sspir = 0 /ithe semantics of,.5;, andS,,,;;, are explained at the beginning of-refinement-round
. for each poinp € S.,q
p.Snn =thek other points inS.,,4 closest tg
setp.N Ndist as in Lines 5-6 irc-k-refinement-round
p.counter = k
for each other point in S.,.4
if dist(p,p’) < mindist(p,qaqp)

p.counter = p.counter — 1

if p.counter = 0thenSecpqg = Scna — {p}, Sspit = Sspir U {p}, and goto 6
10.P, ¢y, =the set of points ith,. s,,; N, ¢, = the set of MBRs inS, s,
11.repeat
12. C-k-TPL-refinement-roundq, Sysit, Send, Prfns Nrfns Sspit)
Lines 13-20 are identical to Lines 9-16 in Figure 15

N

CoNog~LODN

Figure 27: The refinement algorithm of C-TPL

p1.toVisit.

The refinement round finishes by selecting a node (Ng),from thetoVisit lists to be visited next, using
the same criteria as in TPL. The next round is carried outénstme way with an empty, ,, and aP, s,
containing the pointgs, pg in N5. Both of them fall out of the circle ob; (i.e., they cannot invalidatg, ).
Furthermore, they do not affect tiéN dist of the current candidates. Since @llV isit lists are empty, the
refinement step is completed, and confipm@&ndp, as the final results.

C-TPL now enters the splitting step which obtains the thu&¥ dist for every candidate with respect to the
entire dataset. Towards this, it performs a best-first NNcbetor every confirmed candidate in turn, using
the nodes preserved iy, = {Ns, N1}. For every data point encountered during the NN search of one
candidate, C-TPL also attempts to update A& dist for the other candidates. Assume that in Figure 26,
the algorithm performs the NN search forfirst, and processes the MBRs 8f,;; in ascending order (i.e.,
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Algorithm C-TPL-splitting (qa¢s, Srsit, Sspit)

* qagp is the query segmens;.,;; contains all the query resultS;,;; are the nodes that have not be accessed in the
previous steps */

1. foreach poinp € S,.4;

2. organize the MBRs i¥,,,;; into a heapd using theimindistto p as the sorting keys
3. repeat

4. de-heap the top entr\\, key) from H //N is an MBR, andkey is its mindistto p

5. if p.NNdist < key /lthe end of the NN search fer

6. Sspit = {IV}U {the remaining nodes if }

7. gotoline 1

8. if N is a leaf node

9. for each poinp’ in N

10. update thé'y y and N Ndist of every pointinS,.¢;; as in Lines 4-6 ot-k-refinement-rounih Figure 27
11. else /N is an intermediate node

12. foreach MBRN' in N

13. insert(N’, mindist(N', p)) in H

14. obtain the circle that is centered at each ppiats, ., and its radius equajs N Ndist
15. obtain all the split points as the intersection betwggys and the circles

16. for each sub-segmentf ¢ 4qp separated by the split points

17. report<{owners of circles covering}, s>

Figure 28: The splitting step algorithm of C-TPL

{Ng, N1}) of their mindistto p;. Sincemindist(p1, Ng) < p1.NNdist, nodeNg is visited. Although the
pointsps andpyg in Ng do not affectp;. N Ndist, po.N Ndist (originally equal tadist(pa, ps)) is decreased
to dist(ps, p3). Sincep;.N Ndist = dist(p1, ps3) is smaller than thenindistbetweerp; and the next entry
Ny in Sgy, the NN search op; finishes. Next, a similar search is performed fer(using the remaining
MBRs in S,i1), accessingVg and finalizingp,. N Ndist to dist(pa, pe).

To decide the split points, C-TPL draws 2 circles centering; andp, with radii equal top;.N Ndist and
p2.N Ndist, respectively. As shown in Figure 26, these circles in®rggqgp ats; andss. Hence, the final
result of the C-RNN query is{<{p1},[qa,s1)>, <0,[s1,s2)>, <{p2},[s2,qB]>} (points in[s1, s2) do
not have any RNN).

Extending C-TPL fork = 1 to other values of requires modifications similar to those discussed in Sec-
tion 4.2 (for extending TPL t& > 1). First, in the filter stepg-k-trim can be applied for pruning only after
Scnq has included at leadt points. Second, in the refinement step, Mé&/dist corresponds to the distance
between the candidate and/tgh NN among all the points that have been examined in refinémEurther-
more, a candidate can be invalidated (verified) if there are at least (less)tkaoints in the circle centered
at p with radiusmindist(qagp,p). Third, in the splitting step, &NN search is needed for each verified
candidate. The detailed implementations of the above nuatiifins are illustrated in Figures 13 (replacing
q with g4¢p, andtrim with c-k-trim), 27 and 28, which present the pseudo-codes for the filtineraent,

1Since points are not encountered in ascending order ofdistances to a candidate, in order to maint&iV dist, C-TPL also
keeps the coordinates of theNNs for each candidate, as illustrated in Figure 27.
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LB NA LA | Wave| Color
dimensionality| 2 2 2 3 4
cardinality | 123k | 569k | 1314k | 60k | 65k

Table 2: Statistics of the real datasets used

and splitting steps respectively, covering arbitrargnd dimensionality.

We close this section by explaining how BJKS (originally idgasd fork = 1) can be extended to the case
of k > 1, based on the adapted SAA in Section 4.3. Conceptually,vienygointg on the query segment
qaqB, the filter step of BJKS retrieves as candidatesktiNNs of ¢ in each of the 6 partitions arourd All
the NN searches can be performed in a single traversal of #ieeRusing the technique of [2]. For each
candidatep, the refinement step obtains itsth NN (in the entire data spacg), and confirmg as a result
only if the circle centered at with radiusdist(p, p’) intersects;aqp. Finally, the split points og 45 can
be computed in the same way as C-TPL, i.e., taking the intBosebetween the circle gf andg4qg. The
extended BJKS, however, is also restricted to 2D space,ddilre timitation of SAA.

6 Experiments

In this section, we experimentally evaluate the efficientyhe proposed algorithms, using a Pentium IV
3.4GHz CPU. We deploy 5 real datagetwhose statistics are summarized in Table 2. SpecifidaByNA,
andLA contain 2D points representing geometric locations in LBegch County, North America, and Los
Angeles, respectivelyWaveincludes the measurements of wave directions at the NatBuwy Center, and
Color consists of the color histograms of 65k images. For all @dsagach dimension of the data space is
normalized to range [0, 10000]. We also create synthetia fitdiowing the uniform and Zipf distributions.
The coordinates of each point in a uniform dataset are giterandomly in [0, 10000], whereas, for a Zipf
dataset, the coordinates follow a Zipf distribution skeu@adards 0 (with a skew coefficieh©.8). In both
cases, a point's coordinates on various dimensions areathuindependent.

Every dataset is indexed by an R*-tree [1] where the nodeisifired to 1k byte& Accordingly, the node
capacity (i.e., the maximum number of entries in a node) ledif 36, 28, and 23 entries for dimensionalities
2, 3, 4, and 5, respectively. The query cost is measured asutheof the 1/O and CPU time, where the I/O
time is computed by charging 10ms for each page access. Werpreur results in two parts, focusing on
conventional RNN search in Section 6.1 and continuous retrieval in Se@i@nrespectively.

2LB, NA, andLA can be downloaded fromttp://www.census.gov/geo/www/tigéWavefrom http://www.ndbc.noaa.govand

Color from http://www.cs.cityu.edu.hktaoyf/ds.html
3When the skew coefficient equals 1, all numbers generatebeb¥ipf distribution are equivalent. When the coefficiermalg

0, the Zipf distribution degenerates to uniformity.
*We choose a smaller page size to simulate practical scenatiere the dataset cardinality is much larger.
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6.1 Resultson Conventional RENN Queries

We compare TPL against SAA (for 2D data) and SFT becausesassdied in Section 2.2, these are the only
methods applicable to dynamic datasets. Our implementafi®AA incorporates the optimization of [16]
that performs thé&k constrained NN queriégin the filter step) with a single traversal of the R-tree. &kc
that the filter phase of SFT performsi@NN search wherd( should be significantly larger than In the
following experiments, we set to 10d - k, whered is the dimensionality of the underlying dataset.g.,

K = 20 for a RNN query on a 2D dataset. We remind that SFT is appraeima., false misses cannot be
avoided unlesds is as large as the dataset size.

The experiments in this section aim at investigating thei@rite of these factors: data distribution, dataset
cardinality, dimensionality, value &f, and buffer size. In particular, the first three factors ampprties of

a dataset, the next one a query parameter, and the last fasimtem-dependent. A “workload” consists of
200 queries with the samkewhose locations follow the distribution of the underlyingtaiset. Each reported
value in the following diagrams is averaged over all the fsan a workload. Unless specifically stated, the
buffer size is 0, i.e., the 1/O cost is determined by the nunoli@odes accessed.

Figure 29 evaluates the query cost (in seconds) of altematiethods as a function @f using the real
datasets. The cost of each method is divided in two compsneotresponding to the overhead of the filter
and refinement steps, respectively. The number on top ofedeinn indicates the percentage of I/O time in
the total query cost. For TPL, we also demonstrate (in bitagkle average number of candidates retrieved
by the filter step. These numbers are omitted for SAA (SFTabse they are fixed @k (10d - k). SAA is

not tested oWaveandColor because the datasets have 3 and 4 dimensions, respectively.

Clearly’, TPL is the best algorithm for all datasets, especially fogé k. In particular, the maximum
speedup of TPL over SAA (SFT) is 37 (10), which occurs fdB (N A) andk = 16. Notice that TPL is
especially efficient in the refinement step. Recall that TBtfggms candidate verification using directly the
refinement set (containing the points and nodes pruned) therfilter step, avoiding duplicate accesses to
the same node. Furthermore, most candidates are invalidatectly by other candidates or points in the
refinement set. The remaining candidates can be verifieddssainig a limited number of additional nodes.

The performance of SAA is comparable to that of TPL in thefiftep, because SAA retrieves a small
number (compared to the node capacity) of NNs of the quemtpoiwhich requires visiting only the few
nodes around. However, SAA is expensive in the refinement phase sinceadkies one NN search for every

SStanoi et al. [16] discuss only RNN searéh= 1). Fork > 1, we use the extension of SAA presented in Section 4.3.
%1n the experiments of [15], SFT usdd = 50 even fork = 1. We use a relatively loweK to reduce the cost of this method.
"The cost is different from the results reported in the shersion [18] of this paper, where query points uniformly distted

in the data space, instead of following the underlying da&ritution. Furthermore, all methods consume less CP tiecause
we used a more powerful machine.
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Figure 29: B:NN cost vs.k (real data)

candidate. SFT is most costly in filtering because it reeiferumerousl(d - k) candidates; its refinement
is more efficient than SAA (due to the superiority of booleange queries over NN search), but is still
less effective than TPL. All the algorithms are 1/O boundeldwever, as: increases, the CPU cost of TPL
occupies a larger fraction of the total time (indicated ydiecreasing 1/0 percentagekagrows) due to the
higher cost ok-trim which needs to process more half-spaces.

The next set of experiments inspects the impact of the dimeality. Towards this, we deploy synthetic
datasets niform and Zipf) containing 512k points of dimensionalities 2-5. Figurec®®npares the cost
of TPL and SFT (SAA is not included because it is restricte@@oonly) in answering R4NN queries (the
parameterk = 4 is the median value used in Figure 29). The performance df blgjorithms degrades
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Figure 30: R:NN cost vs. dimensionalityk(= 4, cardinality = 512k)
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Figure 31: R:NN cost vs. cardinality = 4, dimensionality = 3)

because, in general, R-trees become less efficient as tlemsiiobmality grows [19] (due to the larger overlap
among the MBRs at the same level). Furthermore, the numbBPlotandidates increases, leading to higher
cost for both the filter and refinement phases. Neverthelds|s still significantly faster than SFT.

To study the effect of the dataset cardinality, we usdBiiform andZipf datasets whose cardinalities range
from 128k to over 2 million. Figure 31 measures the perforoeaof TPL and SFT (in processing R4NN
queries) as a function of the dataset cardinality. TPL is@mound a quarter of the overhead of SFT in all
cases. The step-wise cost growth corresponds to an inarétdsetree height (from 4 to 5). Specifically, for
Uniform (Zipf) data, the increase occurs at cardinality 1024k (2048k).

The last set of experiments in this section examines theperence of alternative methods in the presence
of a LRU buffer. We process R4NN queries on the 2D synthetiassds with cardinality 512k, varying the
buffer size from 0% to 10% of the R-tree size. Given a workJosd measure the average cost of the last
100 queries (i.e., after “warming up” the buffer with the fit®0 queries). Figures 32a and 32b demonstrate
the results fotJniform and Zipf data, respectively. The refinement step of SAA and SFT regunultiple
NN/boolean searches that repetitively access severakreds, the root of the R-tree), and a (small) buffer
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Figure 32: R:NN cost vs. buffer sizek( = 4, dimensionality = 2)

ensures loading such nodes from the disk only once, leadidgamatic reduction in the overall cost. Similar
phenomena are not observed for TPL because it never ac¢bessmme node twice in a single query. For
buffer sizes larger than 2%, the cost of all algorithms iddk=t by their filter phase, and SAA becomes more
efficient than SFT. TPL again outperforms its competitoralircases.

6.2 Resultson Continuous RENN Queries

Having demonstrated the efficiency of TPL for conventionsiNRsearch, we proceed to evaluate C-TPL for
continuous retrieval. The only existing solution BJKS [8sames: = 1. Fork > 1, we compare C-TPL
against the extended version of BJKS explained at the enécfd® 5.2. In addition to the parameter

the query performance is also affected by the lerigihthe query segment. We generate a segment by first
deciding its starting poing4 following the underlying data distribution, and then séleg the ending point

qp randomly on the circle centered @i with radiusi. A workload contains 200 queries with the saine
and!.

The first set of experiments fixéso 100 (recall that each axis of the data space has length0),086d
measures the cost of BJKS and C-TPL as a functioh, afsing the real datasets. Figure 33 illustrates the
results (BJKS is not applicable #aveand Color). Similar to the previous diagrams, the percentage of
the 1/O time in the total cost is shown on top of each column. &l§e demonstrate the average number of
candidates returned by the filter step of C-TPL and BJKS igkats. C-TPL is the better method in all the
experiments, and its comparison with BJKS is similar to Hettveen TPL and SAA in Figure 29. Compared
to conventional RNN search, the number of candidates retrieved by C-TPL idwrhigher, which increases
the overhead of trimming, and explains why the CPU cost ofRT-accounts for a larger fraction of the
total query time than TPL. Settingto the median value 4, Figure 34 examines the performanceliKEB
and C-TPL by varying from 10 to 200. A9 increases, both algorithms retrieve more candidates anud in
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Figure 33: C-RNN cost vs.k (real data] = 100)

higher overhead. C-TPL still outperforms BJKS significantl

Next we study the effects of dimensionality and cardinaditythe performance of C-TPL. Figure 35 plots
the results as a function of the dimensionality using syiittiatasets containing 512k points and workloads
with £ = 4 and! = 100. C-TPL is more expensive in high dimensional space becdube degradation of
R-trees, and the larger number of query results. In Figurev@focus on 3D space, and evaluate the per-
formance for various dataset sizes. Similar to Figure 3®cthst growth demonstrates a step-wise behavior
due to the increase of the R-tree height at 1024k and 2048Urfdorm andZipf, respectively.

Finally, we demonstrate the influence of LRU buffers on BJK& @-TPL. As with the settings of Figure 32,
the two algorithms are used to process R4NN queries on a 2Betawith cardinality 512k, as the buffer size
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Figure 34: C-RNN cost vs.l (real dataj = 4)

changes from 0% to 10% of the size of the corresponding R-fr@eeach workload, only the cost of the last
100 queries is measured. Figures 37 illustrates the overiea function of the buffer size, demonstrating
phenomena similar to those in Figure 32. Specifically, BMBroves significantly given a small buffer, but
C-TPL is consistently faster regardless of the buffer size.

7 Conclusions

Existing methods for reverse nearest neighbor search fatgpecific aspects of the problem, namely static
datasets, retrieval of singlé£1) RNNs or 2D space. This paper proposes TPL, the first gesig@ithm for
exact ReNN search on dynamic, multidimensional datasets. TPLdla filter-refinement methodology:
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Figure 36: C-TPL cost vs. cardinality < 4, [ = 100, dimensionality = 3)

a filter step retrieves a set of candidate results that isagteed to include all the actual reverse nearest
neighbors; the subsequent refinement step eliminateslfediéss. The two steps are integrated in a seamless
way that eliminates multiple accesses to the same index Wodextensive experimental comparison verifies
that, in addition to applicability, TPL outperforms the yimus techniques, even in their restricted focus.
Furthermore, it leads to a fast algorithm for answering iooioius ReNN queries (again, for arbitrary and

dimensionality).

A promising direction for future work concerns the extensif the general framework of TPL to alternative
versions of the problem. One such example refers to metaceswhere the triangular inequality has to be
used (instead of bisectors) for pruning the search spaceal§tdeplan to investigate the application of the
proposed methodology to other forms of RNN retrieval, patéirly, bichromatic [10, 17] and aggregate [11]
RNN queries. Finally, it would be interesting to develop lgieal models for estimating (i) the expected
number of RNNs depending on the data properties (e.g., ditmeality, distribution, etc.) and (ii) the
execution cost of RNN algorithms. Such models will not ordgilitate query optimization, but may also
reveal new problem characteristics that could lead to eettetbsolutions.
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Appendix: Proofsfor Lemmas

Lemma 1. Given a query poing and an MBRN in 2D space, letN"**"" be the part (residual polygon) of
N satisfying a sef of half-spaces, an@/"**™ the residual MBR computed (by the algorithm in Figure 11)
using the half-spaces ifi. Thenmindist(N"**M  q) = mindist(N"**" q) in all cases.

Proof. Since N"¢*M always containsN"¢*", if N7¢M js empty, N"**" is also empty, in which case
mindist(N"*F q) = mindist(N"**M  q) = co. Hence, it suffices to discuss the possibility whaessM

exists. We use the name “contact” for the pointNfics™ (N7¢*P) nearest tg;. The following analysis
shows that the contacts 8f"**™ and N"¢*¥ are the same point, which, therefore, validates the lemma.

We achieve this by induction. First, § is empty, bothNV"¢s” and N"¢*M are equal to the original MBR
N, and obviously, their contacts are identical. Assuming 5" and N"¢*M have the same contact for
all setsS whose cardinalities are no more than(> 0), next we prove that they have the same contact for
any setS with a cardinalitym + 1. Let R” (RM) be the residual polygon (MBR) with respect to the first
half-spaces ir§, andc” (¢M) be the contact oR” (RM). By the inductive assumptior! = ¢*. Since
RM is arectangles™ appears either at a corner or on an edg&Yf. We discuss these two cases separately.

Case 1{cM is a corner ofRM): Without loss of generality, assume that the coordinated’care larger than
or equal to those aof on both dimensions. Denoteas the {n + 1)-st half-space ity (recall thath contains
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(a) Case 1 (b) Case 2

Figure 38: lllustration of the proof of Lemma 1

q). If ¢M satisfiesh, thenc™ andc” remain the contacts a¥" e and N7 respectively, i.e., the final
residual MBR and polygon (after applying all the half-saireS) still have the same contact.

Now let us consider the scenario that violatesh. Hence, the boundary @f(a line) must intersect segment
cMgq, and cross either the left or bottom edgeRd¥ (if not, R"** becomes empty). Due to symmetry, it
suffices to consider that linintersects the left edge, as in Figure 38a. The intersepiimt is exactly the
contactc®sM of N7¢sM (note that the part oR™ lower thanc ™ will not appear inN"¢*M). Thus, it
remains to prove that this intersection is also the conf4ét’ of N5,

Observe that™**"” must lie inside the shaded area, due to the fact&Adatwhich contains"¢*") is entirely
bounded byRM. Actually, c"¢** definitely falls on the part of liné inside R . To prove this, assume,
on the contrary, that"**” is at some position (e.ge;) above lineh. Then, the segment connectingand
¢’ intersects lineh at a pointcs. Since bothe; and e belong toR”, and R is convex,c, also lies in
RP, indicating thatcy belongs toN™¢*", too (N"¢*" is the part ofR" qualifying half-spaceh). Pointcs,
however, is closer tg thanc;, contradicting the assumption thatis the contact™*"” of N

It follows that if ¢"¢F £ ¢7¢sM (e.g.,c"**"” = ¢, in Figure 38a), then the x-coordinatedf*”” must be larger
than that of="**™  which, in turn, is larger than that gf As ¢ is closer tog thanc,, the hypothesis that
c"*M s not the contact aN"** also implies that™**™ does not belong t&V"*”", meaning that"**" does
not fall in a half-spacé’ (one of the firstn planes) inS. However, since both (the contact of the residue
MBR RM after applying with the firstn. planes) and:, qualify 4/, the boundary of/ must cross segment
"M ey andcM M | put notcM ¢. This is impossible (see Figure 38a), thus verifyifigf” = ¢esM

Case 2(c™ is on an edge oRRM): Assume that: (= c) lies on the left edge oRM as illustrated in
Figure 38b (the scenarios wher¥ is on other edges can be proved in the same manner). As in Cise 1
cM satisfies thes + 1)-st half-spaceh in S, bothc™ andc” remain the contacts av"¢*™ and N7¢s",
respectively. Otherwise, link intersects segment” ¢, and may cross the left edge B above or below
cM. Due to symmetry, let us focus on the scenario wheistersects the left edge at a point abayé
(Figure 38Db), which is the contaet®s™ of N"¢*M_ The goal is to show that"**™ is also the contact
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Figure 39: The worst case of SAA

cesP of N7esP. SinceRM completely encloseg”, ¢"¢" falls in the shaded triangle of Figure 38b. Then,
c¢resP = ¢resM can be established in exactly the same way as in Case 1 (tiadicthe relative positions of
g, M, ¢resM 1 and the shaded area are identical in Figures 38a and 38b). O

Note that Lemma 1 is also useful to “constrainedhearest neighbor search” [6], which finds thelata
points in a polygonal constraint region that are closest query pointg (recall that such queries are the
building-block for SAA and its extended version discusseection 4.3). As shown in [6], the best-first
algorithm can process a constraingdN search optimally (i.e., accessing only the nodes of areR-that
need to be visited by any algorithm), provided that it is fldesto compute the minimum distance fram
to the part of an MBRV inside the polygon. Lemma 1 provides an efficient way for lndg this distance
in 2D space, which is equal to theindistfrom ¢ to the residue MBR ofV, after trimming N using the
half-spaces bounding the constraint region.

Lemma 2. Given a 2D RNN querygq, divide the space aroung into 6 equal partitions as in Figure 39.
Then, thek NNs ofg in each partition are the only possible resultsqofFurthermore, in the worst case, all
these points may be the actuati®Ns.

Proof. We first prove the first part of the lemma: if a popis not among thé NNs of ¢ in a partition,

p cannot be a query result. Its correctnessoe= 1 has been established in [16], which also shows an
interesting corollary: iy’ is the closest NN of in the same partitior$' that containg, thendist(p, p’) <
dist(p, q). Utilizing these properties, in the sequel, we will provatihf the first part of the lemma is true
for k = m (wherem is an arbitrary integer), it also holds fér= m + 1. In fact, if p’ is removed from the
dataset, we know thatis not among then NNs of ¢ in S. By our inductive assumption, there exist at least
m points (different frony’) that are closer tp thang. Since we already havést(p, p') < dist(p, q), there

are at leastn + 1 points in the original dataset closeridhang, i.e.,p is not a Rm + 1)NN of q.

In order to prove the second part of the lemma (i.e., the nuwiiRANNSs in 2D space can &), it suffices
to construct such an example. Consider the 6 rays thatiparthe data space arougd On each ray, we

41



placek points in ascending order of their distances;tas follows: the first point has distance 1¢oand
every subsequent point has distance 1 to the previous ogeireF89 shows such an example ftor=
Thesebk points constitute a dataset where all the points liea® one of theik NNs. O

Lemma 3. Both L, and L'; belong to ad-dimensional plane satisfying the following equation:

d

> " @pli] — qali] — gsli)) - [i] + Z <(]A @) =0 2)

i=1
wherex[i] denotes theé-th (1 < i < d) coordinate of a point in the plane, and similarlyi], g4[i, ¢B]7]
describe the coordinates of g4, andqp, respectively.

Proof. We prove the lemma only faE/, because the case 6f; is similar. We achieve this by representing
L', using the coordinates @f ¢4, andgp. For this purpose, we obtain the equation.of:

d
Z((QB[ i] — qali Z —qali]) - qali]) =0 3)

@
Il
—
-
—

and the equation of (¢4, p):

d e K qali)? - pli)?
> ((qali) = pld)) - 2li)) = Y ——5——=0 4)
i=1 i=1
Therefore, L', includes the points: that satisfy Equations 3 and 4 simultaneously. Hence, alldth
dimensional planéshat crossl’, are captured by:

d
> ((asli] = qali )= > ((gsli] — qali]) - qalil)+ ®)

i=1 =1
- ¢ali]2 — pli]
A (Z«qm —pli) - 2fi]) = Y f> =0
i=1 i=1
where various planes are distinguished with differeigan arbitrary real number). The plane of Equation 2
corresponds to setting = 2. O

Lemma 4. Given a query segmentgg and a data poinp, consider half-space& S, (q4,p), HSy(¢B,p)
(decided by the bisectors(g4, p) and_L(¢g, p)), and the half-spacéf S, (L) that is bounded by the plane
L of Equation 1 and containg. Then, no point i S,(ga,p) N HS,(qB,p) N HS,(L) can be a RNN of

any pointg ong4qz.

8strictly speaking, Equation 5 does not inclutiég 4, p). We ignore this special case because it does not affect Hsequent
discussion.
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Proof. Let L4 (Lg) be ad-dimensional plane that is perpendiculargtoyz and crosseg  (¢p). PlaneL 4
defines two half-spacedd S, (L) that contains;z, and HS-,, (L 4) that does not (e.g., in Figure 24a,
HS,,(La)/HS-4;(La) is the area on the right/left of link,). Similarly, L also introduces two half-
spacesH S,,(Lg) andH S, (Lp), respectively. Note thalf S, (La), HS-q,(Lp), andHS,,(La) N
HS,,(Lg) are 3 disjoint regions whose union constitutes the entita sipace. For a point that falls in

—4B

HS ., (La)or HS 4, (Lp), its minimum distance to segmeqtiqp equalsdist(qa,p’) or dist(qg,p’),
respectively. For a point’ that lies inHS,, (L) N HS,,(Lg), however, the distance fropf to gagz
equals the distance fropi to its projection ony4qz.

As shown in the proof of Lemma 3,4, 1 (g4, p), andL intersect at the samd { 1)-dimensional plane, and
similarly, Lg, L(gg,p), andL intersect at anotheri(— 1)-dimensional plane. Sinces and L are parallel
to each other, they dividél/ S,(qa,p) N HSy(gr,p) N HS,(L) into 3 disjoint regions: ()H Sy(ga,p) N
HS-q,(La), (i) HSy(gB,p) N HS-y,(Lp), and (iii) HS,,(La) N HS,,(La) N HSy(L). For example,
in Figure 24a, the 3 regions are polygoASF FE, C DG, and BCGF, respectively. Lep’ be a point in
region (i), which satisfiedist(p, p') < dist(ga,p’) (because’ is in HS,(qa, p)). Sincedist(qa,p’) is the
minimum distance from’ to g4¢p (recall thatp’ is in HS-,, (L 4)), for any pointg on g4gg, it holds that
dist(p,p’) < dist(q,p"), meaning thap’ cannot be a RNN of. By symmetry, no poinp’ in region (ii) can
be the RNN of any point on4¢zg.

The remaining part of the proof will show that no pojriin region (i) can be a query result either. We first
prove this in 2D space, where region (iii) is the area bourethesl 4, Iz, and segmenBC' in Figure 24a.
Our analysis distinguishes two cases, depending on whgtliies on or below segmer®C, respectively.
Figure 40a demonstrates the first caseig on BC), whereA is the projection o’ on gagp. Our goal is
to establish, for any point on g4q5, the inequalitydist(p, p’) < d(p’, ¢) (which indicateg’ is not a RNN
of ¢). Next, we derive an ever stronger resultst(p, p') is actually no more thad(p’, A), which is a lower
bound ford(p’, q).

Denoter as the ratio between the lengths of segméhisandp'C, i.e.,r = dist(B,p')/dist(p’, C). Then:
dist(p', A) = r - dist(qp,C) + (1 —r) - dist(qa, B) (6)

Let D be the intersection between segment and a line that passes and is parallel toBp. Since

dist(p,D) __ dist(B,p’) dist(p’,D) __ dist(p’,C) __ .

distg;,cg = dzstEB,]é; =rand dist((I;;,B)) = distg%,cg = 1—r, we have:
dist(p,D) = r-dist(p,C) 7)
dist(p’,D) = (1—r)-dist(p, B) (8)

SinceB andC are on the bisectors (g4, p) and_L(gp, p) respectively, it holds thatist(p, B) = dist(qa, B)
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(a) Pointp is on segmenBC' (b) Pointp is below segmenBC

Figure 40: lllustration of the proof in 2D space

anddist(p, C') = dist(qp, C), leading to:

dist(p', A) = r-dist(p,C)+ (1 —r)-dist(p, B) (by Equation 6)
dist(p, D) + dist(p', D)  (by Equations 7 and 8)

> dist(p,p’) (by triangle inequality)

The equality in the above formula holds onlyifis at B or C.

Next, we discuss the second case, namely, pdiappears below segmeRC (meanwhile, between lines
14 andlg), shown in Figure 40b wherd is again the projection gf’ on g4gp. Similar to the first case,
we aim at provingdist(p,p’) < dist(p’, A) (which results indist(p,p’) < dist(p',q) for any pointq on
segmeny 4qp). Let D be the intersection between segmefits andp’ A. As proved earlierdist(p, D) <
dist(D, A), and hence:

dist(p, D) + dist(p’, D) < dist(D, A) + dist(p/, D) = dist(p/, A) 9)

By triangle inequality, the left part of the above inequaitlarger thaniist(p, p'), thus verifyingdist(p, p’) <
dist(p’, A). Although the position op in Figures 40a and 40b is to the left bf, it is not hard to observe
that the above analysis holds for any positiorp of

So far we have proved that, in 2D space, no point in regio) {ie., HS,,(La) N HSq,(La) N HS,(L)
can be a query result. Now we proceed to show that this is aledor arbitrary dimensionality, through

a careful reduction to the 2D scenario. Specifically, let aisstruct a coordinate system as follows. The
origin of the system is poing4, and the first axis coincides with segmentgz. This axis and poinp
decide a 2D sub-space, and in this sub-space, the line mlcp&ar togaqp is taken as the second axis.
Then, the remaining — 2 dimensions are decided arbitrarily with the only requiratrtbat all the resulting

d dimensions are mutually orthogonal. The rationale forodticing such a coordinate system is that the
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coordinates op, g4, andgp are 0 on all the dimensions except the first two, i.e., thegrighed-dimensional
planeL.: z[3] + z[4] + ... + z[d] = 0. As a result, Equation 2, the representation of plane simplified
to (note the upper limits of the two summations):

2 2 .
> (200~ aall) ~ aalil) o1 + 3 (aali - anf) ~ 2 ) =0 (10)
i=1 i=1

The above formula implies that (i) is perpendicular td.., and (ii) every point: in the half-space? S, (L)
(i.e., the half-space bounded Bycontainingp) satisfies the inequality that results from changing theabtyu
sign in Equation 10 to>". Another benefit from the constructed coordinate systethas planed. 4 and
L are described concisely by equatiangl] = 0 andx; [1] = ¢p|[1], respectively {z[1] is the coordinate
of ¢ on the first axis).

Consider any poinp’ that is inHS,,(La) N HS,,(La) N HS,(L); let A be its projection o4qp. As
mentioned earliely 4 andgp belong to pland.., and henced also lies on this plane, implying[i] = 0 for

3 < i < d. To prove thap’ is not a RNN of any point op g3, (following the reasoning in the 2D case) we
will show thatdist(p, p’) < dist(p’, A). Since

d 2 d

dist(p,p)) = Sl = P2 = S0l — ¥l + S PP Gl =0for3<i<d) (1)

i=1 i=1 =3

and
dist(p,A) = Z(p’[i] — A[i])* = Z(p’[i] — A[i])* + Zp’[i]2 (12)

it suffices to show tha} >, (p[i] — p'[i])?> < S22, (p[i] — A[i])%. Proving this inequality can be reduced
to the 2D case we solved earlier, by projectihg, Lz, L, andp’ into a 2D sub-space that involves only
the first 2 dimensions. Specifically, the projection/of (Lg) is a linels (Ig) that crosseg 4 (¢p), and is
perpendicular to segmentigz. The projection ofL is a linel that intersect$4 (/) at a point equi-distant
top andqy (¢B). Finally, p’ is projected into a point betweén andlg that falls either ori, or on the same
side ofl asp. This leads to the situation in Figure 40a or 40b, whesdhe line passing segmeBtC. Thus,
we complete the proof. O
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