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Abstract According to the database outsourcing model,
a data owner delegates database functionality to a third-
party service provider, which answers queries received from
clients. Authenticated query processing enables the clients
to verify the correctness of query results. Despite the abun-
dance of methods for authenticated processing in conven-
tional databases, there is limited work on outsourced data
streams. Stream environments pose new challenges such as
the need for fast structure updating, support for continuous
query processing and authentication, and provision for tem-
poral completeness. Specifically, in addition to the correct-
ness of individual results, the client must be able to verify
that there are no missing results in between data updates.
This paper presents a comprehensive set of methods cover-
ing relational streams. We first describe REF, a technique that
achieves correctness and temporal completeness but incurs
false transmissions, i.e., the provider has to inform the cli-
ents whenever there is a data update, even if their results
are not affected. Then, we propose CADS, which minimizes
the processing and transmission overhead through an elabo-
rate indexing scheme and a virtual caching mechanism. In
addition, we present an analytical study to determine the
optimal indexing granularity, and extend CADS for the case
that the data distribution changes over time. Finally, we eval-
uate the effectiveness of our techniques through extensive
experiments.
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1 Introduction

In the traditional data management model, organizations have
the entire responsibility for administering their databases.
This entails purchasing hardware, deploying a dedicated
DBMS, acquiring network bandwidth, and hiring profes-
sional personnel to run the system. Database outsourcing is a
new paradigm that alleviates the above problems. It involves
three types of entities: data owners (DOs), service providers
(SPs), and clients. A DO delegates its database functionality
to one (or more) SP with the necessary computational power
and tools to support advanced query processing. Clients issue
their queries directly to the SP. Outsourcing provides several
benefits for all parties involved: (i) the DO does not need
to acquire, or dedicate the resources necessary for running a
full-scale DBMS, (ii) the SP can achieve economies of scale
by serving multiple owners, and (iii) the clients can obtain
the data by a SP that is close in terms of network latency.
Furthermore, the system robustness is improved because the
DO ceases to be the single point of failure.

Authenticated query processing techniques guarantee the
soundness and completeness of query results in outsourced
systems. Soundness ensures that all the records returned to
the client originate from the DO and no spurious records
exist. Completeness guarantees that all the tuples that satisfy
the query are present in the result set. We refer to these two
terms collectively as correctness. Existing outsourcing sys-
tems for conventional databases use the general framework
of Fig. 1. The DO signs the data set (employing a public-
key, digital signature cryptosystem) and transmits it along
with the signature to the SP. The SP keeps the data and the
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Fig. 1 Framework for outsourced databases

signature locally. In order to facilitate query processing, the
data set is indexed by an authenticated data structure (ADS).
This is similar to a conventional index, but it contains addi-
tional information for proving the correctness of the results.
When a client issues a query, the SP generates a verification
object (VO) by accessing the ADS. The VO contains the result
set along with authentication information. The SP sends the
VO and the corresponding signature to the client. The client
verifies correctness by matching the signature against the VO
and the public key of the DO.

Alternative implementations of the framework differ on
the choice of signature techniques, ADS, and verification
processes. Furthermore, most systems necessitate the main-
tenance of identical copies of the ADS at the DO. However,
the existing work in the database literature focuses on disk-
resident and relatively static data sets. On the other hand,
increasing monitoring of transactions, ecological parame-
ters, homeland security, RFID chips etc., establishes new and
highly dynamic environments for data outsourcing. As an
example assume a SP that receives current stock values from
one or more stock exchanges. Subscribers register long-run-
ning queries at the SP. Whenever a stock update influences a
query, the corresponding client is immediately informed. In
addition to the timely delivery of query results, it is crucial
for the subscribers of such a system to be able to verify their
correctness.

The dynamic nature of the data and the potentially large
number of long-running queries in stream environments pose
several challenges. First, a system for continuous authenti-
cation on data streams must accommodate very fast updates
and, at the same time, support efficient query processing.
Second, it must include effective mechanisms for minimizing
the communication cost of the clients, and their verification
effort. Third, in addition to correctness, the clients must be
able to verify temporal completeness, i.e., confirm that they
receive all result changes that are relevant to their queries.
We aim at solving the above problems with the following
contributions:

• We first present a technique, called REF, used as a bench-
mark in our evaluation. REF achieves correctness and
temporal completeness, but incurs false transmissions,
i.e., the SP has to inform the clients whenever there is a
data update, even if their results are not affected.

• We propose CADS, which minimizes the processing and
transmission overhead through an elaborate indexing
scheme and a virtual caching mechanism. CADS and
REF are main memory-based in order to achieve real-
time query evaluation and fast structure updating.

• CADS utilizes a fixed partitioning of the data space. We
analyze the effect of the partitioning granularity, and
devise models for minimizing the size of the generated
VO, which is the most important factor when measuring
the performance of an outsourcing system.

• We develop an adaptive version of CADS (A-CADS) that
dynamically updates the partitioning scheme to follow
distribution changes in the data stream.

• We show through extensive experiments that CADS
outperforms REF significantly in all aspects. Addition-
ally, we confirm the accuracy of the analytical models,
and demonstrate the gains of A-CADS in cases of con-
tinuously changing distributions.

The rest of the paper is organized as follows. Section 2
describes existing systems for database outsourcing.
Section 3 presents REF. Section 4 focuses on CADS, whereas
Sect. 5 analyzes its optimal partitioning granularity. Section 6
proposes A-CADS, and Sect. 7 experimentally evaluates all
methods. Finally, Sect. 8 concludes the paper.

2 Related work

The Merkle Hash Tree (MH-Tree) [18] is a main-memory
binary tree originally proposed for efficient authentication of
equality queries in a database sorted on the query attribute.
Every record corresponds to a leaf node that stores the digest
of the binary representation of the record. The tree is con-
structed bottom-up, with each intermediate node storing the
digest of the concatenation of the digests of its children. The
digests are computed with a one-way, collision-resistant hash
function, such as SHA-1 [21]. The DO signs the digest stored
in the root of the tree, using a public-key, digital signature
cryptosystem (e.g., RSA [25]).

Consider that a client asks for record r3 in the MH-Tree
of Fig. 2. The SP accesses the tree to locate the record.
During the tree traversal, apart from record r3, it inserts
into the VO the digest stored in the sibling of every visited
node (i.e., h12 and h4). Having the VO, signature sig and
the DO’s public key, the client can verify the authenticity
of the result by re-constructing the digest of the root as
h1234 = h(h12|h(h(r3)|h4))

1 and matching it against sig.
Devanbu et al. [8] utilize the MH-Tree for answering

one-dimensional range queries, satisfying soundness and

1 Henceforth, h(·) denotes a one-way, collision-resistant hash function,
and ‘|’ stands for concatenation.
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h12=h(h1|h2) h34=h(h3|h4)
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records

Included in the VO

Fig. 2 Example of the Merkle Hash Tree

completeness. They also extend their method to multiple
dimensions, combining the MH-Tree with the Range Search
Tree [4]. Martel et al. [17] develop a generalized framework
for creating efficient authenticated versions of a broad class
of data structures. Goodrich et al. [10] introduce techniques
for authenticating data structures that represent graphs and
geometric objects. Tamassia and Triandopoulos [27] imple-
ment a distributed MH-Tree in order to provide data authen-
tication over peer-to-peer networks. The authors in [23] build
MH-Trees over inverted indexes [33] in order to guarantee
correctness in keyword-based document retrieval.

The VB-Tree [24] is a B+-Tree augmented with signed
digests that ensures soundness, but not completeness.
According to the signature chaining technique [20,22], the
DO produces one signature for every triplet of adjacent tuples
(sorted on their query attribute values). It then transmits its
data set and signatures to the SP. Upon receiving a client
query, the SP includes in the VO the result tuples (retrieved
using a traditional B+-Tree), the two boundary records that
enclose them, and the corresponding signatures. Soundness
is ensured by the signatures, and completeness by the exis-
tence of the boundary records.

Cheng et al. [5] apply signature chaining to devise authen-
ticated versions of the KD-Tree and the R-Tree (called the
VKD-Tree and the VR-Tree, respectively). Signature aggre-
gation [19] can be used to reduce the communication and
verification cost. This technique condenses multiple signa-
tures into a single one, which can be verified almost as fast
as an individual signature. Pang et al. [22] propose a solu-
tion for avoiding disclosure of boundary records, when the
outsourced database must comply with certain access control
policies.

The current state-of-the-art, disk-based ADS for authen-
ticating one-dimensional range queries is the Merkle B-Tree
(MB-Tree) [15]. The MB-Tree is basically a B+-Tree that
hierarchically organizes digests, in the same way as the MH-
Tree. In addition to the actual result, the VO transmitted to
the client contains two boundary records as well as a set
of digests by which the client can re-construct the digest
of the root. Yang et al. [30,31] present the Merkle R-Tree

(MR-Tree), which allows authentication of spatial queries by
combining concepts of the R-Tree and the MH-Tree.

There also exist approaches that do not involve the
construction and maintenance of an ADS. Sion [26] assumes
a unified client model, where the only client is the DO. The
DO issues a batch of queries to the SP. It also produces and
transmits a challenge token, which captures authenticated
information about the result of a secret query q from the
batch. The SP responds with the result sets of all queries
and the id of q. This method probabilistically ascertains the
DO about the correct execution of the batch. In [29] the DO
incorporates fake tuples in the data set, encrypts all records,
and transmits them to the SP. It also provides the clients with
the function used to generate the fake tuples. The SP cannot
distinguish the fake from the real records. The encryption
scheme implicitly ensures soundness. The clients can proba-
bilistically verify completeness by checking whether all fake
tuples satisfying the query are present in the result set. Note
that all clients are considered trusted, because otherwise the
SP could collude with a client and obtain the fake tuple gen-
erator. The above schemes cannot be applied to our model,
since we assume that the DO and the client are separate enti-
ties, and that the clients are not trusted. Atallah et al. [2]
introduce a theoretical approach that provides lower asymp-
totic bounds for the VO size than MH-based techniques.

Several methods study privacy preservation of outsour-
ced data. NetDB2 [13] assumes that the SP is trusted and
takes protection measures against theft of data. The DO sends
the data (in their original form) to the SP, which encrypts
them. Before a query is processed, the SP decrypts the data
in order to identify qualifying records. According to [12],
the SP receives already encrypted data and (given a query)
returns a superset of the actual result. Decryption and filter-
ing of false hits are performed at the client’s site. In the same
context, Damiani et al. [6] propose a method where the client
executes a sequence of queries that retrieve encrypted index
nodes at progressively deeper levels. Agrawal et al. [1] intro-
duce OPES, a scheme where the encrypted data preserve
the original order. Therefore, an index can be constructed
directly on the encrypted data. Wong et al. [28] enable min-
ing of association rules on data encrypted with 1-to-n item
mapping transformations. Kundu and Bertino [14] devise a
technique that provides both integrity and privacy of records
organized as trees (e.g., XML data). Our schemes focus only
on the integrity of data. However, the above solutions can be
used in combination with our framework.

Li et al. [16] deal with range query authentication in sliding
windows, i.e., a tuple expires w time units after its arrival. In
this case, all updates in the system correspond to insertions,
and deletions are implicit. The method reduces the commu-
nication cost at the expense of delayed result updates. The
basic idea is to use an input buffer B with a capacity of b
tuples, where b is a system parameter. The SP simply inserts
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every new record into B without notifying the clients, until B
is full. When this happens, the DO constructs a MH-Tree on
the search key for these b tuples in B, and transmits the root
signature to the SP. The latter evaluates all queries and sends
result updates to clients. Tuple expirations are handled in a
similar manner. The signing cost performed by the DO, as
well as the network overhead for transmitting the signatures
are amortized over b tuples. The penalty is that each result
update is delayed by up to b tuples.

In our work we focus on real-time reporting, and we min-
imize the communication overhead between the SP and the
clients by reducing false transmissions and using a caching
mechanism. In this sense, our work is orthogonal to [16],
i.e., a system could employ both techniques. Furthermore,
although our methods can also be used under sliding win-
dows, we apply the more general positive–negative model
(i.e., tuples are explicitly deleted at any arbitrary instant,
instead of according to their arrival order).

A second streaming technique [32] focuses solely on
aggregate queries. The authors assume that both the client
and the SP monitor a data stream transmitted by the DO.
The client constructs and stores a small synopsis of the data
locally. On the other hand, the SP maintains the entire data
set. The client directs its queries to the SP, which processes
them and returns the results. Using the synopsis, the client
can probabilistically prove result correctness. In our context,
only the SP receives the data stream from the DO (i.e., the
client does not interact with the DO at all). Additionally, we
focus on range query authentication, rather than aggregates.

3 REF

We present a reference solution (REF) for continuous query
authentication on relational data streams that serves as a
benchmark in our experimental evaluation. REF extends con-
ventional authentication on the following aspects: (i) it mod-
ifies the MH-Tree to handle updates, and (ii) it incorporates
a module for continuous monitoring of long-running queries
that supports temporal completeness. Figure 3 outlines query
processing in REF. Section 3.1 describes the indexing scheme
of REF, whereas Sects. 3.2 and 3.3 focus on computing and
maintaining the query results, respectively.

3.1 Indexing scheme

For simplicity, we consider that each tuple r in the DO’s
data set has only two attributes: the primary key r .id and the
search key r.k. Clients register long-running range queries on
r.k to the SP. In REF, both the DO and the SP sort the tuples
of the outsourced data set on the search key and construct an
authenticated structure, called the DMH-Tree (for Dynamic

REF
// Initialization phase 
1. Clients register their queries with the SP 
2. The SP computes the initial VO of each query and 
 sends it to the respective client 
3. Each client verifies the soundness and completeness of 
 its query results using the VO

// Monitoring phase 
1. For each batch of updates 
2.  The SP generates a VO for every running query and  
  sends it to the corresponding client 
3.  Each client verifies the soundness, completeness and
  temporal completeness of its VO

Fig. 3 General framework of REF

r1, r2, r3 r4, r5 r6, r7, r8 r9, r10 r11, r12

e3.h=h(r1|r2|r3), e3.k
e4.h=h(r4|r5), e4.k

e5.h=h(r6|r7|r8), e5.k
e6.h=h(r9|r10), e6.k
e7.h=h(r11|r12), e7.k

e1.h=h(e3.h|e4.h), e1.k
e2.h=h(e5.h|e6.h|e7.h), e2.k

level 0

level 1

level 2

root

Fig. 4 Example of a DMH-Tree

Merkle Hash-Tree). The DMH-Tree is a dynamic version of
the MH-Tree. Each node in the DMH-Tree has 2 or 3 entries.

Figure 4 illustrates an example DMH-Tree. Each leaf node
(level 0) contains 2 or 3 records. For intermediate nodes, each
entry e is a triplet (e.h, e.k, e.ptr), where e.k is the search key
of the first record in the subtree of e, and e.ptr is a pointer to
the corresponding child node. The value of e.h depends on
the level. For level 1, e.h is a hash value on the concatena-
tion of all records in the node pointed by e.ptr; for the upper
levels, e.h is computed on the concatenation of the digests
of the entries in e.ptr. The DO and the SP maintain identi-
cal trees in main memory. In addition, the DO computes a
value Hroot by hashing the concatenation of the digests con-
tained in the root of the tree, e.g., in the example of Fig. 4,
Hroot = h(e1.h|e2.h). Then it applies its private key to sign
Hroot , using the RSA public key cryptosystem. The SP stores
a copy of this signature.

The DMH-Tree supports fast (i.e., logarithmic) updates,2

based on the insertion/deletion algorithms of the B+-Tree.
Specifically, an insertion in a full (i.e., with 3 entries) node
causes its split in two nodes, each containing 2 entries. On
the other hand, a deletion from a node n with 2 entries leads
to an underflow. Similarly to B+-Trees, n first tries to borrow
an entry from a full sibling node. If this is not possible, n is
merged with a sibling. Since we do not use “right” pointers at

2 The original MH-Tree requires re-computation of hash values and
re-construction of the tree from scratch for every update.
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RangeDMH (DMHNode n, ExpandedQuery q)
1. Append [ to the VO
2. For each entry e in n
3.  If n is an intermediate node 
4.   If e intersects the query range 
5. RangeDMH(e.ptr, q)
6.   Else append e.h to the VO
7.  Else // n is a leaf node and e is a record 
8.   Append e to the VO
9. Append ] to the VO

Fig. 5 Range query in the DMH-Tree

the leaf level (as in B+-Trees), in our context the term sibling
signifies the previous or the next node under the same parent.
In addition, the DMH-Tree can support multiple updates at
the same timestamp, i.e., updates that are reported simulta-
neously in batch. First, the structure is modified to accommo-
date all updates, without altering any digest, but temporarily
marking the visited paths. Then, the marked paths are re-vis-
ited and the digests are computed bottom-up. In this way, the
hash computations are performed only once.

3.2 Initial result computation

Let q : [qL , qU ] be a range query on r.k, where qL(qU ) is
the lower (upper) bound. The SP performs two top-down tra-
versals to locate the tuples rL and rU immediately before qL

and after qU , respectively. These boundary records are nec-
essary to enforce completeness, i.e., that the SP does not omit
results at the range limits. Then it expands q to [rL .k, rU .k]
and applies the RangeDMH algorithm of Fig. 5 to compute
the verification object (VO), which contains the actual result
and additional data so that the client can establish its correct-
ness.

Specifically, the VO includes: (i) the digest of every pruned
entry, (ii) the tuples in every visited leaf node, (iii) special
tokens [ and ] indicating the scope of a node. Consider for
example a query that retrieves records r5 to r8 in Fig. 4.
The expanded query covers tuples r4 to r9. The applica-
tion of RangeDMH to the expanded query yields the VO:
[[e3.h[r4, r5]] [[r6, r7, r8][r9, r10]e7.h]]. Note that the tokens
in the VO reveal the tree structure, e.g., [e3.h[r4, r5]] corre-
sponds to the first root entry and the remainder to the second
one. The SP transmits the VO and the DO’s signature to the
client.

The verification process at the client utilizes the tree-
structure information, encapsulated in the VO, to compute the
digest Hroot of the root. Figure 6 illustrates the pseudo-code
of ReconstructHroot . The main concept is similar to eval-
uation of parenthesized arithmetic expressions, where the
tokens play the role of the parentheses. When the algorithm
encounters a token ], it has all the information (digests or

ReconstructHroot (VerificationObject VO)
1. Initialize an empty string B
2. While VO still has entries 
3.  Remove next entry E from VO
4.  If E is a hash value h or a record r
5.   Append E to B
6.   If E is a record r that satisfies the query, Report r
7.  If E is [, Append ReconstructHroot(VO) to B
8.  If E is ], Return hash(B)

Fig. 6 Algorithm for re-constructing Hroot

records) to compute the digest of the node that started at the
corresponding [. The digests and records are appended to a
buffer B, which after termination is used to derive Hroot =
h(B). Having Hroot and the signature of the DO, the client
can establish authenticity and correctness using the public
key of the DO. ReconstructHroot is online, i.e., it performs
a single linear scan of the VO. Note that the actual results
(i.e., records r5 to r8 in the query range) are extracted in
line 6. In addition, the client receives some boundary records
(r4, r9, r10) in the VO, which are not part of the result.

In this work, we consider the case that clients can issue
queries freely without constraints. Nevertheless, the solu-
tion of [22] can be applied in conjunction with the proposed
methods to avoid disclosure of boundary records, when the
outsourced database must comply with certain access control
policies. The proofs of soundness and completeness for ini-
tial result computation are identical to those of the MB-Tree
[15] and omitted.

3.3 Query monitoring

Next, we discuss how REF captures long-running queries
on streams. Whenever there is a data modification, the DO
alters its tree and forwards the update(s) to the SP in the form
of a data stream, according to the positive–negative model.
The transmission of a new record r from the DO to the SP
is denoted as (+<r .id, r.k>), and the deletion of an exist-
ing record as (−<r .id>). An update on r corresponds to a
deletion followed by an insertion. In addition to the actual
data, each transmission contains a new DO signature and
two timestamps: LT is the current time and ST is the time
of the previous transmission. The signature incorporates the
new Hroot , LT and ST. The two timestamps are necessary
so that the clients can detect temporal attacks, i.e., situations
where the SP avoids reporting some result updates. Specifi-
cally, we say that an authentication scheme satisfies temporal
completeness, if it is impossible for the SP to omit sending a
result change to the client, without the latter detecting it.

Upon receiving an update from the DO, the SP modifies its
own copy of the DMH-Tree accordingly. Then, it generates
a new VO for every running query (by processing the query
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using RangeDMH) and sends it to the corresponding client.
The client can re-construct the signed root of the updated
DMH-Tree and verify it using the DO’s public key. Further-
more, using LT and ST, it can confirm that the results are
current and there is no missing update. Observe that tempo-
ral completeness in REF necessitates VO generation even for
queries whose results are not affected by the update.

We illustrate this through an example. Assume that at time
τ = 1, a client C obtains a result. At τ = 2, the SP receives
a new record r1, but it does not inform C . At τ = 3, r1 is
deleted and a new tuple r2 becomes part of the result. The SP
transmits to C a new VO including r2, LT = 3 and ST = 2.
Note also that the SP must send the correct ST and LT since
they are incorporated in the DO’s signature. C detects that
there was an update at time 2, but it cannot determine if its
query was affected or not (if r1’s key were within the client’s
range, the SP should have sent a VO with the new result). The
only way that clients can establish temporal completeness of
their results, is if the SP transmits a new VO along with the
DO’s signature and timestamps LT and ST to every client for
every timestamp that there is an update.

Proof of temporal completeness Suppose that at time τ the
client receives a VO from the SP. The client stores τ locally.
Then at time τ ′ > τ an update occurs that affects the query
result, and the SP cheats by omitting transmitting the cor-
responding VO. After that, another update occurs and the
SP sends a VO to the client, including timestamp ST (i.e.,
the timestamp of the second last update). Note that ST ≥ τ ′
(multiple omissions may have occurred after τ ′). The client
compares ST with the local τ , and finds that ST > τ . Note
also that τ is the last timestamp before τ ′ at which the client
received a VO from the SP. Therefore, the client detects that
it did not receive a VO at ST. Meanwhile, if the SP sends a
falsified ST, the client is alarmed since the DO’s signature
incorporates ST.

The only potential vulnerability regards the situation
where the client does not receive any VO for a long time,
in which case it cannot be sure whether the last results are
still up-to-date. This problem can be solved using the concept
of query freshness [15], according to which the DO publishes
its revoked signatures on a public web site (called directory).
A suspicious client may browse the directory and check if
the lastly received signature is obsolete, in which case the SP
has maliciously omitted sending a new VO.

4 CADS

Let D be the domain of the query attribute. CADS decom-
poses D into disjoint partitions, and distributes records into
the partitions according to their search key values. This
minimizes the number of false transmissions necessary to

CADS
// Initialization phase 
1-3. Same as lines 1-3 in REF (Figure 3) 
4.    Each client stores its initial VO in cache 

// Monitoring phase 
1. For each batch of updates 
2.  The SP generates a VO only for the queries overlap- 
  ping partitions that are affected by updates 
3.  Each client C receiving a VO combines the cached VO

with the new one to form the complete VO.
4. C verifies the soundness, completeness and  temporal  
  completeness of the complete VO.
5. C substitutes the VO in the cache with the complete  
  one.  

Fig. 7 General framework of CADS

guarantee temporal completeness, by localizing the effect of
updates. In particular, the SP needs to generate and send a
new VO to a client, if and only if the client’s query over-
laps with the partition where an update occurs. Moreover, a
virtual caching mechanism reduces the VO size, by utilizing
results previously received by the client. Figure 7 overviews
query processing in CADS. Section 4.1 summarizes the index
structures, Sect. 4.2 describes the initial result computation
and Sect. 4.3 presents the monitoring algorithm.

4.1 Indexing scheme

For the following discussion, we assume that the partitions
have equal length, and that their number m is a power of
two. In Sect. 5 we explain how m affects the performance of
CADS, and introduce cost models for computing its optimal
value. CADS includes two types of structures: (i) tuples in
each partition are indexed by a TMH-Tree (Temporal Merkle
Hash-Tree). This structure enables the SP to efficiently pro-
cess the part of the query that overlaps with the corresponding
partition, and generate a VO with small size. (ii) All partitions
are indexed by a DPM-Tree (Domain Partition Merkle-Tree).
This enables the DO to produce a single signature (on the
root of the DPM-Tree) in order to cryptographically “mark”
the entire data set. Alternatively, the DO could sign the root
of the TMH-Tree in every partition, which would lead to
increased processing and communication cost for all parties
involved, and high verification cost for the clients.3 More-
over, the DPM-Tree reduces the size of the generated VO.
Figure 8 illustrates the indexing scheme.

The TMH-Tree is a modified DMH-Tree that incorporates
temporal information used by the virtual caching mechanism
(discussed in Sect. 4.3). Specifically, every entry e in an

3 The disadvantages of multiple signature generation over a single data
set are discussed in [15].
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(q1.id, q1.rg, q1.t)

(q2.id, q2.rg, q2.t)

...

QT

q2.id q4.id ...P1.IL

P1 P2 PmPm-1...

R1, LT1, ST1, H1

h(H1 | H2), max(LT1, LT2) h(Hm-1 | Hm), max(LTm-1, LTm)

...

...

HDPM, TDPM

h1, k1, t1

H1 = h(ST1 | h(h1 | h2 | h3))

h2, k2, t2 h3, k3, t3

Domain D

... ... ... ... ... ...

DPM-Tree

TMH1

r1 r2 r3

sig = h(HDPM | TDPM | L | U)

...

TMH-Tree
for partition P1

lower bound L U upper bound

R2, LT2, ST2, H2 Rm-1, LTm-1, STm-1, Hm-1 Rm, LTm, STm, Hm

sign( )

Fig. 8 Indexing and book-keeping structures

intermediate node is a tuple (e.h, e.k, e.ptr, e.t), where
e.h, e.k, e.ptr have the same meaning as in the DMH-Tree
(see Sect. 3), and e.t is a timestamp that signifies the latest (i)
record insertion/deletion/update that occurred in the subtree
of e, or (ii) movement of e to another node due to a split/merge
operation. Each partitionP is associated with a tuple (P.R,
P.LT, P.ST, P.H), where:P.R is a pointer to the root of the cor-
responding TMH-Tree indexing the tuples of P; P.LT (P.ST)
is the timestamp of the last (second last) update that occurred
in P (P.LT ≥ P.ST); P.H is a digest computed on the con-
catenation of P.ST with the digest (Hroot ) of P.R. Note that
if a TMH-Tree is empty, its Hroot is simply the digest of a
special null value (i.e., Hroot = h(null)).

The DPM-Tree is a binary tree that organizes digests in
a way similar to the MH-Tree. It is constructed bottom-
up as follows. Each leaf node corresponds to a partition
tuple (P.R, P.LT, P.ST, P.H). An adjacent pair Pi , Pi+1

of leaves generates an intermediate node N at the next level
that stores (N .H, N .T ), where N .H = h(Pi .H |Pi+1.H) and
N .T = max(Pi .LT, Pi+1 .LT). The tree construction contin-
ues recursively in the same manner until the root. Intuitively,
every intermediate node contains hashed information about
the records in the partitions covered by its subtree, and the
latest timestamp signifying updates in these partitions. Both
the SP and the DO maintain the aforementioned authenticated
structures. Let HD P M (TD P M ) be the digest (timestamp) in
the root of the DPM-Tree, and L (U ) the lower (upper) bound
of domain D. The owner computes h(HD P M |TD P M |L|U ),
signs it (using its private key), and sends it to the SP, which
keeps it locally (together with the above structures).

The indexing scheme can support multiple updates at the
same timestamp as follows. The TMH-Trees are first mod-
ified, as discussed in Sect. 3, without altering any digest or
timestamp, and the visited paths are marked. When an entry

Table 1 Summary of CADS symbols

General symbols
r: record r.id: primary key of r

r.k: search key of r D: domain of search key

L,(U): D’s lower (upper) bound m: number of partitions

P: partition P.IL: influence list of P

P.R: root of TMH-Tree of P P.H: digest on P.R and P.ST

P.LT: time of last update in P P.ST: time of second last update

TMH-Tree symbols

n: TMH-Tree node e: node entry

e.h: digest in e e.k: search key value in e

e.p: pointer to child node of e e.t: time of last e’s modification

DPM-Tree symbols

sig: signature on HD P M , TD P M , D N: DPM-Tree node

N.H: digest in N N.T: timestamp in N

HD P M : digest in the root TD P M : timestamp in the root

Query symbols

q: query q.id: unique identifier of q

q.rg: range of q q.t: time of last q’s VO creation

is deleted from a full intermediate node (i.e., there is no
underflow), it is replaced with a dummy value, so that the
order of the remaining entries in the node remains the same.
Then, the marked paths are re-visited and the digests and
timestamps are computed bottom-up, only once. Finally, a
single depth-first traversal of the DPM-Tree locates the leaf
nodes that correspond to the affected partitions and computes
the appropriate digests and timestamps bottom-up.

CADS also maintains book-keeping structures regarding
the queries. In particular, the SP stores every running query
q in a table QT as a record of the form (q.id, q.rg, q.t), where
(i) q.id is a unique identifier, (ii) q.rg is the query range, and
(iii) q.t is the timestamp of q’s last VO update. Each parti-
tion P is associated with an influence list P.IL, which stores
the identifiers of the running queries that overlap with P . QT
is organized as a hash table on q.id in order to support fast
search for queries. Table 1 summarizes the notation, grouping
symbols by category.

4.2 Initial result computation

The initial result computation corresponds to a snapshot
authenticated query, i.e., the user can establish correctness,
but does not need to verify temporal completeness. Given a
new query q, the SP calls RangeDPM(root, q, D) shown in
Fig. 9, which performs a depth-first traversal of the DPM-
Tree. Every node N conceptually corresponds to an interval
N .I , which is the union of the partitions covered by the node’s
subtree (for the root N .I = [L , U ]). If q does not overlap
with N .I , the digest N .H is inserted into the VO. Other-
wise, computeIntervals (line 3) splits N .I into two equal
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RangeDPM (DPMNode N, Query q, Interval I)
1. If N is an intermediate node  // in the DPM-Tree
2.  If q overlaps with I  // i.e., N.I
3.   (I1, I2) = computeIntervals(I)
4.   Append [ to the VO
5. RangeDPM(N.left_child, q, I1)
6. RangeDPM(N.right_child, q, I2)
7.   Append ] to the VO
8.  Else append N.H to the VO
9. Else // N is a leaf node corresponding to a partition P
10.  Append begin_TMH to the VO
11.  If q overlaps with I
12.   Append N.ST to the VO // N.ST = P.ST
13. q  = ExpandQuery(q, N.R)
14.   Call RangeTMH(N.R, q )
15.  Else append N.H to the VO // q does not overlap I
16.  Append end_TMH to the VO

Fig. 9 Range query in the DPM-Tree

intervals I1 and I2, corresponding to the two subtrees of N ,
and the traversal continues recursively. When reaching a leaf
node Nl , if q does not overlap with Nl .I, Nl .H is included
into the VO. Otherwise, Nl .ST is inserted into the VO and
RangeTMH is invoked, after expanding q (line 13) to include
the boundary records, as discussed in Sect. 3.2.

RangeTMH is similar to RangeDMH (in Fig. 5) except that
it adds to the VO a dummy value for each empty intermediate
entry found during the traversal (the functionality of dummy
values will become clear in Sect. 4.3). Moreover, it inserts
a null value if the TMH-Tree is empty. Tokens begin_TMH
and end_TMH are appended to the VO to signify the VO
components needed for re-constructing Nl .H . After the VO
is generated, the SP inserts a new entry for q in QT, with q.t
set to TD P M . Finally, q.id is added to the influence lists (IL)
of all partitions that overlap q.

Figure 10 illustrates an initial VO generation for a query q
with range [50, 75], assuming that D = [1, 80] and m = 4.
The SP starts by traversing the DPM-Tree. Since q does not
overlap with N5.I (= [1, 40]), H5 (i.e., N5.H) is appended
to the VO. The traversal continues with N6 and reaches leaf
N3, corresponding to partition P3. Since q overlaps with
P3, N3.ST (=P3.ST) is appended to the VO. Then, the TMH-
Tree of P3 (TMH3) is visited to locate the left boundary record
r4 (r4.k=48). Because q covers the right endpoint of P3, it is
not necessary to find its right boundary; hence, q is expanded
to q ′:[48, 75]. RangeTMH is called for TMH3 with q ′ as
an argument. The entries in the root of TMH3 are checked
sequentially. Since the first entry does not overlap q ′, h1 is
appended to the VO. On the contrary, node n2 must be vis-
ited and its records (r4, r5) are inserted into the VO. A dummy
value is appended in place of the third (empty) entry of n3.
Finally, leaf N4 of the DPM-Tree is visited and a partial VO is
generated in a similar way, after appending N4.ST to the VO

HDPM

H5 H6

H1 H4H2 H3

VO: [H5, [begin_TMH, N3.ST, [h1, [r4, r5 ] , dummy], end_TMH,
begin_TMH, N4.ST, [[r6, r7, r8], [r9, r10 ] , h'3 ], end_TMH]]

h1 48 h2

41, r1.id
42, r2.id
47, r3.id

48, r4.id
59, r5.id

h'1 76 h'2 79 h'3

62, r6.id
63, r7.id
64, r8.id

76, r9.id
77, r10.id

79, r11.id
80, r12.id

L=1
P1 P2 P3 P4

TMH3

DPM-Tree

TMH4

N7

N5 N6

N1 N2 N3 N4

n3

n1 n2

n4

n'1 n'2 n'3

Included in the VO

q
50 75

U=80

q'
48 76

41 62

Fig. 10 Example of initial result computation

ReconstructHDPM (VerificationObject VO, Interval I)
1. Initialize an empty string buffer B
2. Remove next entry E from VO
3. If E is begin_TMH
4.  Remove next entry E from VO
5.  If E is an ST value 
6.   Append E to B
7.   Append ReconstructHroot(VO) to B
8.   Remove next entry E from VO // E is end_TMH
9.   Return hash(B)
10.  Else // E is a P.H value 
11.   If the query overlaps with I
12.    Report that completeness is violated 
13.   Else 
14.    Remove next entry E' from VO // E'=end_TMH
15.    Return E // i.e., P.H
16.  If E is a hash value H, return H
17.  If E is [ 
18.  (I1, I2) = computeIntervals(I)
19.  Append ReconstructHDPM(VO, I1) to B
20. Append ReconstructHDPM(VO, I2) to B
21. If E is ], return hash(B)

Fig. 11 Algorithm for re-constructing HD P M

and expanding q to q ′:[50, 76]. The complete VO is shown
at the top of Fig. 10. The SP sends the VO to the client, with
D, TD P M and sig.

Given the VO and D, the client verifies its correctness,
by computing the hash value HD P M at the root of the DPM-
Tree using ReconstructHD P M (VO, D), shown in Fig. 11. The
functionality of the algorithm is similar to that of
ReconstructHroot (Fig. 6), except that ReconstructHD P M

uses intervals to determine the extents of each partition on-
the-fly. After the SP computes HD P M , it hashes it with TD P M
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and D, and matches it against the signature of the DO. The
actual results are extracted during the verification process.

Proof of soundness Suppose that a record is bogus or mod-
ified in partition P . Because the hash function is collision-
resistant, the P.H value computed by the client is different
than that of the DO. This modification propagates up to the
DPM-Tree root digest HD P M , which is also different from
the original. Consequently, the signature verification fails.

Proof of completeness Let P be a partition that overlaps with
query q. We distinguish two cases: (i) the partial VO corre-
sponding to the TMH-Tree associated with P is included in
the VO. Then, the client can verify the completeness of the
results residing in P , in a similar way to [15]. (ii) The SP
includes only P.H instead of the partial VO for P in the
VO. This way it can hide potential results in P , while the
client can still re-construct the HD P M value that matches
the DO’s signature. The client detects that the VO should
not contain P.H as follows. Recall that the client obtains
the bounds (D : [L , U ]) of the domain along with the VO,
which are also incorporated in the signature. With this infor-
mation, the client computes the interval (P.I ) covered by P
(during execution of ReconstructHD P M ), and finds that P.I
overlaps with the query. Therefore, the VO should contain
detailed information about the respective TMH-Tree, rather
than P.H . In both the above cases, the client is alarmed.

The above discussion focuses on a single query. If there are
several running queries in the system, the SP could process
them independently, by calling RangeDPM for each query.
This, however, would lead to high processing cost due to
multiple tree traversals. Instead, CADS applies RangeDPM
only once, and checks each visited node against all running
queries.

4.3 Query monitoring

Considering that the initial result has been computed, we
describe its continuous monitoring in the presence of data
updates. Recall from Sect. 3.3 that, in order to achieve tem-
poral completeness, REF performs false transmissions that
lead to large communication overhead, high processing cost
at the SP, and redundant verification effort at the clients. In
the sequel, we present a solution that minimizes the false
transmissions. Moreover, motivated by the observation that
an updated VO shares common components with the previ-
ous one, we propose a virtual caching mechanism (VCM)
that further reduces the communication cost. The term vir-
tual is due to the fact that the SP does not store the VO for any
query, which could lead to excessive memory consumption
(proportional to the number of queries). Each client keeps in
its own cache only a single VO.

When the SP receives a list of updates from the DO, it first
determines the set of affected partitions in which at least one
update occurs. Let AQ be the set of affected queries stored
in the influence lists of these partitions. The SP will create
new VOs only for the queries in AQ (as opposed to all que-
ries for REF). Note that, depending on the granularity of the
partitioning, false transmissions may still occur for queries
that intersect an affected partition, without being influenced
by the update(s).

VO generation is performed by a modified version of
RangeDPM. Specifically, when a node N is visited, its time-
stamp (N .T ) is checked against q’s timestamp (q.t). Recall
that (i) N .T is the time of the last update in any partition
under N , and (ii) q.t is the time of the last update in the
VO of q. If q.t ≥ N .T , then all updates in N have been
sent to the client during a previous transmission. There-
fore, the VO components needed for re-constructing N .H are
already present in the client’s cache and up-to-date. A spe-
cial token Hit is appended to the VO to signify that the client
must retrieve these components from its own cache. Other-
wise (q.t < N .T ), the process is identical to the one used
for the initial computation. Similar modifications apply to
RangeTMH.

The SP sends the updated VO to the client along with a
new signature and TD P M . The client executes CombineVO
(Fig. 12) in order to merge the components contained in the
updated VO (newVO) with the ones in the cache (cachedVO).
The resulting VO is then stored in the client’s cache (i.e.,
it becomes the new cachedVO). CombineVO scans the two
VOs in parallel, retrieving an entry En (Ec) from newVO
(cachedVO) at each step. An important invariant is that

CombineVO (VerificationObject VO, Interval I)
1. Initialize VO to empty 
2. While newVO still has entries // also for cachedVO
3.  Get next entry En from newVO and Ec from cachedVO
4.  If En and Ec have the same type 
5.   Append En to VO
6.  Else if En is a digest or record or dummy and Ec is [
7.   Append En to VO
8.   Remove all entries from cachedVO until matching ] 
9.  Else if En is [ and Ec is a digest or record or dummy
10.  Append En to VO
11.  Remove all entries from newVO until matching ]  
   and append them to VO
12. Else if En is Hit
13.  If Ec is a digest, append Ec to VO
14.  Else if Ec is [ or begin_TMH
15.   Append Ec to VO
16.   Remove all entries from cachedVO until
    matching ] or end_TMH and append them to VO
17. Return VO

Fig. 12 CombineVO algorithm
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En and Ec must always correspond to the same item. The
algorithm distinguishes four cases. If En and Ec have the
same type (i.e., they are both digests, records, dummies or
tokens), En is appended to the new VO (lines 4–5). In the
second case (lines 6–8), En is a non-token value and Ec is [.
This implies that newVO contains updated information about
the subtree starting at [. Therefore, En is added to VO, and
all entries of cachedVO up to the matching ] (signifying the
end of the subtree) are deleted in order to retain synchroni-
zation between En and Ec. Lines 9–11 capture the reverse
case, where a non-token value in cachedVO is replaced by
a subtree in newVO. All entries between [ and ] in newVO
that correspond to this subtree are inserted into VO. Finally
(lines 12–16), if En is Hit, the matching value or subtree of
cachedVO is appended to VO. With the new VO, the client
re-computes HD P M and verifies it against the new signature.

Figure 13 illustrates query monitoring and VCM by contin-
uing the example of Fig. 10, assuming that the initial result
computation occurred at time τ = 1(q.t = 1). The diagram
also includes the timestamps inside the nodes and the entries.
At τ = 2 there is at least one change in P2(N2.T = 2), but
since P2 does not overlap with the query range, the SP does
not perform VO generation and transmission. At τ = 3, there
are 3 deletions (of r6, r7 and r8) and one update (r10.k changes
from 77 to 74) in P4, and one insertion of a new record rn in
P1. Because P4 intersects with the query, a new VO is gen-
erated. RangeDPM first visits the root of the DPM-Tree and
then node N5(N5.T = 3), whose interval does not overlap q.
Since N5.T > q.t, N5.H is different (due to the insertion of
rn) from the cached value and is appended to newVO. The tra-
versal continues with N6 and reaches leaf N3. Because N3.LT
= 1 = q.t , all the components needed to re-construct N3.H

<
<
<

>

HDPM, 3

H5, 3 H6, 3

H1, 3 H4, 3H2, 2 H3, 1

cachedVO : [H5, [begin_TMH, N3.ST, [h1, [r4, r5 ], dummy], end_TMH,
begin_TMH, N4.ST, [[r6, r7, r8], [r9, r10 ], h3' ], end_TMH]]
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42, r2.id
47, r3.id

48, r4.id
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<
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Fig. 13 Query monitoring example

are already in cachedVO and a Hit token is added to newVO.
Then, RangeDPM proceeds to N4, where N4.LT = 3 > q.t .
Thus, the corresponding TMH-Tree (TMH4) must be tra-
versed, after expanding q to q ′:[50,76].

Because in TMH4 the three records (r6, r7, r8) originally
stored in leaf n′

1 are deleted, a merge operation has been per-
formed between n′

1 and n′
2. This has reduced the number of

entries in the parent node n4, and a dummy value replaces
the (deleted) first entry, which is appended to the VO. The
timestamp of the second entry (3) is larger than q.t , which
signifies that at least one update has occurred in n′

2 after q.t .
Therefore, all its records are added to the VO. Finally, a Hit
token is inserted for the third entry, because h′

3 has not been
altered since τ = 1. Note that dummy values are important for
synchronization between the newVO and cachedVO during
the execution of CombineVO.

Proof of temporal completeness Suppose that the initial
computation of a query q occurs at a time τ and the VO
is sent to the client. The client stores it as cachedVO, along
with τ . Now assume that at later time τ ′ (>τ ) one (or more)
update(s) takes place in some partition P that overlaps with
q. The SP cheats and does not send a new VO to the client.
Subsequently, another update occurs that affects q. This time
the SP generates newVO and sends it to the client, along with
new sig. We distinguish two cases: (i) newVO contains a par-
tial VO corresponding to P . According to our algorithms,
newVO also includes P.ST. The client compares P.ST with τ .
Since at least a potential result update (at P.ST) was omitted,
P.ST > τ and the client is alarmed. (ii) newVO contains a
Hit token that corresponds to P . Since the actual P.ST is dif-
ferent than the one included in cachedVO, the client re-con-
structs a false P.H value and the verification of the signature
fails.

5 Optimal granularity computation

Recall that in order to reduce false transmissions, CADS
decomposes the domain into partitions organized into a DPM-
Tree. The granularity m of this partitioning affects the effi-
ciency of CADS. On the one hand, if m is too coarse (i.e.,
there are very few partitions), the ability of CADS to decrease
false transmissions is subdued; in the extreme case that there
is only one partition, CADS reduces to REF. On the other
hand, a large number of partitions leads to a tall DPM-Tree
and numerous TMH-Trees. This adversely affects perfor-
mance, especially considering that most practical data sets
exhibit a certain degree of skewness. Consequently, many of
the partitions may contain few or no records at all. Manually
(i.e., empirically) tuning m at the DO in order to maximize
performance is both costly and error-prone. Therefore, in this
section we establish rigorous cost models for CADS, which
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Table 2 Summary of symbols in the analysis

Symbol Meaning

m Partitioning granularity

EVO Expected VO size of a query

EVOinit (q) Expected size of q’s initial VO

EVOupd (q) Expected size of VO generated for q due to an update

EVOD(q) Expected size of VO generated for q in the DPM-Tree

EVOT (q) Expected size of VO generated for q in the TMH-Trees

NU Number of timestamps when insertions/deletions occur

|U | Expected number of insertions/deletions per timestamp

QS A random sample set of queries

lq Extent of query q

|q| Number of records contained in the query q

qp Number of partitions the query q overlaps with

f Expected fanout of the TMH-Tree

Sh Size of a digest

Sr Size of a record

St Size of a timestamp

Ss Size of a signature

we utilize to compute the best value of m. Table 2 summarizes
common symbols used throughout this section.

Our analysis focuses on the expected VO (EVO) size for
a query, for two reasons. First, the VO must be transmitted
from the SP to the client through the network, which is usu-
ally the bottleneck of the entire system. This is especially
true for mobile clients (e.g., PDAs), where battery consump-
tion is a major concern (wireless transmissions consume sig-
nificantly more power than offline computations [7]). The
second reason is that other performance goals, such as mini-
mizing the computation at the SP and the client, are strongly
correlated with EVO. Intuitively, the larger the EVO, the more
nodes are visited during query processing, and subsequently
processed by the client to re-construct the root digest. Hence,
minimization of the EVO improves performance on these
metrics as well.

Initially, we concentrate on the case that all partitions have
the same length and discuss variable-length partitioning later.
Without loss of generality, we normalize the search key val-
ues of the data space to [0, 1]. In order to keep the analysis
tractable, we make the following simplifying assumptions. (i)
The updates follow the distribution of the initial data set, i.e.,
the cardinality of each partition does not change significantly
over time. When this assumption does not hold, the DO and
SP can periodically re-compute m and re-build the structures
of CADS accordingly. (ii) Each query q has expected length
lq ∈ (0, 1]. (iii) We disable the virtual caching mechanism
(VCM). In Sect. 7, we explain why the effects of the VCM are
not significantly influenced by the partitioning granularity m.

In order to estimate EVO, we draw a random sample query
set QS, e.g., from a past query log, or a known distribution.
Let q ∈ QS be a sample query, and |QS| the cardinality of QS.
CADS entails an initial VO computation for q, as well as the
production of a new VO whenever q is affected by updates.
Let EVOinit (q) be the expected size of the initial VO of q,
and EVOupd(q) the expected size of the VO generated due to
an update. For a given number of timestamps NU that involve
updates, EVO is computed by:

EV O =
∑

q∈QS

EV Oinit (q) + NU · EV Oupd (q)

|QS| · (NU + 1)
(1)

Regarding EV Oinit (q), CADS includes in the VO five types
of information: (i) the result set of q, (ii) two boundary
records for completeness, (iii) timestamps of each partition
overlapping q, which collectively prove temporal complete-
ness, (iv) the digests inserted during the traversal of the DPM-
and the TMH-Trees, used by the client to verify correctness
and, finally, (v) the signature of the DO. We do not consider
the tokens (e.g., begin_TMH) since their sizes are negligible.
Let Sr be the length of a record and |q| be the average number
of tuples in the query result set. Types (i) and (ii) consume
Sr ·(|q|+2). Given the query extent lq , |q| can be calculated
using standard selectivity estimation techniques (e.g., sam-
pling [3], histograms [11], probabilistic models [9]). If qp
is the number of partitions intersecting q, and St is the size
(in bytes) of a timestamp representation, the size of (iii) is
qp ·St . Since each partition has extent 1/m, the expected
value for qp is �m · lq�+1. Regarding (iv), we use symbols
EVOD(q) and EVOT (q) to denote the total size of the digests
appended to the VO when traversing the DPM-Tree and all
the TMH-Trees, respectively, during the processing of q.
Finally, (v) equals the size of one signature (let Ss). Sum-
marizing, EVOinit (q) is given by:

EV Oinit (q) = (|q| + 2) · Sr + qp · St

+ EV OD (q) + EV OT (q) + Ss
(2)

We next clarify EV OD(q) and EV OT (q). Figure 14 illus-
trates the traversal of the DPM-Tree and TMH-Trees for
query q. For the DPM-Tree, the traversal starts from the root,
it follows a single path until the path split node, and diverges
into two paths. The two paths reach the leaf nodes, whose

DPM-Tree

TMH-Trees ... ...

q

path split node

QP1 QPqpQPi

Fig. 14 CADS traversal
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corresponding partitions contain the left and right boundary
records of q, respectively. Since the DPM-Tree is binary, for
each node on the single path, exactly one digest (i.e., that
of the pruned sibling) is inserted to the VO. We thus focus
on calculating the number of such nodes. Since the DPM-
Tree indexes m partitions, its height is �lgm�+1. Similarly,
because the query overlaps qp partitions, the path split node is
expected to be �lgqp� +1 levels above the leaves. Therefore,
assuming that Sh is the size of a digest, EV OD(q) is:

EV OD(q)

= Sh · ((�lgm� − �lgqp�) + 2 · (�lgqp� + 1))
(3)

EV OT (q) involves the digests inserted to the VO during the
traversal of qp TMH-Trees, each of which corresponds to a
partition overlapping with q. Let Q P1, Q P2, . . . , Q Pqp be
the partitions that intersect q. A key observation, as depicted
in Fig. 14, is that all partitions except for the first (Q P1) and
the last (Q Pqp) are completely contained in q, meaning that
during their corresponding TMH-Tree traversal, no digests
are appended to the VO at all. On the other hand, for Q P1 and
Q Pqp, a root-to-leaf path of the corresponding TMH-Tree is
traversed respectively, during which, the digests of the sib-
lings of every visited node are included in the VO.4 Let f
(2 ≤ f ≤ 3) be the expected node fanout of a TMH-Tree,
and |P| be the number of tuples in partition P . The height of
the TMH-Tree corresponding to P is then �log f |P|�+1. For
a particular q, |Q Pi | (1≤ i ≤ qp) is known and its EVOT is
calculated by:

EV OT (q) = Sh · (⌊
log f |Q P1|

⌋ + 1+
+ ⌊

log f

∣∣Q Pqp
∣∣⌋ + 1

) · ( f − 1) (4)

Combining Eqs. 2, 3 and 4 yields the complete model for
EV Oinit (q). We next derive EVOupd(q). Recall that in
CADS, the SP sends a new VO only when at least one update
happens in a partition intersecting with q. Let Prob V O(q)

denote the probability that the SP transmits a new VO (i.e.,
q is affected by any one of these updates). EVOupd(q) is
obtained as follows:

EV Oupd (q) = EV Oinit (q) · ProbVO (q) (5)

Next we focus on ProbV O(q). According to the assump-
tion that the updates follow the same distribution as the
initial data set, the probability that an update falls in any
one of Q P1, Q P2, . . . , Q Pqp is �i |Q Pi |/� j |Pj |, 1 ≤ i ≤
qp, 1 ≤ j ≤ m. Therefore, for a batch of |U | independent
update operations (i.e., insertions or deletions) occurring at

4 When q overlaps with only one partition, the corresponding TMH-
Tree is analyzed similarly to the DPM-Tree; i.e., the traversal initially
follows one path until a path split node.

a specific timestamp, ProbV O(q) is given by:

ProbV O (q) = 1 −
⎛

⎝1 −
⎛

⎝
qp∑

i=1

|Q Pi |
/ m∑

j=1

∣∣Pj
∣∣

⎞

⎠

⎞

⎠
|U |

(6)

Equipped with the above models, we present a simple and
effective algorithm, called Bestm, to compute an appropri-
ate value for the partitioning granularity m. Initially, Bestm
sets m to a maximum value mmax . It then scans the data set
once to compute the cardinality for each partition, and uti-
lizes this information to derive EVO using the cost models.
After that, it decreases m to mmax /2, and computes the corre-
sponding EVO. Observe that at this stage it is unnecessary to
scan the data set again to compute the cardinality of the par-
titions, since these can be obtained by aggregating the corre-
sponding partitions in the previous step. At subsequent steps,
m is reduced by half each time, and EVO is estimated, until
m = 1. Among all considered values for m, the one achiev-
ing the smallest EVO is chosen as the partitioning granularity
for CADS.

Finally, our cost model can be extended to estimate the VO
size of a variable-length partitioning, as long as the distribu-
tion of the keys inside each partition is uniform. Specifically,
for any sample query q ∈ QS, we compute (i) the set of parti-
tions that intersect q, namely Q P1, Q P2, . . ., Q Pqp and (ii)
|q|, i.e., the number of results retrieved by q. With this infor-
mation, we can apply Eqs. 1–6 to derive EVO. However, it is
complicated to find the optimal such partitioning. In the next
section we explain how we can achieve an effective variable-
length partitioning.

6 A-CADS

As discussed in the previous section, a coarse m leads to
false transmissions, whereas a fine one increases the num-
ber of empty partitions, which is problematic, especially for
skewed data sets. Meanwhile, the optimal m according to the
cost models leads to good performance, only when the data
distribution remains the same as when m is calculated. If,
however, the distribution changes over time, the optimal par-
titioning may become obsolete. In this case, the performance
of CADS degrades, and the entire index must be re-built from
scratch using the granularity computed with current statistics.
This is a rather costly process. Motivated by these shortcom-
ings, we next describe Adaptive CADS (A-CADS), which (i)
minimizes false transmissions and empty partitions simulta-
neously, and (ii) dynamically adjusts the structures according
to distribution changes, thus achieving high performance at
all times.
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6.1 Indexing scheme

In general, there are three major differences between
A-CADS and CADS regarding the structure and maintenance
of the DPM-Tree. (i) Whereas CADS employs a full (bal-
anced) DPM-Tree, in A-CADS it can be unbalanced (i.e.,
leaves may reside at any level of the tree). This enables using
variable partitioning granularity for distinct regions of the
data space (and thus different partition sizes). (ii) The DPM-
Tree in CADS is static, with a pre-defined number of leaf
nodes, each corresponding to a fixed partition of the data
domain D. The DPM-Tree in A-CADS, on the other hand,
is adaptive, and its structure changes as updates occur. (iii)
While CADS constructs the DPM-Tree during an initializa-
tion phase, A-CADS builds the tree incrementally, and main-
tains it while records are inserted into and deleted from the
index. For this purpose, it introduces two new algorithms
InsertDPM (for insertions) and DeleteDPM (for deletions),
which adjust the tree structure through node splits (in case
of InsertDPM) and merges (resp., DeleteDPM).

In A-CADS, the DPM-Tree initially consists of a single
node (the root), whose associated partition covers the entire
data space. The tree grows as new tuples are inserted, which is
controlled by the recursive procedure InsertDPM. Figure 15
outlines the pseudo-code of InsertDPM that has three input
parameters: (i) a DPM-Tree node N , (ii) the record to be
inserted r , and (iii) an interval I , which is the partition cor-
responding to N . The insertion of record r starts by call-
ing InsertDPM with the root of the DPM-Tree, r , and the
full domain D. The procedure first locates the DPM-Tree
leaf, whose corresponding partition contains the search key
r.k of r (lines 1–4). Specifically, as long as N is not a leaf
node, it first determines the partition extents of N ’s children
through function computeIntervals (line 2), which splits I

InsertDPM (DPMNode N, Record r, Interval I)
1. If N is an intermediate node 
2. (I1, I2) = computeIntervals(I)
3.  If r.k lies in I1, InsertDPM (N.lc, r, I1)
4.  Else if r.k lies in I2 InsertDPM (N.rc, r, I2)
5. Else // N is a leaf node 
6.  If EVO(I, 1) EVO(I, 2) 
7.   Insert r into TMH-Tree pointed by N.R
8. Else // EVO(I, 2) < EVO(I, 1), split N
9.  Create two new children for N
10. (I1, I2) = computeIntervals(I)
11.  Destroy the TMH-Tree pointed by N.R, distribute 

all its records to N.lc and N.rc based on if their 
search keys lie in I1 or I2, respectively, and build 
the TMH-Trees N.lc.R and N.rc.R

12.   If r.k lies in I1, InsertDPM (N.lc, r, I1)
13.  Else InsertDPM (N.rc, r, I2)

<

Fig. 15 Algorithm InsertDPM for A-CADS

into two equal-length intervals I1 and I2. Then, depending
on whether r.k lies in I1 or I2 (lines 3–4), it traverses to
N ’s left (right) child, respectively, and the process continues
recursively until reaching the leaf level.

Once reaching a DPM-Tree leaf N (line 5), the algorithm
checks whether N should be split. The decision is based
on the inequality evaluation of line 6, i.e., EVO(I , 1) ≤
EV O(I, 2). Function EVO returns the expected VO size after
r is inserted to the tree, computed according to the cost mod-
els of Sect. 5. Its two parameters are (i) data space of concern
I (i.e., N ’s partition), and (ii) the number of partitions to be
used for this space, which is either 1 or 2. Intuitively, line 6
can be translated into: “after r is inserted, is the expected VO
smaller (or equal) when the DPM-Tree keeps using one par-
tition for the data space I, compared to using two partitions?”
A positive answer means that one node/partition is the best
choice for I . Hence, the procedure simply inserts r into the
respective TMH-Tree pointed by N .R (line 7). Otherwise
(i.e., two nodes/partitions lead to better performance), a split
occurs at node N .

To split a node N (line 8), InsertDPM first creates two new
ones N.lc and N.rc as left and right child for N (line 9), and
computes their respective partition extents (line 10). Subse-
quently, it destroys the TMH-tree N .R, retrieves the records
in N .R, and distributes them into N.lc and N.rc, based on if
their search key lies in I1 or I2, respectively (line 11). Then it
constructs the corresponding TMH-Trees pointed by N.lc.R
and N.rc.R. Finally, the procedure is recursively invoked for
N.lc or N.rc, depending on which node r should be inserted
in (lines 12–13), during which further splits may occur.

We conclude InsertDPM with the observation that propa-
gated splits entail the unnecessary computation of
TMH-Trees (in line 11), as these trees are destroyed dur-
ing subsequent splits (incurred by the recursive calls in lines
12 and 13). As a further optimization, in our implementation
InsertDPM does not construct any TMH-Tree until all prop-
agated splits finish. Instead, it marks the modified subtrees
of the DPM-Tree, buffers the sets of records to be indexed
by each affected leaf, and creates the TMH-Trees at a sub-
sequent step. For simplicity, however, the pseudo-code in
Fig. 15 omits this detail.

Next we present DeleteDPM, shown in Fig. 16, which
deals with tuple deletions and node merging. Unlike node
splits which can happen on any leaf node, a merge is only
performed on two leaves sharing a common parent (note that
the sibling of a leaf may be an intermediate node since the
tree is unbalanced). The function takes the same arguments
as InsertDPM, where r is now the record to be deleted. Del-
eteDPM first traverses the tree until reaching the leaf N that
accommodates r (lines 1–4). If N is the root, or its sibling
(denoted by N.sb) is not a leaf, the procedure simply deletes
r from TMH-Tree N .R (lines 6–7). Otherwise (i.e., N is not
the root and N .sb is a leaf), it first computes the partition
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DeleteDPM (DPMNode N, Record r, Interval I)
1. If N is an intermediate node 
2. (I1, I2) = computeIntervals(I)
3.  If r.k lies in I1, DeleteDPM (N.lc, r, I1)
4.  Else if r.k lies in I2 DeleteDPM (N.rc, r, I2)
5. Else // N is a leaf node 
6.  If N is the root or N’s sibling is not a leaf 
7.   Delete r from N.R
8.  Else // N is not the root and N’s sibling is a leaf
9. Ipnt = N.pnt.computeParentInterval(I, N)
10.   If EVO(Ipnt, 2) EVO(Ipnt, 1) 
11.    Delete r from N.R
12.  Else // EVO(I, 1) < EVO(I, 2), merge N
13.   Let N.sb be N’s sibling. Retrieve all the records
  from N.R and N.sb.R, build a TMH-Tree over
   them, store its root’s pointer to N.pnt.R, and
   delete N and N.sb
14. DeleteDPM (N.pnt, r, Ipnt)

Fig. 16 Algorithm DeleteDPM for A-CADS

Ipnt corresponding to N ’s parent (denoted by N.pnt) with
function computeParentInterval (line 9). The latter checks
whether N is a left or a right child of its parent node, and
expands I accordingly to obtain Ipnt .

DeleteDPM then distinguishes two cases. (i) In line 10,
EVO is smaller (or equal) when Ipnt is decomposed into two
partitions, rather than when it is a single partition (consider-
ing that r is already removed). In other words, merging N ’s
partition with N.sb’s to a single partition Ipnt (i.e., merging
N with N.sb) is not more beneficial than maintaining the two
partitions in their current form. The algorithm simply deletes
r from N .R. (ii) If line 10 returns false, a merge between N
and N.sb must be performed. DeleteDPM retrieves all records
in the TMH-Trees rooted at N .R and N.sb.R (including r ),
constructs a new TMH-Tree over these tuples, assigns its root
pointer to N.pnt.R in N ’s parent, and deletes N and N.sb (line
13). Finally, the procedure recursively calls itself in order to
delete r from N.pnt because an upwards propagated merge
may occur. Merge can be thought of as the reverse operation
of split.

Note that the DO sends the updates to the SP in batches.
The latter first processes the involved insertions (deletions)
using InsertDPM (DeleteDPM) as explained above, but dur-
ing the process it marks all the visited DPM-Tree nodes (e.g.,
it stores their pointers to a temporary list). After finishing the
last update operation in the batch, the SP updates the digests
contained in the marked nodes bottom-up at a subsequent
step, so that the instance of its index complies with that of
the DO at all times.

6.2 Query processing

We now turn to query processing in A-CADS. Recall that the
difference between CADS and A-CADS is that, in A-CADS

the DPM-Tree is unbalanced, adaptive, and incrementally
maintained. Among the query processing algorithms,
RangeDPM (that produces the answer set and the VO for
a query) and ReconstructHD P M (that re-constructs the root
digest from the VO) do not take into account the level of the
leaves in the DPM-Tree, or changes occurring to the struc-
ture. Therefore, they are not affected at all by these changes,
and remain the same.

On the other hand, CombineVO (Fig. 12), which is the
core component of VCM, is affected by the fact that the
DPM-Tree structure may change over time. Recall that
CombineVO scans a new VO in its compressed form (newVO)
and an old one from the cache (cachedVO) simultaneously,
distinguishing four different cases depending on the current
entries En and Ec in newVO and cachedVO, respectively.
Structural changes in the DPM-Tree introduce two situa-
tions not encountered in CADS. (i) When En is [ and Ec is
begin_TMH, an internal node of the DPM-Tree was a leaf
when cachedVO was created (i.e., a split occurred in the
meantime). In this case, CombineVO discards all the entries
between Ec = begin_TMH until its corresponding end_TMH
from cachedVO, and includes in VO all the entries between
Ec = [ to its corresponding ] token from newVO. (ii) When En

is begin_TMH and Ec is [, then a leaf node of the DPM-Tree
was an internal node when cahcedVO was produced (i.e., a
merge has occurred). To handle this, CombineVO discards all
entries from cachedVO between Ec = [ to its corresponding ]
token, and inserts in VO the entries between En = begin_TMH
to its respective end_TMH from newVO.

Finally we comment on the proofs of soundness,
completeness and temporal completeness under A-CADS.
As discussed above, whether the DPM-Tree is unbalanced or
not, or how it is constructed and maintained, has no impact on
query processing, and, thus, does not influence result correct-
ness. The fact that the DPM-Tree changes structure over time
affects exclusively the CombineVO routine, which is part of
VCM. This means that, without considering VCM, all correct-
ness guarantees of CADS remain valid in A-CADS. Note that
the only requirement of VCM is to restore the full VO properly
from a compressed one and the cache. The above modifica-
tions capture all cases regarding an entry in the new VO and
cached VO, and, therefore, synchronize the cached with the
new VO successfully. In summary, none of the changes in
data structures and algorithms introduced in A-CADS com-
promises the soundness, completeness or temporal complete-
ness of query results.

7 Experimental evaluation

We implemented all methods using the Crypto++ library,5

and deployed them on a Core 2 Duo 2.2 GHz CPU with

5 www.eskimo.com/~weidai/benchmark.html.

123

www.eskimo.com/~weidai/benchmark.html


Continuous authentication on relational streams 175

Table 3 Experimental parameters

Parameter Range

Data cardinality (DC) 10K, 50K, 100K, 200K, 500K

Query cardinality (QC) 100, 500, 1K, 2K, 5K

Arrival rate (AR) 10, 50, 100, 200, 500

2 GBytes of RAM. Each record r consumes 100 bytes and
contains a search key r.k which has values normalized to
[0,1]. The query specifies a range on the search attribute. We
generated synthetic data sets UNI and SKD, in which the key
attribute follows a uniform and Zipfian distribution, respec-
tively. In SKD, the skewness parameter is set to 0.8, so that
77% of the records fall in the 20% of the data space.

At every timestamp, AR updates arrive at the system (the
period between timestamps can be perceived as any time
interval, e.g., a second, a minute, etc.). An update involves a
deletion of a random tuple and an insertion of a new one with
the same id but different key. Consequently, the number of
update operations is |U | = 2·AR, and the data set cardinality
DC is constant at all times. The new key values follow their
initial distribution. We monitor QC running queries. Unless
otherwise stated, each query covers 0.1% of the data domain.
Table 3 summarizes the system parameters under investiga-
tion along with their ranges, highlighting the default values
in bold face.

Section 7.1 utilizes the cost models of Sect. 5 to iden-
tify the optimal granularity m for CADS, and assess their
accuracy. Section 7.2 compares CADS against REF. Finally,
Sect. 7.3 evaluates the relative performance of CADS and
A-CADS.

7.1 Computation of the optimal granularity

We set the system parameters to their default values (i.e.,
DC = 100 K, QC = 1 K and AR =100) and switch off
the virtual caching mechanism (VCM). For the first set of
experiments we perform uniform queries on UNI data set.
Figure 17a plots both the estimated VO size calculated for all
queries per timestamp using the cost models, and its actual
size measured in the experiments, against the number of par-
titions m. The estimated values are accurate for all values of
m, with a maximum error of 10.7%. When m ≤ 24, most par-
titions are affected by updates, meaning that very few false
transmissions are eliminated. Consequently, the total VO size
is as high as that of REF (recall that when m = 1, CADS
reduces to REF). As m grows, the amount of false trans-
missions (and thus the VO size) drops quickly until reach-
ing m = 210, after which the penalty of a fine granularity
(e.g., large number of timestamps and hash values in the VO)
emerges as a significant overhead.
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Fig. 17 Total VO size vs. m (UNI data set). a Effect of m. b Optimal m

The change of VO size for m between 210 and 219 is
rather subtle compared to the initial drop at low values of m.
Figure 17b zooms in the range 210 ≤ m ≤ 219. The actual
VO size continues to drop until m = 215, which is the opti-
mal granularity. Then, the VO size starts to increase, with an
accelerating speed, signifying that the overhead introduced
by CADS (e.g., timestamps) exceeds the savings achieved by
reducing false transmissions. The estimated VO reaches its
lowest point at m = 214, which is very close to the optimal
one (215); the difference in VO sizes between m = 214 and
m = 215 is negligible.

In order to evaluate the generality of these observations,
Fig. 18 repeats the above experiment on the SKD data set
(the queries are still uniform). Again, the cost models are
accurate for all values of m. The VO size is highest at m = 1
(i.e., REF), then decreases sharply as m grows, and starts to
increase after m > 215. The estimated value (m = 214) for
the best granularity is very close to the optimal one, which is
215. Comparing with Fig. 17, the optimal granularity is not
significantly affected by data skewness.

Note that the VO reduction achieved by higher values of m
is less pronounced in Fig. 18 than in Fig. 17. This is because
in the SKD data set, the initial data as well as the updates have
search keys concentrated in a certain area of the data space,
whereas the queries are uniformly distributed. Consequently,
most queries cover sparse areas and thus have few results; the
ones that fall into dense regions, on the other hand, are more
likely to be affected by updates, and their results have to be
re-transmitted anyway. Therefore, the ratio between the
amount of false transmissions and that of necessary ones
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Fig. 18 Total VO size vs. m (SKD data set). a Effect of m. b Optimal m

is smaller in the SKD data set. Recall that for this set of
experiments, we disabled VCM as it is not taken into account
by our cost models. We empirically verified that the com-
puted optimal granularity is also effective in the presence of
VCM because for large values of m(>211) the effect of the
granularity is not very significant.

Figure 19 investigates the effectiveness of the model for
non-uniform queries. Specifically, Fig. 19a presents results
for the UNI data set, whereas Fig. 19b focuses on the SKD
data set. In both experiments, the left boundary of each query
follows the same distribution as keys in the SKD data set. For
SKD, we decreased the query length to 0.001% of the data
domain (instead of 0.1% in the other experiments) because a
larger query would retrieve almost all records (queries fall in
very dense areas). For both data sets, our cost model achieves
high accuracy (below 18% in all settings). Concerning the
optimal granularity, in the UNI data set, the cost model pre-
dicts m = 214, while the true best value for m is 215, and the
difference in performance is negligible. In the case of SKD,
m does not have a significant impact over the VO because
this is dominated by the output size (note the large VO size
in Fig. 19, compared to the previous diagrams).

7.2 CADS vs. REF

We evaluate CADS against REF, investigating the impact of
various system parameters. For the following experiments,
we assume uniform queries and use the best value for m as
determined by the cost models. First, we assess the effect of
the data cardinality DC, after setting QC = 1K, AR = 100, and
enabling VCM. Figure 20 illustrates the total processing time
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Fig. 19 Total VO size vs. m (skewed queries). a UNI dataset. b SKD
dataset
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Fig. 20 Query processing time vs. DC. a UNI. b SKD

(milliseconds). The overhead of REF is significantly higher
since it processes all the running queries. On the other hand,
CADS re-evaluates only the queries whose result changes,
plus a small number of queries that overlap affected parti-
tions (although their results do not change). The cost of REF
increases linearly with DC due to the fact that it has to scan
the leaf nodes of the DMH-Tree to retrieve the result sets for
all queries. CADS is much less sensitive to DC because of
VCM. Specifically, when a visited node has not been altered
with respect to the previous transmission, the traversal of its
subtree is entirely skipped. Note that CADS has better per-
formance for SKD because the number of queries affected
by updates is smaller than UNI (as most updates are concen-
trated in a small number of partitions).

Figure 21 shows the total VO size (Kbytes) for all que-
ries, transmitted by the SP per timestamp as a function of
DC. The communication overhead of REF again increases
linearly since the number of records in the result is linear
to the cardinality, and all these records are transferred to the
client at each timestamp. In CADS, the growth of the result
is partially absorbed by VCM. Specifically, since QC and AR
are fixed and independent of DC, the size of the result mat-
ters mainly for the first transmission. Comparing UNI and
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Fig. 21 Total VO size vs. DC. a UNI. b SKD
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Fig. 22 Verification time vs. DC. a UNI. b SKD

SKD, the effect of VCM is more pronounced for the latter.
In particular, in Figs. 17 and 18 where VCM is turned off,
CADS incurs a higher cost in SKD than in UNI at the best
partitioning granularity, whereas in Fig. 21 the VO size is
slightly lower in SKD. Most records in SKD reside in the
first few partitions, leading to relatively tall TMH-Trees for
these partitions, and thus more optimization opportunities for
VCM.

Figure 22 depicts the verification time (milliseconds) per
timestamp at each client. REF imposes a heavy burden on the
clients because, due to false transmissions, the client must
verify its query at every timestamp. The performance gap
between CADS and REF is slightly wider in the UNI data
set than in SKD, although the latter has a lower VO size
as shown above. This is because the ratio of false transmis-
sions is lower in SKD and the additional VO reduction comes
mainly from VCM, which does not affect the verification cost.
Specifically, even if a partial VO is in the cache, the client
still needs to combine it with the new VO components and
match it against the signature.

The second set of experiments evaluates the effect of the
query cardinality (QC) for DC = 100K and AR = 100. The
query processing cost (Fig. 23) of both methods increases
due to different reasons. In REF, each query is evaluated at
each timestamp. In CADS, the number of queries affected by
an update (and therefore have to be re-evaluated) is propor-
tional to QC. The VO size in Fig. 24 follows similar trends
for the same reasons.

The next set of experiments assesses the effect of the
arrival rate (AR), after fixing DC to 100 K and QC to 1 K.
Figure 25 shows the total query processing cost per time-
stamp at the SP. REF is insensitive to AR because the SP has
to generate and transmit a new VO for all the queries, inde-
pendently of the number of updates. The fluctuations in its
performance are caused by changes in data distribution. On
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Fig. 23 Query processing time vs. QC. a UNI. b SKD
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Fig. 24 Total VO size vs. QC. a UNI. b SKD
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Fig. 25 Query processing time vs. AR. a UNI. b SKD

the other hand, the cost of CADS increases because the num-
ber of affected queries is positively correlated to AR. This is
more obvious in UNI, where the updates are uniformly dis-
tributed in space. In SKD, updates follow the initial skewed
distribution and thus focus on the first few partitions. As
shown in Fig. 25, even if AR is high, the processing cost
of CADS is relatively stable, since most additional updates
happen in partitions that are already affected.

Figure 26 illustrates the total VO size for all queries per
timestamp. As expected, AR does not influence the VO size
of REF. For CADS however, the VO size increases with AR,
because the more updates occur at each timestamp, the more
queries are affected, whose results must be transmitted to the
clients. Meanwhile, the increased number of updates also
causes more nodes in the DPM-Tree and the TMH-Trees
to change, invalidating their corresponding cache; conse-
quently, VCM becomes less effective.

Figure 27 depicts the verification time at the client. The
diagrams are similar to those in Figs. 25 and 26, except that
the curves converge faster. This is due to the lack of the
caching effect. Specifically, although the processing cost and
the VO size are reduced by VCM, the client still has to ver-
ify the affected queries. In SKD the verification burden is
less affected than in UNI, especially for large values of AR,
because most updates fall in a few dense partitions, and thus
influence fewer queries.
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Summarizing, CADS exhibits considerably lower query
processing time than REF, enabling the SP to serve numer-
ous running queries without compromising the quality of
service. It also incurs a significant reduction of the commu-
nication overhead, a fact that makes it suitable for wireless
networks, and, in general, environments where transmission
is expensive. Finally, CADS minimizes the verification bur-
den, which is important for clients (i.e., PDAs) with limited
resources.

7.3 A-CADS vs. CADS

We compare A-CADS with CADS focusing on a skewed data
set since, as discussed in Sect. 6, A-CADS targets skewed
data sets with changing distributions. Specifically, we modify
SKD as follows: let A be the center, where most of the record
keys are concentrated. In order to evaluate the adaptability of
A-CADS, when we re-insert a record during an update, we
(randomly) set its key to be skewed around another center
B, which is relatively far away from A. In other words, con-
trary to the previous experiments, where the data distribution
remains the same, here we gradually shift the center of skew-
ness as updates occur, so that the distribution changes over
time.

In our first experiment we vary the Zipfian parameter a of
SKD, after setting the parameters of Table 3 to their default
values (DC = 100K, QC = 1K, AR = 100), in order to
investigate how A-CADS behaves under different levels of
skewness (note that the larger the value of a, the higher the
skewness). Figure 28a depicts the total VO size per time-
stamp, excluding the result size and focusing only on the
additional authentication information (i.e., digests, boundary
records, timestamps and signatures). A-CADS exhibits con-
siderably better performance than CADS for highly skewed
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Fig. 28 Effect of skewness a. a Total VO size. b Query processing time

data sets, achieving up to almost two orders of magnitude
smaller VO size when a = 2. This is due to two factors.
(i) Since the queries are uniformly distributed in the data
space, the larger the value of a, the more scarcely populated
areas these queries cover. The unbalanced DPM-Tree of A-
CADS indexes these areas (which involve many empty parti-
tions) with much fewer nodes than the (balanced) DPM-Tree
of CADS. Consequently, CADS visits more nodes than A-
CADS and includes a larger number of digests/timestamps
in the VO. (ii) The DPM-Tree in A-CADS is adaptive to
the changes in the data set distribution and, thus, it retains its
good performance at all times. On the other hand, the selected
granularity m in CADS ceases to be optimal after a number
of updates, and the index becomes less efficient.

Figure 28b plots the query processing cost per timestamp
as a function of a. Since the data are skewed, CADS uses
coarse granularity in order to reduce the number of empty
partitions, which increases the number of false transmis-
sions, and, consequently, CPU cost. A-CADS, on the other
hand, applies fine granularity at dense regions, reducing false
transmissions. Moreover, observe that the total VO size and
processing time of both A-CADS and CADS exhibit a
decreasing trend. This is because the queries are uniform
and, thus, the updates affect fewer queries as the skewness
increases. Therefore, the SP generates a smaller number of
new VOs per timestamp.

In Fig. 29 we set a = 1.4, QC = 1K and AR = 100, and
we vary the data set cardinality DC. As expected, both the
total VO size and the query processing time increase with
DC due to the taller trees. Most of the gains of A-CADS
stem from the fact that it handles empty partitions more effi-
ciently. However, when the data set cardinality is higher, the
probability for an empty partition to be occupied by at least
one record increases. This in turn raises the likelihood to cre-
ate a new node in the DPM-Tree in A-CADS. Therefore, the
VO size in A-CADS tends to converge to that of CADS when
the data space is densely populated. According to Fig. 29b,
A-CADS is faster than CADS for the reasons explained in
the context of Fig. 28b.

Figure 30 illustrates how the arrival rate AR of the updates
influences the performance of the two schemes, when a =
1.4, QC = 1 K and DC = 100 K. As shown in Fig. 30a, the
VO size in A-CADS is 35–52% below than that in CADS.
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Moreover, the difference between the two VO sizes remains
rather constant as AR increases, which demonstrates the
effectiveness of A-CADS in the presence of fast changes
in data set distribution. Once again, Fig. 30b confirms that,
despite the index re-organization, A-CADS outperforms
CADS in terms of processing time.

Figure 31 compares A-CADS and CADS under different
query cardinalities (QC), while setting a = 1.4, AR = 100
and DC = 100K. The benefits of A-CADS against CADS
increase for larger values of QC, since the savings during the
VO generation for each query accumulate gradually.

Finally, Fig. 32 shows the average CPU time of an update
in CADS and A-CADS. Specifically, Fig. 32(a, b) investigate
the effect of parameters a and DC, respectively. In all set-
tings, the costs of the two methods are similar, with A-CADS
being slightly more expensive due to structural changes in
the DPM-tree. However, this additional overhead is negligi-
ble, because split / merge operations usually involve small
TMH-trees. The update cost increases with the Zipfian fac-
tor a because a higher degree of skewness leads to deeper
TMH-trees in the denser areas and, therefore, invalidation of
more digests by each update. For similar reasons, a larger
data cardinality DC also incurs higher overhead since more
records lead to deeper TMH-trees.

To conclude, in comparison with CADS, A-CADS gen-
erates a smaller total VO size in all the settings. The gains
are especially pronounced in data sets that exhibit high level
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Fig. 32 Comparison of ADS update overhead. a Effect of skewness a.
b Effect of DC

of skewness, where A-CADS can produce a VO that is up to
two orders of magnitude smaller than that of CADS. At the
same time, A-CADS outperforms CADS in terms of query
processing time, by successfully balancing the structure re-
configuration overhead and the savings due to the better
indexing of the empty partitions.

8 Conclusion

In this paper we address continuous query processing and
authentication on relational data streams. We assume a ser-
vice provider (SP) that constantly collects record updates
(e.g., stock exchange rates) from a data owner (e.g., stock
market). Numerous clients (e.g., brokers) register long-
running queries directly to the SP. The SP returns to the cli-
ents the query results, as well as authentication information
necessary to establish their correctness. In addition, the cli-
ents are able to prove temporal completeness, i.e., that there
is no result omission in-between subsequent updates. We
first propose REF, a method that achieves these goals at
the expense of false transmissions. To solve this problem,
we introduce CADS, which utilizes a data space partitioning
technique and an efficient caching mechanism to reduce (i)
the processing cost at the SP, (ii) the communication over-
head between the SP and the clients, and (iii) the verification
effort at the client. CADS and REF are main memory-based
in order to achieve real-time query evaluation and fast struc-
ture updating.

CADS utilizes a fixed partitioning of the data space. We
study the effect of the partition granularity, and devise analyt-
ical models for minimizing the size of the generated
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verification object. Additionally, we develop an adaptive ver-
sion of CADS (A-CADS) that utilizes the cost models to
dynamically adjust the partitioning depending on the changes
of the data distribution. We show through extensive experi-
ments that CADS outperforms REF significantly in all asp-
ects. We also confirm the accuracy of the analytical models,
and demonstrate the gains of A-CADS in cases of continu-
ously changing distributions.
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