
The VLDB Journal (2019) 28:221–241
https://doi.org/10.1007/s00778-018-0526-5

REGULAR PAPER

A unified agent-based framework for constrained graph partitioning

Lefteris Ntaflos1 · George Trimponias2 · Dimitris Papadias1

Received: 13 November 2017 / Revised: 18 July 2018 / Accepted: 11 October 2018 / Published online: 27 October 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Social networks offer various services such as recommendations of social events, or delivery of targeted advertising material
to certain users. In this work, we focus on a specific type of services modeled as constrained graph partitioning (CGP). CGP
assigns users of a social network to a set of classes with bounded capacities so that the similarity and the social costs are
minimized. The similarity cost is proportional to the dissimilarity between a user and his class, whereas the social cost is
measured in terms of friends that are assigned to different classes. In this work, we investigate two solutions for CGP. The
first utilizes a game-theoretic framework, where each user constitutes a player that wishes to minimize his own social and
similarity cost. The second employs local search, and aims at minimizing the global cost. We show that the two approaches
can be unified under a common agent-based framework that allows for two types of deviations. In a unilateral deviation, an
agent switches to a new class, whereas in a bilateral deviation a pair of agents exchange their classes. We develop a number
of optimization techniques to improve result quality and facilitate efficiency. Our experimental evaluation on real datasets
demonstrates that the proposed methods always outperform the state of the art in terms of solution quality, while they are up
to an order of magnitude faster.

Keywords Constrained graph partitioning · Game theory · Local search

1 Introduction

Constrained graph partitioning (CGP) partitions nodes of a
graph based on a set of input classes with bounded capacities.
This partitioning should (i) respect the capacity constraints
and (ii) minimize the dissimilarity between each node and its
class, and the weight of the edges crossing classes, i.e., those
between nodes assigned to different classes. Formally, given
an undirected graph G = (V , E,W) and a set of classes
P , with minimum and maximum capacity constraints minp,
maxp, ∀p ∈ P , CGP assigns each node to a single class
according to the following conditions:

B Dimitris Papadias
dimitris@cs.ust.hk

Lefteris Ntaflos
entaflos@ust.hk

George Trimponias
g.trimponias@huawei.com

1 HKUST, Clear Water Bay, Hong Kong

2 Hong Kong Science Park, Shatin, Hong Kong

– The capacity constraints are satisfied:

min
p

≤ |p| ≤ max
p

,∀p ∈ P

where |p| is the total number of nodes assigned to class
p. The minimum (maximum) capacity minp (maxp) of
p can be 0 (∞) if there is no corresponding constraint.

– Objective Function (1) is minimized:

α ·
∑

v∈V d(v, pv) + (1 − α) ·
∑

(v, f)∈E
∧pv �=p f

w(v, f) (1)

where pv is the class assigned to node v, d(v, pv) is
the dissimilarity between v and pv and w(v, f) is the
weight of the edge (v, f) ∈ E . The first sum repre-
sents the similarity cost, which measures the quality of a
solution in terms of the total dissimilarity between nodes
and their assigned classes. The second sum is the social
cost, and equals the total weight of the edges between
nodes assigned to different classes. The parameter α

(0 ≤ α ≤ 1) adjusts the relative importance of the two
factors. At the extreme case where α = 1, each node is
assigned to the most similar class, independently of the

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-018-0526-5&domain=pdf
http://orcid.org/0000-0001-5588-1026

222 L. Ntaflos et al.

graph connectivity. At the other extreme, when α = 0,
CGP reduces to themultiway graph cut [9], awell-known
NP-hard problem that aims at minimizing the weight
of the edges crossing partitions, without considering the
similarity cost.

CGP has various applications, especially on social net-
works. For instance, if the classes represent advertisement
opportunities, CGP could assign to each user an advertise-
ment that matches his profile, and at the same time it is posted
to several of his friends . As motivating example, we use the
social event organization (SEO) problem [15] in geo-social
networks, where classes correspond to social events pro-
moted to users.1 The similarity cost is the distance between
each user and his recommended event, whereas the social
cost is the total weight of edges between friends in differ-
ent events. Minimization of Objective Function (1) implies
that each user v should be assigned to an event that is in
the vicinity of v, and it is also recommended to several of v’s
friends. Capacity constraints capture real-life situations, e.g.,
an eventmay need aminimumnumber of participants, ormay
be imposed by the available budget that an event advertiser
is willing to spend for its campaign.

Figure 1 illustrates six users (circles) and three events
(diamonds) in Austin TX, chosen from our experimental
dataset. The positions of users and events on the map cor-
respond to their actual coordinates. The friendship weights
are denoted beside the edges. The two numbers next to an
event are its minimum and maximum capacity. The col-
ors of users denote the event to which they are assigned:
v2 to p1, v1 and v3 to p2, and v4, v5 and v6 to p3. The
similarity cost is α · (d(v2, p1) + d(v1, p2) + d(v3, p2) +
d(v4, p3) + d(v5, p3) + d(v6, p3)), where d(v, pv) is the
distance between user v and assigned event pv . The social
cost is (1 − α) · (w(v1, v2) + w(v2, v4) + w(v2, v6)), i.e.,
the weight of edges between nodes of different color. This
solution is optimal for the given problem instance, i.e. , it
is the assignment of users to events that yields the lowest
value of Objective Function (1), and respects all the capacity
constraints. Even though the similarity cost in this example
takes into account only the distance, we can also consider
other factors such as the similarity between user profiles and
event descriptions. In general, CGP involves graph partition-
ing subject to connectivity and one ormore additional criteria
that assess the similarity between nodes and input classes.

Armenatzoglou et al. [5] study graph partitioning subject
to Objective Function (1) without considering capacity con-
straints. They propose a game-theoretic framework, based
on best-response dynamics, that always converges to a Nash
equilibrium (i.e., a local minimum). As we demonstrate, the

1 In the rest of the paper, we use the terms node/user, edge/friendship
and class/event interchangeably.

Fig. 1 Running example

Nash equilibrium is inadequate in the presence of capac-
ity constraints, and better solutions can be achieved using
the novel concept of pairwise stability. Li et al. [15] inves-
tigate CGP in the context of SEO.2 They show that the
problem isNP-hard and present greedy heuristics for approx-
imate solutions. However, their algorithms may leave some
events empty and some users unassigned, even though there
are enough users and sufficiently large capacities. On the
other hand, in this case our solutions guarantee the minimum
capacity for all events, and assign all users to some event.

In thiswork,we investigate two solutions, and discuss how
they can be unified under a common agent-based framework.
The first is a game-theoretic approach that models CGP as a
game, where users constitute players that choose their most
preferred event. The objective is then to obtain an assignment,
where no player has an incentive to deviate from his current
event. The second solution is a local search framework that
directly optimizes Objective Function (1). Our contributions
are summarized as follows:

– For the game-theoretic solution, we introduce the notion
of pairwise stability that allows users to swap classes, if
this improves their assignments.We develop a novel type
of combined dynamics that converges to a solution that
is both a Nash equilibrium and pairwise stable.

– We present a local search approach that allows for uni-
lateral and bilateral deviations. We show how the two
solutions can be unified into a common agent-based
framework.

2 Although SEO is presented as a utilitymaximization problem, it could
also be defined as a costminimization problemusingObjective Function
(1).

123

A unified agent-based framework for constrained graph partitioning 223

– We propose various optimizations that improve the qual-
ity of the acquired solution, while reducing the execution
time.Additionally,webuild data structures for faster real-
time performance.

– We perform extensive experiments to demonstrate that
our framework achieves superior solutions than the cur-
rent state of the art, while substantially dropping the
execution time. Additionally, the proposed techniques
generate the assignments of maximum cardinality sub-
ject to the capacity constraints.

The rest of the paper is organized in the following fash-
ion. Section 2 surveys related work. Section 3 introduces the
game-theoretic solution for the capacitated graph partition-
ing problem. Section 4 describes the local searchmethod, and
demonstrates that both approaches share a common agent-
based structure. Section 5 presents the concrete algorithms
and the associated data structures. Section 6 discusses various
extensions and special cases of the agent-based framework.
Section 7 contains the experimental evaluation. Section 8
concludes the paper.

2 Related work

Section 2.1 overviews existing work on CGP and related
problems. Section 2.2 provides background on game theory,
and Sect. 2.3 on local search.

2.1 General

Graph clustering has received considerable attention in sev-
eral application domains. The various approaches can be
classified as global versus local (depending on whether they
cluster the entire, or part of the, graph), flat versus hierar-
chical (in which case, clusters may contain sub-clusters) and
off-line versus on-linemethods that operatewithout complete
knowledge of the graph. Algorithmic solutions have also
large diversity, including minimum cuts, maximum flows,
spectral methods, Markov chains and random walks. An
extensive survey can be found in [20]. Even though graph
clustering techniques can partition the graph according to
various criteria, in addition to node connectivity CGP con-
siders the similarity of the nodes to a set of input classes. In
this sense, CGP ismore a classification, rather than clustering
problem.

Armenatzoglou et al. [5] show that graph partitioning
according to Objective Function (1) constitutes an instance
of uniform metric labeling (UML) [11], a well-known NP-
hard problem. The experimental evaluation of [5] suggests
that theoretical UML algorithms with approximation guar-
antees are prohibitively expensive for graphs with more
than a few hundred nodes. Several computer vision prob-

lems such as stereo matching [6,8], photomontage [2] and
interactive photo segmentation [7,19] can also be mod-
eled similarly to UML. Correspondingly, those problems
are solved by approximations such as graph cuts [8,12],
generalized belief propagation [22] and tree re-weighted
message passing [21]. Balanced metric labeling (BML) [16]
and capacitated metric labeling (CML) [3] extend UML by
imposing a maximum capacity to each class. Their differ-
ence is that in BML the constraint for all the classes is the
same, while CML allows different maximum capacity per
class. CML is solved by an O(log(|V |))− approximation
algorithm in (|V | + 1)3|P| poly(|V |, |P|) time, which is too
slow for practical applications.

Social event organization (SEO) is an application of CGP
on large social graphs. The most effective greedy algorithm
[15], hereafter referred to as SEOG, maintains all (user,
event) pairs in a Fibonacci heap. Initially, the heap is sorted
in increasing order of distance (i.e., similarity cost) between
every user and event. Until the heap is empty, SEOG pops
each pair (v, p); if v is unassigned and the capacity con-
straints of p are satisfied, v is assigned to p, and the pairs
(f , p) of every unassigned friend f of v in the heap are
updated because their social cost decreases. An assignment
can be temporary,when p has not yetmet itsminimumcapac-
ity, in which case p is called phantom. In order to prevent
the creation of numerous phantom events, the deficit variable
counts the number of users needed for the phantom events
to be realized. If the value of deficit exceeds the unassigned
users, those users will not be enough to realize the already
created phantom events; therefore, v will not be assigned to
p.

In SEO, the capacity constraints have to be respected
only for the events with at least one user assigned. Con-
sequently, SEOG: (i) may leave some events empty despite
the existence of sufficient users, (ii) may leave some users
unassigned despite the fact that the maximum capacities are
large enough to accommodate all users. On the contrary, in
CGP we consider that, if the number of users is adequate and
the maximum capacities are sufficient, no event will be left
empty, and no user will be left unassigned. In order to use
SEOG as a benchmark in our experimental evaluation, we
assume that all minimum capacities are zero, so that there
are no phantom events.

2.2 Game theory

Game theory studies models of conflict and cooperation
between rational decision makers. A game in strategic
form (or in normal form) is the ordered triple GNE =<

V , (Pv)v∈V , (cv)v∈V >, where:

– V is the finite set of players.

123

224 L. Ntaflos et al.

Input: Strategic game GNE =< V, (Pv)v∈V , (cv)v∈V >
Output: Nash equilibrium
1: Assign an arbitrary strategy to each player v ∈ V
2: repeat
3: for each player v ∈ V
4: select best-response strategy:
5: p∗

v ← argminpv∈Pv
cv(p1, . . . , pv , . . . , p|V |)

6: until Nash Equilibrium
7: return the strategy of each player v ∈ V

Fig. 2 Best-response dynamics

– Pv is the finite strategy set of player v, for every player
v ∈ V . We denote the strategic space, i.e., the set of all
vectors of strategies, asP = ×v∈VPv = P1×· · ·×P|V |.

– cv : P → R is a function associating each vector of
strategies p ∈ P with the cost cv(p) to player v, for
every player v ∈ V .

The best-response dynamics in Fig. 2 constitutes a dis-
tributed iterative framework that describes the decision-
making process. In every round, each player plays a best-
response strategy to the rest of the players, i.e., player v

selects:

p∗
v = argmin

pv∈Pv

cv(p1, . . . , pv, . . . , p|V |)

A game in strategic form accepts a pure Nash equilib-
rium (NE) if there exists a vector of strategies p =
(p1, . . . , pv, . . . , p|V |) ∈ P , such that for every v it holds
that: cv(p1, . . . , pv, . . . , p|V |) ≤ cv(p1, . . . , p′

v, . . . , p|V |),
for every p′

v ∈ Pv . Thus, a NE describes a stable state, where
no player has an incentive to change his strategy, provided
the other players do not deviate as well. Since best-response
dynamics may yield any of (the potentially many) NE, two
metrics are widely employed to assess the quality of the
acquired equilibrium: (i) Price of stability (PoS) is the ratio
between the total cost of the equilibrium with the lowest
cost and the optimal solution OPT , called the social opti-
mum; (ii) the price of anarchy (PoA) is the ratio between
the total cost of the equilibrium with the highest total cost
and OPT . For nonnegative costs, it holds that 1 ≤ PoS
≤ PoA.

An important class of games consists of potential games,
where the incentive of all players to change their strategy
is expressed through a global potential function. Let Pv =
×u∈V−{v}Pu be the set of strategies of all players except v.
Given pv ∈ Pv , we can alsowrite p = (pv, pv), i.e., a vector
of strategies p consists of the strategy of v along with the
strategies of all players other than v. A game is called exact
potential if there is a functionΦ : P → R such that for every
pv, p′

v ∈ Pv and pv ∈ Pv , the difference in the individual
cost by switching strategy is equal to the difference in Φ:

Φ(p′
v, pv) − Φ(pv, pv) = cv(p

′
v, pv) − cv(pv, pv) (2)

Potential games accept at least one pure NE. Moreover, the
best-response dynamics of Fig. 2 always converges to a pure
NE in a finite number of rounds. Unconstrained graph par-
titioning under Objective Function (1) can be modeled as a
potential game using Potential Function (3) [5]. However, the
framework of [5] is inapplicable to CGP because, due to the
capacity constraints, a user v may not be able to switch from
p to his preferred event p′, if the swap violates the minimum
capacity of p or the maximum capacity of p′.

Φ(p) = α ·
∑

v∈V
d(v, pv) + (1 − α) ·

∑

(v, f)∈E∧
pv �=p f

1

2
· w(v, f)

(3)

Various graph problems such as minimum spanning tree
and community detection have been solved using game-
theoretic techniques. There is also prior work on coalitional,
clustering, or coordination games with and without capac-
ity constraints [4,10,18]. Similar to CGP, these approaches
assume that every player corresponds to a node in a graph
and the graph edges denote the relationships among the play-
ers. Coalitions of players can make coordinated deviations
to improve their local utilities to reach exact or approxi-
mate equilibria with certain guarantees with respect to the
socially optimal solution. Our game-theoretic solution shares
certain similarities with these works, in the sense that sin-
gle agents or pairs of agents make coordinated deviations
to decrease their local costs. On the other hand, our local
search solution focuses on the social welfare, i.e., the global
function (1), so it may produce deviations that increase
the local costs of some players as long as the global cost
decreases.

2.3 Local search in combinatorial optimization

A combinatorial optimization problem can be modeled as
a pair (S, c), where S is the set of feasible solutions and
c : S → R≥0 is a function that assigns a nonnegative cost to
every feasible solution. The goal is to find a globally optimal
solution, i.e., a feasible solution S∗ such that c(S∗) ≤ c(S),
∀S ∈ S. Local search constitutes a practical approach for
solving hard combinatorial optimization problems approx-
imately. A neighborhood function N : S → 2S for the
problem (S, c) is a mapping from a feasible solution to a
subset of feasible solutions. N (S) is called the neighbor-
hood of S. We assume that S ∈ N (S). A feasible solution S
is said to be locally optimal with respect toN if c(S) ≤ c(S),
∀S ∈ N (S). The local search problem is that of finding a
locally optimal solution.

123

A unified agent-based framework for constrained graph partitioning 225

Input: Combinatorial optimization problem (S, c) with
neighborhood function N

Output: Locally optimal solution
1: Compute an initial feasible solution S;
2: while S is not locally optimal do
3: Choose S ∈ N (S) such that c(S) < c(S);
4: S ← S

5: return S;

Fig. 3 Iterative improvement

The standard local search strategy, also called iterative
improvement, is described inFig. 3. It first computes an initial
feasible solution S. It then repeatedly searches the neighbor-
hood to find a better feasible solution until a local optimum
is reached. There are several versions of local search [1].
Hill climbing selects (at Line 3) the solution that achieves
the largest drop of the cost function. To avoid getting trapped
at a local minimum of poor quality, hill climbing can be
restarted with different initial solutions. Other variants of
local search also allow transitions to solutions with equal
(e.g., tabu search), or higher cost (random walk, simulated
annealing) in order to escape local minima.

Assuming all cost coefficients are rational numbers, the
iterative improvement framework of Fig. 3 terminates in
a pseudo-polynomial number of iterations. Indeed, if we
multiply all coefficients by their smallest common denom-
inator, then the algorithm will terminate after at most Cmax

iterations, where Cmax is the largest coefficient (after mul-
tiplication) because each step is guaranteed to decrease the
total cost by at least one unit. Even though it is an open
question whether there are polynomial-time algorithms for
computing a local optimum in the general case [17], approx-
imate local optima can be computed in polynomial time.
In this work, we focus on exact local search and do not
investigate more complex approximate schemes, since exact
techniques can usually converge very fast even for large input
sizes [17].

3 Game-theoretic framework for CGP

Wemodel CGP as the game G =< V , (Pv)v∈V , (cv)v∈V >,
where the set of players V corresponds to the users and the
strategy set Pv of user v coincides with the set of events P .
Each event p ∈ P may have capacity constraints minp ≤
|p| ≤ maxp, i.e., the number |p| of users assigned to event p
must be between minp and maxp. Equation (4) describes the
cost of assignment pv for user v given the strategies pv of the
other players. It consists of theweighted sumof the similarity
cost, i.e., the distance between v and event pv , and the social
cost, i.e., half of the total weight of the edges connecting
v to his friends that are assigned to different events. Since
each edge (v, f) is considered in the cost of both v and f ,
by summing up the costs of all users, we obtain Objective
Function (1).

cv(pv, pv) = α · d(v, pv) + (1 − α) ·
∑

(v, f)∈E∧
pv �=p f

1

2
· w(v, f)

(4)

An assignment S is a mapping from the set of users V to
the set of events P , which is (1) total, i.e., every user must be
assigned to exactly one event, assuming that the total event
capacity can accommodate all users, and (2) feasible, i.e., it
satisfies the upper and lower capacity constraints. The set of
all assignments is denoted as S, in accordance with Sect. 2.3.
An assignment S ∈ S naturally corresponds to a vector of
strategies p ∈ P , and vice versa. For this reason, we use the
two terms and symbols interchangeably in the remainder of
the paper.3 We consider for now that

∑
p∈P minp ≤ |V | ≤∑

p∈P maxp, so that all classes can reach their minimum
capacity, and all users can be assigned to some class. We
discuss other cases in Sect. 6.

From a game-theoretic perspective, the goal of each player
is to select the event thatminimizes his own cost, as expressed
by Eq. (4). Player v has an incentive to perform a unilateral
deviation from his assigned event pv to another one p′

v , if p
′
v

yields a smaller cost for v. In CGP, a unilateral deviation is
legal, if it does not violate the minimum capacity of pv , or
the maximum capacity of p′

v . Now consider two users v and
u, assigned to pv and pu , respectively, and that pv is at its
minimum capacity (or pu at its maximum capacity), so that
pv cannot drop (or pu cannot gain) a user. Also, assume that
both v and u would benefit by swapping events. Although
individual unilateral deviations would be illegal, it is possi-
ble for v and u to exchange events by a bilateral deviation.
In order to cover such cases, we introduce the concept of
pairwise stability (PS). A pair (v, u) is unstable if swapping
pv and pu decreases the individual cost of v and/or u, and
increases the cost of neither.4 An assignment is stable, iff
there is no pair of unstable users.

Figure 4 presents the general framework combining NE
and PS. Line 1 computes an initial assignment. During
this step, all users are assigned to some event, and all
events reach their minimum, but do not exceed their max-
imum capacity. The outer loop (Lines 2–9) corresponds to a
super-round. Each super-roundperforms rounds ofunilateral
deviations (Lines 3–5), until reaching a Nash equilibrium.
These are similar to the rounds of the conventional best-
response dynamics of Fig. 2, except that only legal deviations
(i.e., not violating capacity constraints) are allowed. Then,
rounds of bilateral deviations allow unstable pairs of users

3 Usually, the former emphasizes the entire solution, whereas the latter
emphasizes the individual agent strategies.
4 From a game-theoretic perspective, our definition ensures individual
rationality since a player participates in a bilateral deviation, if and only
if he is not worse off by participating.

123

226 L. Ntaflos et al.

Input: Strategic game G =< V, (Pv)v∈V , (cv)v∈V > with
capacity constraints

Output: Nash equilibrium and pairwise stable assignment
1: Compute a feasible initial assignment
2: repeat
3: repeat
4: perform legal unilateral deviations
5: until Nash equilibrium
6: repeat
7: perform bilateral deviations
8: until pairwise stability
9: until Nash equilibrium and pairwise stability
10: return the strategy of each player v ∈ V

Fig. 4 Combined dynamics for CGP

to swap events, until reaching a stable assignment (Lines 6–
8). Observe that after a bilateral deviation, a user v may be
assigned to an event p, which was not allowed by a unilateral
deviation because p was full. This may create new opportu-
nities for v to further drop his cost, which will be considered
at the next super-round.

Next, we show that the combined dynamics of Fig. 4 con-
stitutes a potential game using Potential Function (3) and
always converges to a NEPS solution (i.e., both a Nash
equilibrium and pairwise stable). We start with the unilat-
eral deviations in Lemma 1. The proofs of all Lemmas and
Propositions can be found in the “Appendix.”

Lemma 1 The difference in Potential Function (3)
ΔΦUN I (v, pv, p′

v, pv) due to a unilateral deviation in
assignment p of player v from event pv to p′

v , while the
rest of the players do not deviate, is:

ΔΦUN I (v, pv, p
′
v, pv) = Φ(p′

v, pv) − Φ(pv, pv)

= cv(p
′
v, pv) − cv(pv, pv)

=
(
α · d(v, p′

v) + (1 − α) ·
∑

(v, f)∈E∧p f =pv

1

2
· w(v, f)

)

−
(
α · d(v, pv) + (1 − α) ·

∑

(v, f)∈E
∧p f =p′

v

1

2
· w(v, f)

)

(5)

The right side of Eq. (5) describes the local cost change of v

due to the unilateral deviation. This implies thatNEdecreases
the potential function, since it only favors deviations that drop
the player’s local cost.

For bilateral deviations, we first introduce some additional
notation. Let Pvu = ×z∈V−{v,u}Pz be the set of strategies of
all players except v and u. Consider any feasible assignment
p = (pv, pu, pvu) where users v, u ∈ V are assigned to
events pv, pu, respectively, with pv �= pu ; cv(pv, pu ∪ pvu)

is the cost of user v for event pv assuming that u is assigned
to pu and the rest of the users at their current events. Lemma

2 describes the cost difference in the potential function due
to bilateral deviations.

Lemma 2 Assume v, u swap events in assignment p, while
the rest of the players do not deviate. For the new assignment
(p′

v, p
′
u, pvu), where p′

v = pu and p′
u = pv , the difference

ΔΦBI (v, u, p) in Potential Function (3) is:

ΔΦBI (v, u, p) = Φ(p′
v, p

′
u, pvu) − Φ(pv, pu, pvu)

=
(
cv(p

′
v, pu ∪ pvu) − cv(pv, pu ∪ pvu) + 1

2
w(v, u))

+
(
cu(p

′
u, pv ∪ pvu) − cu(pu, pv ∪ pvu) + 1

2
w(v, u))

(6)

We note that the expression in the right hand describes the
sum of the local cost changes of v and u due to their bilateral
deviation. This implies that pairwise stability decreases the
potential function since by definition it favors bilateral devi-
ations that decrease the sum of the players’ local costs. Our
next result uses Lemmas 1 and 2 to establish convergence of
the combined dynamics.

Proposition 1 In a finite potential game, from an arbitrary
feasible assignment, the combined dynamics of Fig. 4 always
converges to a N EPS solution in a finite number of rounds.

A central question concerns the quality of the assignment
that the combined dynamics converges to.

Proposition 2 The PoS in the capacitated game using NEPS
is upper bounded by 2.

Regarding the PoA, we derive a general upper bound that
holds for any setting. For each pair of a player v ∈ V and an
event p ∈ P , we define:

ξ(v, p) = α · c(v, p) + (1 − α) ·
maxp∑

i=1

1

2
w(i)(v),

where maxp = ∑
p′∈P∧p′ �=p maxp′ is the sum of capaci-

ties of all events other than p, and w(i)(v) is the i th highest
weight friendship of user v among the friendship weights
w(v, f), f �= v. The quantity ξ(v, p) can be interpreted as
the worst case scenario for user v when he is assigned to
event p. Indeed, this happens when all events other than p
accommodate v’s closest friends, i.e., his neighbors with the
largest edge weights.

For every user v, we define a permutation pv
1 , . . . , p

v|P|
on the set of events, so that ξ(pv

1 , v) ≥ · · · ≥ ξ(pv|P|, v). In
other words, pv

k is the event with the kth highest cost ξ(v, p)
for user v among all events p ∈ P . Obviously, the worst
case scenario (in terms of events) for v occurs when he is
assigned to event pv

1 , the second worst case scenario when
he is assigned to pv

2 , and so forth.

123

A unified agent-based framework for constrained graph partitioning 227

Based on the these permutations, for each event p we
define V p

(k), 1 ≤ k ≤ |P|, as the subset of users for whom

event p has the kth highest ξ value, i.e., V p
(k) = {v ∈ V :

pv
k = p}. Intuitively, the set V p

(k) contains those users for
which event p is the kth worse among the |P| scenarios. Let
V̂ p

(k) ⊆ V p
(k) be the subset of V

p
(k) consisting of themaxp users

with the highest ξ(v, p) for event p among all users in V p
(k);

if |V p
(k)| < maxp, we simply define V̂ p

(k) = V p
(k). Thus, V̂

p
(k)

simply contains the maxp users in V p
(k) with the highest ξ

values. Finally, we define Ξ
p
(k) = ∑

v∈V̂ p
(k)

ξ(v, p), i.e., the

sum of the ξ values over all users in V̂ p
(k).

Proposition 3 The PoA in the capacitated game using NE
and PS is upper bounded by

∑|P|
k=1 max

p∈P
Ξ

p
(k)

α · ∑
v∈V min

p∈P
c(v, p)

.

The above bound is pessimistic since it suggests that the
PoA may depend on the worst per user costs as opposed to
the uncapacitated gamewhich only depends on theminimum
per user costs [5].But as the following example demonstrates,
the PoA can indeed be arbitrarily close to the worst possible
one.

Example 1 Consider N users v1, . . . , vN , and N events
p1, . . . , pN with maximum capacity constraints equal to 1.
We further assume no friendships, i.e., all weights are equal
to 0, and that α = 1. User vi , 1 ≤ i ≤ N −1, has assignment
cost 0 for event pi and ε for all other events. User vN has
cost M for event pN and ε for all other events, where M is
an arbitrarily large number.

An optimal assignment Sopt assigns the first N−2 users to
their preferred event with 0 assignment cost, and user vN−1

(resp. pN) to event pN (resp. pN−1) with ε cost. Thus, Sopt

has total cost of 2 · ε. The worst possible assignment Sworst

is when vN is assigned to pN and the rest of the users to an
event different from their preferred one, yielding total cost
(N − 1) · ε + M .

Consider now the assignment S# where each vi is assigned
to event pi with total cost M . It is easy to see that S# is NE
and PS, since all users but vN are already assigned to their
preferred event. Unfortunately, as ε → 0, the cost C(S#) →
C(Sworst), resulting in a PoA arbitrarily close to the worst
possible one. ��

4 Local search framework for CGP

In order to apply the iterative improvement approach of
Fig. 3, we set the cost function c(S) to Objective Function

(1), and define the neighborhood of a solution S as the subset
N (S) of feasible solutions that can be obtained from S by
performing a single unilateral or bilateral deviation. Simi-
lar to the game-theoretic framework, a unilateral deviation is
legal if it does not violate the minimum capacity of the old
event, or the maximum capacity of the new one. However,
we now allow bilateral deviations that may increase the cost
of an individual user, provided that the total cost of the two
users participating in the swap decreases. Given that: (i) the
set of feasible solutions S is finite and, (ii) each iteration
drops the cost function c(S), then a solution is generated at
most once. Thus, local search terminates to a locally optimal
solution after at most |S| iterations.

A natural question concerns the quality of the locally opti-
mal solution with respect to the global optimum. As the next
example demonstrates, the local optimum that the iterative
improvement method reaches may be far from the globally
optimal solution.

Example 2 Consider a setting of N users v1, . . . , vN , and
N events p1, . . . , pN with upper capacity bounds equal to 1.
Obviously, every event is assigned a single user. Furthermore,
assume that no pair of users are friends, so that the social cost
of any assignment is always 0. Now, let 0 < d1 < · · · < dN
be an increasing sequence of N positive numbers. Moreover,
assume that the distances of the N users to the N events are
as follows:

User Event
p1 p2 ... pN−1 pN

v1 d1 d2 ... dN−1 dN
v2 dN d1 ... dN−2 dN−1
...
vN−1 d3 d4 ... d1 d2
vN d2 d3 ... dN d1

Thus, the distance of user v1 to event p j is equal to d j .
The distance of every other user vi to each event can then
be computed by circularly shifting the corresponding dis-
tance of user v1, i − 1 times to the right. Clearly, the optimal
assignment Sopt assigns user vi to event pi for a total cost of
α · N · d1. Let S# be an alternative assignment that assigns vi
to pi+� n

2 �−1 (note that we consider modular arithmetic). The
key is to note that user vi prefers to swap with v j , if and only
if, v j does not want to swap with user vi . Since the distances
of user v j are generated by circularly shifting the distances
of vi , the cost change of vi is equal to the opposite of the cost
change of v j . Hence, the sum of the cost changes of vi and
v j after swapping events is 0, which means that S# is a local
optimum. The total cost of S# is α · N · d� n

2 �, yielding a ratio
between the local optimum and the global optimum equal to
d� n2 �
d1

. ��

123

228 L. Ntaflos et al.

Table 1 Game theory versus local search under the agent-based framework

Game theory Local search

Global function Potential function (3) Objective function (1)

Unilateral deviation Individual cost Eq. (4) Individual cost Eq. (8)

Bilateral deviation At least one decreases local cost, no player increases cost Pair of players decreases sum of local costs

Lemma 3 For a unilateral deviation in assignment pwhere a
user v switches from event pv to p′

v , the change in Objective
Function (1) is:

ΔCUN I (v, pv, p′
v, pv) =

⎛

⎜⎜⎜⎝α · d(v, p′
v) + (1 − α) ·

∑

(v, f)∈E∧p f =pv

w(v, f)

⎞

⎟⎟⎟⎠

−
(
α · d(v, pv) + (1 − α) ·

∑

(v, f)∈E
∧p f =p′

v

w(v, f)
)

(7)

The cost changes in Eq. (7) only depend on the similarity
and social cost of the user(s) involved in the deviation because
the costs of other users cancel out. Comparing with its game-
theoretic counterpart (5), we can see that the two equations
are structurally very similar, in the sense that the cost changes
are identical except for a factor 1

2 in the edge costs. This
motivates us to introduce the following cost function for v:

c̃v(pv, pv) = α · d(v, pv) + (1 − α) ·
∑

(v, f)∈E∧
pv �=p f

w(v, f) (8)

Equation 8 enables us to describe local search in a frame-
work analogous to the game theoretic, by defining the cost
of an individual agent (similar to that of a player). Specifi-
cally, we can then rewrite the cost change due to the unilateral
deviation as:

ΔCUN I (v, pv, p
′
v, pv) = c̃v(p

′
v, pv) − c̃v(pv, pv),

which is structurally identical to (5). A similar observation
is true for bilateral deviations:

Lemma 4 For a bilateral deviation in assignment p where
two users v, u ∈ V swap events (v/u from pv/pu to pu/pv),
the change in Objective Function (1) is:

ΔCBI (v, u, p)

=
(
c̃v(p

′
v, pu ∪ pvu) − c̃v(pv, pu ∪ pvu) + w(v, u))

+
(
c̃u(p

′
u, pv ∪ pvu) − c̃u(pu, pv ∪ pvu) + w(v, u))

(9)

Again, we notice the structural similarities between Eqs.
(9) and (6). The practical implication of the above is that we

can define local search using the game-theoretic paradigm,
with two differences. First, we replace the factor 1

2 in the
player’s local cost function (4) by 1, as in Eq. (8). Second,
since local search focuses on the global objective,we perform
bilateral deviations that drop the total cost of the two partici-
pating users, even if one user is worse off after the deviation
(recall that this is not allowed in the game-theoretic solu-
tion). We emphasize that in local search each deviation is
guaranteed to decrease Objective Function (1), whereas in
the game-theoretic framework each deviation decreases the
Potential Function (3). Table 1 summarizes the differences
between game-theoretic and local search solutions.

Viewing the two solutions under a unified agent-based
framework enables the application of common algorithms
and indexing schemes. For instance, the pseudo-code of
Fig. 4 can be modified to describe local search as follows:
(i) Lines 3–5 perform iterative improvement with unilateral
deviations using Eq. (8) for the individual cost; (ii) Lines
6–8 perform iterative improvement with bilateral deviations
according to their functionality in local search, and (iii) in
Line 9 the process terminates until no further improvement is
possible. The next section presents the concrete algorithmic
components and data structures of the unified framework.

5 Algorithms

We describe the concrete algorithms and data structures,
which are applicable with minor modifications to both
the game-theoretic and local search frameworks, hereafter
referred to asGAME and LS. Section 5.1 proposes amethod
for generating the initial assignment based on sampling. Sec-
tion 5.2 presents the functions for performing unilateral and
bilateral deviations. We focus our description on GAME ,
and discuss the changes for LS whenever applicable.

5.1 Initial assignment

A random initial assignment may lead to poor solutions. As
shown in our experiments, evenmore sophisticated heuristics
based on proximity (e.g., assigning each user to the closest
event) yield low-quality solutions. Instead, we propose an
I N I T algorithm that involves two phases: Phase 1 fills all
events to their minimum capacity, whereas Phase 2 assigns

123

A unified agent-based framework for constrained graph partitioning 229

Input: Geo-social Graph G = (V, E, W)
Set of events P with constraints minp, maxp, ∀p ∈ P
Vun = V, Pop = P, C = ∅, n

d(v, p), ∀v ∈ V, ∀p ∈ P
Output: Initial assignment
1: for each user v
2: for each event p

3: c(v, p) ← α · d(v, p)
4: for each friend f of v
5: c(v, p) ← c(v, p) + 1

2 (1 − α) · w(v, f)
6: Hv = min-heap containing c(v, p) for each event p
7: while |Pop| > 0
8: cm ← ∞
9: if |Vun| ≥ n
10: C ← {n random distinct users from Vun}
11: else
12: C ← Vun

13: for each user v ∈ C
14: p∗ ← top(Hv) (p∗ has min cost for v in Pop)
15: if c(v, p∗) < cm
16: cm ← c(v, p∗), v′ ← v, p′ ← p∗
17: pv′ ← p′, Vun ← Vun − {v′}
18: for each friend f ∈ Vun of v′
19: c(f, p′) ← c(f, p′) − 1

2 (1 − α) · w(v′, f)
20: decrease key(Hf , p′, c(f, p′))
21: if |p′| = minp′
22: Pop ← Pop − {p′}
23: for each user v ∈ Vun

24: remove p′ from Hv

25: re-build heaps; Pop = P

26: Repeat 7-25, except Line 7: Pop → Vun, Line 21: minp′ →
maxp′

Fig. 5 I N I T function

all the users unassigned during Phase 1. Both phases adopt
an iterative approach based on sampling. At each iteration,
a sample of users is randomly selected and the cost of their
possible assignments is computed. The assignment with the
lowest cost (among the sampled users) is then performed.

Figure5 illustrates the pseudo-code of I N I T forGAME .
Lines 1–5 perform an initialization step that computes the
cost c(v, p) of assigning each user v to every event p accord-
ing to Eq. (4). These costs are stored in a |V ||P| array, which
we refer to as the cost table. Since in the beginning all users
are unassigned, we set a maximum social cost per user v and
event p, assuming that all the friends of v are at events other
than p. For a user v, the costs for all events are stored in a
min-heap Hv of size |P|; the event p∗ with the lowest cost
for v is the one at the top of Hv . Since there is a heap per
user, the total number of user heaps is |V |.

Lines 7–24 implement Phase 1. Let Pop be the set of open
events that have not reached their minimum capacity, and
Vun be the set of unassigned users (initially, Pop = P and
Vun = V). While there are still open events, I N I T selects a
random set C of distinct users from Vun . For each user v in C,
it obtains the event p∗ with the lowest cost among events in
Pop, which is at the top of Hv (Lines 13–14). Let v′ be the user
with the minimum lowest cost and p′ be the corresponding

event; v′ is assigned to p′ and removed from Vun (Line 17).
Lines 18–20 decrease the costs of the friends of v′ for p′,
to reflect the new assignment, and update the corresponding
heaps. Observe that since (i) we initially set the maximum
social score for each user/event pair, and (ii) during I N I T
each user is assigned exactly once, the cost of a user cannot
increase due to the assignment of a friend. Finally, if the user
cardinality |p′| of p′ reaches its minimum capacity minp′ , p′
is excluded from Pop, and the event closes (i.e., it will not
receive more assignments at Phase 1). Lines 23–24 remove
closed events from the heaps of all unassigned users. (The
rest of the users will not be re-assigned during I N I T , and
their heaps will not be used again.) At the end of Phase 1,
since all events close, all heaps become empty.

The second phase (Lines 25–26) repeats the same process
with the following differences: (i) The heaps are rebuilt using
the user/event costs computed during Phase 1 and stored in
the cost table; (ii) Pop now contains events that have reached
their minimum, but are below their maximum capacity (ini-
tially, Pop = P); (iii) the loop is repeated while there are
unassigned users (|Vun| > 0 instead of |Pop| > 0 in Line
7); and (iv) an event p from Pop closes when it becomes full
(|p′| = maxp′) in Line 21. For LS, the only modifications of
I N I T are at Lines 5 and 19, where the user costs are com-
puted according to Eq. (8) (i.e., the factor 1

2 is removed from
the edge costs).

Figure 6 illustrates I N I T for LS, using the running exam-
ple of Fig. 1 and sample size n = 2. Phase 1 fills the three
events p1, p2 and p3, to their minimum capacities 1, 1 and
3, respectively. Initially, the set Pop of open events includes
all events, and the set Vun of unassigned users contains all
users. Assume that at iteration 1 (first row of the table), v1
and v4 are randomly selected in the sample set C. The top
of the heaps of those users (i.e., events with minimum cost)
are shown under column C. In our example, the best event
for v1 is p1 with cost 0.139, while for v4 the best event is
p3 with cost 0.260. Therefore, I N I T (i) assigns v1 to p1,
and excludes v1 from Vun . Since p1 reaches its minimum
capacity (minp1 = 1), it is removed from Pop. Finally, the
assignment of v1 to p1 reduces the cost of neighbors v2 and
v3 for p1. Vun , Pop and nodes with cost updates are shown
in the rightmost three columns.

Similarly, at iteration 2, the sample set is C = {v5, v2}; v2
has the minimum cost and is assigned to p2, which reaches
its minimum capacity and is removed from Pop. The only
event remaining open is p3 with a minimum capacity of 3.
Accordingly, iterations 3–5 fill p3 with v3, v5 and v4, con-
cluding Phase 1. Phase 2 assigns the only unassigned user v6
to the event (p3) with the minimum cost (0.285), and con-
cludes with a single iteration. The diagram on the right-hand
side of Fig. 6 illustrates the resulting assignment after I N I T .
This assignment respects all constraints, since events reach
their minimum capacity at Phase 1, and only open events

123

230 L. Ntaflos et al.

C Assignments Vun Pop Changes
P
h
a
se

/
It
er

a
ti
o
n

1/1 v1[p1(0.139)], v4[p3(0.260)] v1 → p1 v2, v3, v4, v5, v6 p2, p3
c(v2, p1)
c(v3, p1)

1/2 v5[p3(0.195)], v2[p2(0.166)] v2 → p2 v3, v4, v5, v6 p3

c(v1, p2)
c(v4, p2)
c(v6, p2)

1/3 v3[p3(0.109)], v4[p3(0.260)] v3 → p3 v4, v5, v6 p3 c(v1, p3)
1/4 v5[p3(0.195)], v4[p3(0.260)] v5 → p3 v4, v6 p3 c(v6, p3)

1/5 v4[p3(0.260)], v6[p3(0.285)] v4 → p3 v6 ∅ c(v2, p3)
c(v6, p3)

2/1 v6[p3(0.285)] v6 → p3 ∅ p1, p2, p3

c(v2, p3)
c(v4, p3)
c(v5, p1)

Fig. 6 Initial assignment for running example (LS framework)

(i.e., below their maximum capacity) are assigned users dur-
ingPhase2. Proposition4describes the complexity of I N I T .

Proposition 4 For n << |V |, I N I T has a time complex-
ity of O(max(|V |n, |E ||P|, |V ||P| log(|P|))), and a space
requirement of Θ(|V ||P|), where n, |V |, |E | , |P| are the
number of samples, nodes, edges and classes, respectively.

5.2 Unilateral and bilateral deviations

After the initial assignment generated by I N I T , our frame-
work performs super-rounds. Each super-round contains
rounds of unilateral and bilateral deviations. We first discuss
the concrete algorithm for unilateral deviations for GAME ,
corresponding to Lines 3–5 of Fig. 4. Figure7 illustrates the
pseudo-code of the UN I function, which takes as input an
initial assignment generated by I N I T . It then performs a
series of rounds until reaching a point where no player can
deviate from his current assignment. A unilateral deviation
for user v is allowed only if his current event p = pv exceeds
its minimum capacity minp (Line 4). In this case, the event
p′ �= pwith theminimumcost c(v, p′) for v is retrieved from
his heap Hv . If p′ is full, UN I retrieves the next cheaper
event, until finding one that can receive more users, or until
encountering p (in which case all non-full events have cost
higher than the current assignment, and there is no unilateral
deviation for v at this round). If a deviation from p to p′
occurs, Lines 9–11 update the costs of each friend f of v;
specifically, the cost c(f , p) increases by 1

2 ·(1−α)·w(v, f)
due to the departure of v, while c(f , p′) decreases by the
same amount. For LS, the cost of the friends of v change in
the same fashion, but without the 1

2 factor.
Given that in practice |P| << |V |, to enhance efficiency,

we perform bilateral deviations for pairs of events, instead
of pairs of users. Consequently, in addition to the user heaps,
utilized by I N I T and UN I , this phase exploits event pair
heaps. Specifically, for each pair of events pi , p j , there is a
min-heap EPpi ,p j that contains, for every user v currently
assigned to pi , the cost change incurred by moving to p j :
δcv(pi , p j) = c(v, p j)− c(v, pi). The top contains the user

Input: Geo-social Graph G = (V, E, W)
Set P of events with constraints minp, maxp, ∀p ∈ P
Initial assignment of users V to events P

d(v, p), ∀v ∈ V, ∀p ∈ P
Output: UNI assignment
1: repeat
2: for each user v ∈ V

3: p ← pv
4: if |p| > minp

5: repeat
6: p′ ← get next(Hv)
7: if p′ 	= p and |p′| < maxp′
8: pv ← p′; |p′| ← |p′| + 1; |p| ← |p| − 1
9: for each friend f of v
10: c(f, p) ← c(f, p) + 1

2 · (1 − α) · w(v, f)
11: c(f, p′) ← c(f, p′) − 1

2 · (1 − α) · w(v, f)
12: Goto Line 2
13: until p′ = pv
14: until no player can unilaterally improve his local cost

Fig. 7 UN I function

with the minimum δcv(pi , p j), which may be positive or
negative (if the swap benefits v). Each user v exists in a single
heap EPpv,p, which contains |P| entries with the assignment
costs of v to all events. Therefore, the total space requirement
for all the event heaps is |V ||P|, i.e., the same as the user
heaps and the cost table.

Figure 8 illustrates the BI function for GAME that cor-
responds to Lines 6–8 of the general framework of Fig. 4.
For each pair of events pi , p j , we obtain the users v and u at
the top of the heaps EP pi , p j and EP p j , pi , respectively.
Let Δv ← δcv(pi , p j), and Δu ← δcu(p j , pi). In GAME ,
swapping the events of v and u should benefit at least one
user and should not increase the cost of either u or v (Line 9).
However, if v and u are friends, Δv (resp. Δu) must increase
by 1

2 ·(1−α)·w(v, u) to take into consideration the departure
of u (v) from p j (pi). If the swapping occurs, Lines 11–16
update the costs of the friends of v and u for both events.
Finally, if v and u are friends, we also have to update their
costs for both events (Lines 17–21), e.g., c(v, pi) decreases
because of the inclusion of u in pi . The function for LS is
similar, except that (i) the condition at Line 9 isΔv +Δu < 0

123

A unified agent-based framework for constrained graph partitioning 231

Input: Geo-social Graph G = (V, E, W)
Set P of events with constraints minp, maxp, ∀p ∈ P
Assignment of users V to events P

d(v, p), ∀v ∈ V, ∀p ∈ P
Output: Pairwise stable assignment

1: repeat
2: for each event pi
3: for each event pj 	= pi
4: v ← top(EPpi,pj), u ← top(EPpj ,pi)
5: Δv ← δcv(pi, pj), Δu ← δcu(pj , pi)
6: if v and u are friends
7: Δv ← Δv + 1

2 · (1 − α) · w(v, u)
8: Δu ← Δu + 1

2 · (1 − α) · w(v, u)
9: if Δv ≤ 0 and Δu ≤ 0 and (Δv < 0 or Δu < 0)
10: pv ← pj , pu ← pi
11: for each friend fv of v
12: c(fv , pj) ← c(fv , pj) − 1

2 · (1 − α) · w(v, fv)
13: c(fv , pi) ← c(fv , pi) + 1

2 · (1 − α) · w(v, fv)
14: for each friend fu of u
15: c(fu, pi) ← c(fu, pi) − 1

2 · (1 − α) · w(u, fu)
16: c(fu, pj) ← c(fu, pj) + 1

2 · (1 − α) · w(u, fu)
17: if v and u are friends
18: c(v, pi) ← c(v, pi) − 1

2 · (1 − α) · w(v, u)
19: c(u, pi) ← c(u, pi) + 1

2 · (1 − α) · w(v, u)
20: c(v, pj) ← c(v, pj) + 1

2 · (1 − α) · w(v, u)
21: c(u, pj) ← c(u, pj) − 1

2 · (1 − α) · w(v, u)
22: until Pairwise stability

Fig. 8 BI function

since the swap should decrease the total cost of both users,
and (ii) the 1

2 factor is removed from all costs.
Figure 9 continues the example of Fig. 6, assuming the

local search framework. The first two rows of the table illus-
trate the first two rounds of UN I in the first super-round.
The Heaps(top) column contains the top event in each user
heap. Users in bold are currently assigned to their best event;
thus, theywill not performunilateral deviations. For instance,
v4, v5, and v6 are in p3 with cost 0.06, 0.02, and 0.085,
respectively. Moreover, at round 1 ofUN I , v1 and v2 cannot
deviate from their current events p1 and p2 because there are
no other users in these events and they would underflow. On
the other hand, for v3, currently assigned at p3, the best event
would be p1; although it is further than p3, its overall cost
is lower because v1 (v3’s friend) is there. Thus, v3 moves to
p1; the switch does not violate minp3 = 3 or maxp1 = 3.
Accordingly, the cost of v1 increases for p3 and decreases
for p1. At the beginning of round 2, all users, except v2,
are already assigned to the event with the lowest cost (i.e.,
they are bold). User v2 still cannot deviate from p2; there-
fore,UN I stops and the super-round proceeds with bilateral
deviations.

The third and fourth rows of Fig. 9 illustrate the first two
rounds of BI . The Heaps(top) column now contains the top
user in each event pair heap. Each line contains the pairs
of users that are candidates for swapping events, e.g., in the
first line of row 3, users v3 and v2 are candidates to exchange

events, as they are in the top of the event pair heaps EPp1,p2
and EPp2,p1 , respectively. If v3 and v2 swap events, the cost
change is Δv3 +Δv2 = 0.06− 0.064 = −0.004 < 0. Since
the total cost decreases, the swap occurs and the costs of
the friends of v3 and v2 for p1 and p2 change accordingly.
Specifically, the updated costs are in the last column of row
3. The other candidate pairs (v3, v5), (v2, v4) for swap would
incur positive cost change (0.051+0.243 and−0.07+0.158,
respectively), and the round terminates without other swaps.

At the second round of BI , the top users of EPp1,p2 and
EPp2,p1 are v1 and v3. Although they both have negative cost
change by swapping events (Δv1 = −0.063,Δv2 = −0.06),
because they are friends, their cost changes need to be re-
calibrated to Δv1 → Δv1 + (1 − 0.5) · 0.4 = 0.137 and
Δv2 → Δv2 + (1 − 0.5) · 0.4 = 0.136 (Lines 10–12 of
Fig. 8). Consequently, there is no swap and super-round 1
terminates with the graph shown on the right of Fig. 9. The
second super-round performs a single unilateral deviation of
v1 from p1 to p2, generating the final solution of Fig. 1.

For simplicity, when describing UN I and BI in Figs. 7
and 8 we omit the heap operations. Specifically, when the
cost c(v, p) of assigning user v to event p is updated, the
change must be reflected to the user heap Hv and the event
pair heap EPpv,p. Recall that each Hv has size |P|, while the
maximum size of EPpv,p is |V | if all users are assigned to
pv . The following result discusses the time complexity of a
single round:

Proposition 5 The time complexity of a super-round of uni-
lateral and bilateral deviations is O(|P|2|V |(log(|P|) +
log(|V |))).

Since each deviation decreases a global function, LS
and GAME are guaranteed to terminate after a finite num-
ber of super-rounds. Although this number depends on the
assignment and edge costs, and is pseudo-polynomial, in our
experiments with diverse datasets both algorithms always
perform at most twelve super-rounds.

6 Special cases and additional constraints

So far, we have assumed that all users can be assigned to
some event, and all events can reach their minimum capacity,
which may not always hold. Assume first the case where the
number of users exceeds the sum of the event capacities, i.e.,
|V | >

∑
p∈P maxp, so that some users remain unassigned.

We are then interested in the assignment that (i) fills the
capacities of all events, and (ii) minimizes the total cost,
excluding the similarity and social cost of unassigned users.

Our framework can be modified to deal with this scenario.
In particular, we first run the initial assignment algorithm
to fill all |P| events with ∑

p∈P maxp users. The remaining
|V |−∑

p∈P maxp users are assigned to a new fictitious event

123

232 L. Ntaflos et al.

Heaps (top) Deviations Changes
S
u
p
er

-r
o
u
n
d
/
F
u
n
ct

io
n
/
R
o
u
n
d

1/UNI/1 v1[p3(0.079)], v2[p3(0.095)], v3[p1(0.058)]
v4[p3(0.06)],v5[p3(0.02)], v6[p3(0.085)]

v3 : p3 → p1
c(v1, p1)
c(v1, p3)

1/UNI/2 v1[p1(0.039)], v2[p3(0.095)],v3[p1(0.058)]
v4[p3(0.06)],v5[p3(0.02)], v6[p3(0.085)]

1/BI/1
EPp1,p2 : {v3(0.06)}, EPp2,p1 : {v2(−0.064)}
EPp1,p3 : {v3(0.051)}, EPp3,p1{v5(0.243)}
EPp2,p3{v2(−0.07)}, EPp3,p2 : {v4(0.158)}

v3 ↔ v2

c(v1, p1), c(v1, p2)
c(v4, p1), c(v4, p2)
c(v6, p1), c(v6, p2)

1/BI/2
EPp1,p2{v1(−0.063)}, EPp2,p1{v3(−0.06)}

EPp1,p3 : {v2(−0.006)}, EPp3,p1 : {v4(0.197)}
EPp2,p3 : {v3(−0.009)}, EPp3,p2 : {v5(0.204)}

2/UNI/1 v1[p2(0.05)], v2[p3(0.095)], v3[p1(0.058)]
v4[p3(0.06)],v5[p3(0.02)], v6[p3(0.085)]

v1 : p1 → p2
c(v2, p1), c(v3, p1)
c(v2, p2), c(v3, p2)

2/UNI/2 v1[p2(0.05)], v2[p3(0.095)],v3[p2(0.019)]
v4[p3(0.06)],v5[p3(0.02)], v6[p3(0.085)]

2/BI/1
EPp1,p2 : {v2(0.014)}, EPp2,p1 : {v1(0.063)}
EPp1,p3 : {v2(−0.031)}, EPp3,p1 : {v4(0.197)}

EPp2,p3 : {v3(0.09)}, EPp3,p2{v5(0.204)}
After Super-round 1

Fig. 9 Unilateral and bilateral deviations for running example (LS framework)

p f with capacity |V | − ∑
p∈P maxp. The total cost of users

assigned to p f is set to 0; that is, users in p f do not contribute
to the total cost through their similarity cost or through their
social cost of their friendships. This means that only users in
the original set of events are taken into account in the total
assignment cost. It is important that p f does not have spare
capacity, otherwise users in P would unilaterally deviate to
p f to decrease their cost to 0, violating the requirement that
we must assign as many users as possible to the set P . After
initialization, all users are assigned to an event, including p f ,
and all events are full. For pairs of users assigned to distinct
events in P , we perform bilateral deviations as usual, using
either the game-theoretic or the local search framework. On
the other hand, for bilateral deviations involving a pair of
users (v, u), where pv ∈ P and pu = p f , the game-theoretic
pairwise stability cannot work since the user u will have a
local cost greater than 0 in any event other than pu . Instead,
we can employ local search by comparing the cost of v (w.r.t.
events in P) to the cost of u if the latter deviates to pv from
p f . If the new cost is lower, then v and u swap. In this way,
users unassigned during I N I T can now be assigned if this
drops the total cost.

In the opposite extreme, when the number of users is very
small, i.e., |V | <

∑
p∈P minp, not all events can be filled

to their minimum capacity; as a result, certain events will
remain empty. Since, however, it is not known in advance
which events should be empty in the optimal solution, com-
puting the best events to fill is a hard combinatorial problem.
SEOG [15] tackles this problem by introducing phantom
events, and greedily identifying the events to be filled that
will result in lower total cost. The agent-based framework
can play an interesting complementary role to SEOG in this
scenario. Concretely, a two-phase algorithm can first decide
greedily on the active events (which will be filled to their
minimum capacity) (e.g., according to SEOG), whereas a

second agent-based phase can refine the SEOG solution to
further lower the total cost.

Another extension of the original model focuses on addi-
tional constraints on the user side. Concretely, we now
assume that subsets of users (e.g., pairs and triplets) must be
assigned together, else their cost will be infinite. For instance,
a couple may wish to either attend the same event, or attend
no event at all. To deal with this case, we replace the set of
constrained nodes in the original graph by a new hypernode,
whose similarity cost from an event is equal to the sum of
the distances of its nodes, and whose social cost from any
outside node is equal to the sum of the social cost of its
constituent nodes to that node. Moreover, we associate the
hypernode with a size, which equals the number of nodes
therein. Unconstrained nodes are also referred to as simple
nodes, and have a size of one.

Having created all hypernodes, we can then perform the
unilateral and bilateral deviations, albeit with one caveat. For
unilateral deviations involving hypernodes, we must make
sure that (i) the remaining capacity of the new event, where
we move the hypernode to, is at least equal to the hypern-
ode size, and (ii) the old event has still sufficient number of
users. For bilateral deviations, the hypernodes being swapped
should not violate the capacity constraints. To ensure this, we
can only allow swaps of hypernodes with the same size. The
downside is that a limited number of bilateral deviations is
considered, which may compromise the solution quality. An
alternative is to swap a set of hypernodes in one event with
another set of hypernodes/simple nodes in another event, so
that the two sets have the same size. It can be easily shown
that the second approach relies on the knapsack problem,
which is NP-hard. A compromise is to swap hypernodes of
size s > 1 with hypernodes of the same size s, or with s
simple nodes.

Finally, we discuss the initial assignment in the presence
of hypernodes. First, note that it may not be possible to fit all

123

A unified agent-based framework for constrained graph partitioning 233

users into the events, even if the sum of capacities equals the
number of users. For instance, assume three hypernodes of
sizes 3, 3, 2, and two eventswith the samemaximumcapacity
of 4; it is easy to verify that there is no solution that assigns
all hypernodes to the two events.We can handle this bymain-
taining a separate fictitious event to include hypernodes that
do not fit in any event. Moreover, we can assign hypernodes
in decreasing size order, so that the larger hypernodes, which
are more difficult to fit, are assigned first.

7 Experiments

For our experimental evaluation, we use the Gowalla and
Foursquare datasets. Gowalla [13] contains 12,748 users,
connected through 48,419 edges, who checked-in at Austin
and Dallas during a weekend in February 2009. For the
same time and place, we collected 128 social events from
Eventbri te.5 Foursquare [14] contains 2,153,371 users
and 1,143,092 events/venues, over the world in September
2013. The number of edges is 27,098,490. In both datasets,
the weight of all friendships is equal to 1. When we fix the
number of events,we randomly select a subset from the corre-
sponding dataset. Capacity constraints are created following
the methodology of [15]: the value of maxp for every event
is sampled from a normal distribution with mean 2 · |V |

|P| and
variance |V |

|P| , while the value of minp is randomly selected
from the interval [1,maxp]. Unless otherwise stated, we
set the parameter α of Eq. (1) to 0.5, so that the similarity
and social costs have equal weights. In addition, in order to
make the similarity and social costs comparable, we follow
the pessimistic normalization technique of [5]. All the algo-
rithms were implemented in C++ under Linux Ubuntu, and
executed on an Intel Xeon E5-2660 2.20GHz with 16GB
RAM. Section7.1 evaluates the behavior of the proposed
algorithms, and Sect. 7.2 compares them against the state of
the art.

7.1 Behavior of proposed algorithms

The first set of experiments assesses the effect of the sample
size n on the solution quality and running time. Figure10
illustrates the cost (i.e., quality) of solutions versus n, for
|P| = 32 of events. I N I T corresponds to the initial assign-
ment function of Sect. 5.1, while GAME and LS are the
game-theoretic and local search approaches, respectively.
The accuracy converges to its maximum value for n ≥ 8
samples in both datasets despite their diverse cardinality and
characteristics. The application of the agent-based frame-
work, and especially LS, improves the quality of the initial

5 https://www.eventbrite.com.

(a) (b)

Fig. 10 Quality versus sample size n (|P| = 32). a Gowalla. b
Foursquare

(a) (b)

Fig. 11 Time versus sample size n (|P| = 32). a Gowalla. b
Foursquare

assignment significantly. Figure11 plots the running time
of the algorithms (in seconds) versus the sample size n. As
expected, the execution timeof I N I T increaseswithn. Since
I N I T is a component of both GAME and LS, the time of
those algorithms also grows, and I N I T eventually consti-
tutes a large fraction of the total cost.

In order to investigate the effect of the event cardinality,
in Figs. 12 and 13 we plot the quality cost and the running
time of I N I T as a function of n and |P| for Gowalla. The
diagrams for Foursquare are similar and omitted. For all
values of P in our evaluation (8 ≤ |P| ≤ 128), exceeding
n = 8 samples does not offer significant quality improve-
ment, while it incurs considerable time overhead (observe
the logarithmic scale for time). Since n = 8 provides the best
trade-off between accuracy and efficiency, in the following
experiments we always use eight samples.

Figure 14 plots the number of unilateral (gray columns)
and bilateral (white columns) rounds per super-round for a
random execution of GAME and LS with |P| = 32 events
and n = 8 samples. GAME and LS converge in three and
nine super-rounds, respectively, inGowalla, and in three and
twelve super-rounds in Foursquare. The fraction on top of
each column denotes the total number of bilateral/unilateral
deviations during that super-round. For instance, inGowalla
in the first super-round of GAME , there were 323 bilateral
and 479 unilateral deviations performed in 117 bilateral and

123

https://www.eventbrite.com

234 L. Ntaflos et al.

Fig. 12 Quality versus n versus |P| (Gowalla)

Fig. 13 Time versus n versus |P| (Gowalla)

3 unilateral rounds. Since each deviation drops the cost, the
solution improvement is analogous to the number of devia-
tions.

Figure 15 illustrates the running time of GAME and LS
per super-round for the experiment of Fig. 14. We only dis-
play the three first super-rounds becauseGAME terminates,
whereas in LS the timeof subsequent super-rounds is negligi-
ble. The gray (resp. white) column corresponds to unilateral
(bilateral) rounds. Despite the fact that as shown in Fig. 14
there aremore bilateral rounds, inmost super-rounds the run-
ning time is dominated by the unilateral rounds because they
iterate over |V | users, as opposed to |P|2 event pairs. This
is more obvious in Foursquare since |V | = 2153371 >>

|P|2 = 322, justifying the use of event-pairs, instead of user-
pairs, in the function BI for bilateral deviations. The first
super-round is always the most expensive as it incurs the
most deviations.

The last experiment evaluates the effectiveness of I N I T
against other initialization methods. Specifically, we imple-
mented two benchmarks: (i) assign each user to a random
event, and (ii) assign each user to the closest event. Similar
to I N I T , both initializations involve two phases in order
to fill the minimum capacity constraints of all the events.
After initialization, they apply UN I and BI for unilateral
and bilateral deviations. The corresponding techniques are

(a)

(b)

Fig. 14 Rounds (deviations) versus super-rounds (|P| = 32). a
Gowalla. b Foursquare

(a) (b)

Fig. 15 Time versus super-rounds (|P| = 32). a Gowalla. b
Foursquare

denoted as GAMER , LSR (GAMEC , LSC) for random
(closest event) assignments.

Figure 16a assesses the quality ofGAME (with the initial
assignment I N I T), GAMER , and GAMEC as a function
of the super-rounds, for Gowalla. Figure16b repeats the
experiment for LS and Foursquare. Super-round 0 corre-
sponds to the initial assignment. Random assignment is by
far the worst in both datasets, followed by the closest event
assignment. Although the agent-based framework improves

123

A unified agent-based framework for constrained graph partitioning 235

(a) (b)

Fig. 16 Quality versus super-rounds (|P| = 32). a GAME,Gowalla.
b LS, Foursquare

Table 2 Running time (s) (|P|=32)
Gowalla Foursquare

Random 0.006 3.5

Closest Event 0.07 12.9

I N I T 0.53 140

GAMER 2.83 482

GAMEC 3.22 465

GAME 2.91 497

LSR 3.24 511

LSC 3.47 481

LS 3.37 521

significantly their solutions, they cannot reach the quality
of I N I T . In all cases, the largest improvement occurs at
super-round 1, which, as shown in the previous diagrams,
incurs the most rounds, deviations and longest running time.
Table 2 shows the running time of the initial assignments
and the complete algorithms for the same experiment. Even
though the random and closest event assignments are much
faster than I N I T , the execution times of the complete algo-
rithms are similar because the poor initial solutions yield
more deviations during the super-rounds.

7.2 Comparison to state of the art

We compare GAME and LS against SEOG, the best algo-
rithm for the social event organization problem [15]. As
mentioned in Sect. 2.1, for SEO , only events with at least one
user need to be assigned users. Consequently, SEOG may
leave some events empty and some users unassigned, even
though there are enough users and sufficiently large capac-
ities. Figure17 illustrates the percentage of assigned users
(column) and events that are within the capacity constraints,
as a function of the number of events |P|. For instance, in
Gowalla, when |P| = 8, 87% of the users were assigned
and just 50% of the events had a number of users within their
capacity constraints. Those values drop to 47% for users

(a) (b)

Fig. 17 SEOG assignments (satisfied vs. |P|). a Gowalla. b
Foursquare

(a) (b)

Fig. 18 Quality versus |P| (α = 0.5). a Gowalla. b Foursquare

and 25% for events in Foursquare and |P| = 8. On the
other hand, GAME and LS are not included in the diagrams
because they assign all users and fill each event to a legal
capacity value in all cases.

In addition to maximizing the number of assignments,
the proposed algorithms achieve solutions of better quality
and are significantly faster than SEOG. In order to avoid
the unassigned users and empty events of SEOG, for the
following experiments we set the minimum capacity con-
straints of all the events to zero. The maximum constraints
are again created using the method of [15], as in the previ-
ous experiments. We generate 30 problem instances with the
same events, but different maximum capacities, and report
the mean over all instances.

Figure 18 plots the solution quality of GAME and LS
against SEOG, as a function of |P| ranging from 8 to 128.
In all cases, LS generates the best solutions, followed by
GAME . An interesting observation is that the total cost
increases with the number of events. This can be explained
by the fact that, when there are numerous events, friends are
more likely to be divided, increasing the total social cost.

Figure 19 shows the running time of the algorithms ver-
sus the number of events. GAME is the fastest algorithm,
followed by LS, which as shown in the experiments of the
previous section, performs more super-rounds and devia-
tions than GAME . SEOG is by far the slowest algorithm

123

236 L. Ntaflos et al.

(a) (b)

Fig. 19 Time versus |P| (α = 0.5). a Gowalla. b Foursquare

(a) (b)

Fig. 20 Quality versus α (|P| = 32). a Gowalla. b Foursquare

(a) (b)

Fig. 21 Time versus α (|P| = 32). a Gowalla. b Foursquare

in all settings. For example, in the largest problem instance
(Foursquare, |P| = 128), GAME and LS terminate in
16 and 23 minutes, respectively, whereas SEOG requires 3.5
hours. This is because the greedy algorithm of SEOG uses a
large heap of size |V | · |P| that needs to be updated numerous
times. In contrast, our algorithms use smaller heaps (for each
user and pair of events) that simplify the update process.

Figure 20 illustrates the quality cost versus the value of
input parameter α that adjusts the relative importance of the
similarity and social cost; the weight of the similarity cost
is proportional to α. Accordingly, as α increases, the con-
tribution of the similarity (white part of each column) to the
total cost decreases, since its minimization becomes themain
focus. On the other hand, the social cost increases, and the
total cost remains rather stable for all values of α. Similar to

Fig. 18, GAME and LS always produce solutions of better
quality (lower cost) than SEOG. As shown in Fig. 21, the
running time of all methods is insensitive to α because the
algorithms perform the same operations independently of α.
The proposedmethods outperform SEOG by awidemargin.

8 Conclusion

Constrained graph partitioning (CGP) is becoming increas-
ingly important with the proliferation of social networks and
related services. In this paper, we introduce an effective and
efficient agent-based framework for CGP that unifies the
game-theoretic and the local search perspectives, and present
concrete implementations that integrate various optimiza-
tions to enhance performance.We investigate the behavior of
our algorithms through an extensive experimental evaluation
with real datasets. The proposed GAME and LS methods
outperform the state-of-the-art SEOG in effectiveness, solu-
tion quality and efficiency. In terms of effectiveness,GAME
and LS always achieve the maximum number of assign-
ments, by respecting the minimum capacities of all classes
and not leaving empty events. They both generate solutions
of higher quality than SEOG, with LS reaching up to 20%
improvement. Finally, they are both significantly faster than
SEOG, with the performance gains of GAME exceeding
an order of magnitude in some settings.

In the future, we plan to investigate additional search
heuristics to improve the efficiency or solution quality of
the proposed techniques. For instance, a hill climbing variant
would perform, at each round, the unilateral or bilateral devi-
ation that incurs the largest cost drop. We could also explore
trilateral or deviations of higher degree, which could improve
the solution quality at the expense of running time (which is
exponential to the number of nodes involved). Alternatively,
we could apply a form of simulated annealing that allows
deviations to solutions of worse quality in order to escape
local minima. Finally, in our scenario, we assume that each
node is assigned to a single class. An interesting extension
would allow multiple assignments, e.g., a user could attend
different nearby events. A possible way to formulate this
problem is by associating each userwith the number of events
that he is willing to attend. An alternative is to define a dis-
tance budget Bv per user v, so that v can only be assigned to
some event p, only if the distance d(v, p) between v and p
is at most Bv . When such an assignment occurs, d(v, p) is
deducted from Bv . Additional assignments can bemade, pro-
vided that they do not exceed the remaining budget. In either
case, this version of CGPwould necessitate novel techniques
based on the problem definition.

Funding This work was supported by GRF grants 16207914 and
16231216 from Hong Kong RGC.

123

A unified agent-based framework for constrained graph partitioning 237

9 Appendix

Lemma 1 The difference in Potential Function (3)
ΔΦUN I (v, pv, p′

v, pv) due to a unilateral deviation in
assignment p of player v from event pv to p′

v , while the
rest of the players do not deviate, is:

ΔΦUN I (v, pv, p
′
v, pv) = Φ(p′

v, pv) − Φ(pv, pv)

= cv(p
′
v, pv) − cv(pv, pv)

=
(
α · d(v, p′

v) + (1 − α) ·
∑

(v, f)∈E∧p f =pv

1

2
· w(v, f)

)

−
(
α · d(v, pv) + (1 − α) ·

∑

(v, f)∈E
∧p f =p′

v

1

2
· w(v, f)

)

Proof After player v deviates from event pv to p′
v , the change

in the potential function is:

ΔΦUN I (v, pv, p
′
v, pv) = Φ(p′

v, pv) − Φ(pv, pv)

=
(
α · d(v, p′

v) − α · d(v, pv)
)

+
(
(1 − α) ·

∑

(v, f)∈E
∧p f �=p′

v

1

2
· w(v, f)

− (1 − α) ·
∑

(v, f)∈E
∧p f �=pv

1

2
· w(v, f)

)

(10)

This result is directly from Eq. (3), as only v and his friends
are affected by v’s deviation; all the other terms in the poten-
tial function are canceled. Additionally, before and after the
unilateral deviation, according to Eq. (4) we have:

cv(pv, pv) = α ·
∑

v∈V
d(v, pv)

+(1 − α) ·
∑

(v, f)∈E∧
pv �=p f

1

2
· w(v, f) (11)

cv(p
′
v, pv) = α ·

∑

v∈V
d(v, pv)

+(1 − α) ·
∑

(v, f)∈E∧
p′
v �=p f

1

2
· w(v, f) (12)

If we subtract Eq. (11) fromEq. (12), we have Eq. (10), there-
fore proving that the difference in the potential function
equals the difference in the cost of the player who deviates.
Note that in Eq. (3) and also in the above equations, we con-
sider the friends of v that are assigned in different events than
pv or p′

v (p f �= pv and p f �= pv). In contrast, to calculate

the cost difference ΔΦUN I in Eq. (3), we only consider the
friends of v that are assigned to pv or p′

v (p f = pv and
p f = p′

v). It is straightforward that the friends of v that we
need to consider during the calculation of his cost difference,
are those assigned to different events than pv (resp. p′

v) and
especially those assigned to p′

v (resp. pv). This is because
the weights of friends assigned to events other than p′

v (resp.
pv) are canceled out. ��
Lemma 2 Assume v, u swap events in assignment p, while
the rest of the players do not deviate. For the new assignment
(p′

v, p
′
u, pvu), where p′

v = pu and p′
u = pv , the difference

ΔΦBI (v, u, p) in Potential Function (3) is:

ΔΦBI (v, u, p) = Φ(p′
v, p

′
u, pvu) − Φ(pv, pu, pvu)

=
(
cv(p

′
v, pu ∪ pvu) − cv(pv, pu ∪ pvu) + 1

2
w(v, u))

+
(
cu(p

′
u, pv ∪ pvu) − cu(pu, pv ∪ pvu) + 1

2
w(v, u))

Proof In order to express the bilateral deviation as two uni-
lateral deviations (v to pu and u to pv), we add and deduct the
term Φ(p′

v, pu, pvu) to/from the difference in the potential
function:

ΔΦBI (v, u, p) = Φ(p′
v, p

′
u, pvu) − Φ(pv, pu, pvu)

=
(
Φ(p′

v, pu, pvu) − Φ(pv, pu, pvu)
)

+
(
Φ(p′

v, p
′
u, pvu) − Φ(p′

v, pu, pvu)
)

(13)

Each of the two terms of the sum in Eq. (13) represents a
deviation of a single player. Specifically, the first sum is the
unilateral deviation of v, while the second sum is the uni-
lateral deviation of u, supposing that v deviates first and u
follows right after.6 Based on Eq. (2), Eq. (13) becomes:

ΔΦBI (v, u, p) =
(
cv(p

′
v, pu ∪ pvu) − cv(pv, pu ∪ pvu))

+
(
cu(p

′
u, p

′
v ∪ pvu) − cu(pu, p

′
v ∪ pvu))

(14)

However, since p′
v = pu , p′

u = pv and pv �= pu , for the
second term of the sum in Eq. (14) we will have:

cu(p
′
u, p

′
v ∪ pvu)) = cu(p

′
u, pv ∪ pvu)) + 1

2
w(v, u) (15)

cu(pu, p
′
v ∪ pvu) = cu(pu, pv ∪ pvu) − 1

2
w(v, u) (16)

Equation (15) implies that u’s cost for his new strategy (p′
u =

pv), after v has changed strategy (v switched to p′
v = pu),

6 It is trivial to show that the proof also stands if we suppose that u
deviates first.

123

238 L. Ntaflos et al.

is equal to u’s cost for p′
u before v changed strategy plus

their friendship weight (if they are friends, otherwise the
friendship weight is zero); this is because after v changed
strategy, u (may) lost a friend from p′

u ; thus, his cost for p
′
u

needs to be increased. In a similar manner, Eq. (16), means
that u’s cost for his old strategy (pu), equals to u’s cost for
pu before v changed strategy minus their friendship weight
(because v will switch to p′

v = pu and u will have one more
friend in pu). Therefore, by combining Eqs. (14)–(16) we
prove Lemma 2. ��
Proposition 1 In a finite potential game, from an arbitrary
feasible assignment, the combined dynamics of Fig.4 always
converges to a N EPS solution in a finite number of rounds.

Proof First, note that we only allow unilateral deviations that
do not violate the events’ capacity constraints, while bilateral
deviations leave the events’ cardinalities unchanged. Thus,
if we start from a feasible assignment, the assignment will
remain feasible after a unilateral or bilateral deviation. Sec-
ond, in a unilateral deviation the cost of the deviating player
decreases; thus, fromEq. (2) it follows that the potential func-
tion also drops. In a bilateral deviation, both users benefit (or
one benefits and the other’s cost is unchanged). But then the
sum ΔΦBI (v, u, p) which by Lemma 2 equals to:

(
cv(p

′
v, pu ∪ pvu) − cv(pv, pu ∪ pvu) + 1

2
w(v, u))

+
(
cu(p

′
u, pv ∪ pvu) − cu(pu, pv ∪ pvu) + 1

2
w(v, u))

is always negative, which guarantees that the potential func-
tion will drop. Since the game is finite, the combined
dynamics eventually terminates to an assignment that is
NEPS. ��
Proposition 2 The PoS in the capacitated game using NEPS
is upper bounded by 2.

Proof Consider any (feasible) assignment S. LetC(S) be the
total cost for all users under S, i.e.,

C(S) = α ·
∑

v∈V d(v, pv) + (1 − α) ·
∑

(v, f)∈E∧
pv �=p f

w(v, f)

It is straightforward to see that:

1

2
C(S) ≤ Φ(S) ≤ C(S) (17)

For the socially optimal assignment OPT , we have by defi-
nition that C(OPT) ≤ C(S) for any feasible assignment S.
Now, let Smin be the assignment that minimizes the potential
function, i.e., Φ(Smin) ≤ Φ(S) for any feasible assign-
ment S. An interesting property is that Smin is NEPS.

Indeed, if that were not the case, then by Lemma 1 there
would be a unilateral or bilateral deviation that would fur-
ther drop the potential function. Inequality (17) together with
the above observations implies that: 12C(Smin) ≤ Φ(Smin) ≤
Φ(OPT) ≤ C(OPT), or equivalently, C(Smin)

C(OPT)
≤ 2. The

NEPS with the lowest total cost Sbest will have a total cost
of at least C(Smin), so we conclude that the PoS is upper
bounded by 2. ��
Proposition 3 The PoA in the capacitated game using NE
and PS is upper bounded by

∑|P|
k=1 max

p∈P
Ξ

p
(k)

α · ∑
v∈V min

p∈P
c(v, p)

.

Proof Assume an assignment that is NEPS. Consider any
pair of users u, v ∈ V that are assigned to two distinct events
pu �= pv ∈ P . We will now argue that it is not possible to
simultaneously hold that pu = pu1 and pv = pv

1 , except for
the trivial cases where ξ(u, pu1) = ξ(u, pu2) or ξ(v, pv

1) =
ξ(v, pv

2). Indeed, if that were the case, users u and v would be
incentivized to swap their corresponding events, since they
are already in the worst possible case and they cannot lose
by deviating. For k users assigned to k distinct events, we
can similarly show that if a user u is assigned to his worst
event pu1 , then the rest k − 1 users must be assigned to at
most their second-worst event (except for the trivial cases
where multiple events share the same ξ value). Among the
remaining k−1 users, if one of them, say v, is assigned to his
second-worst event pv

2 , then the other k−2 must be assigned
to at most their third-worst events (except for the trivial cases
of equal ξ values among multiple events). We can continue
this argument to show that if users u1, . . . , uk−1 are assigned
to their worst, second-worst, up to (k − 1)th-worst events,
then user k can be assigned to at most his kth-worst event.

The above result suggests that if we pick any |P| users
assigned to distinct events, then the total cost is upper
bounded by the quantity

max
p∈P,v∈V {ξ(v, pv

1)} + · · · + max
p∈P,v∈V {ξ(v, pv|P|)}.

Note that the values maxp∈P,v∈V {ξ(v, pv
k)} and

maxp∈P,v∈V {ξ(v, pv
k′)}, k �= k′, may occur in the same event

or for the same user, even though we assumed (i) distinct
events and (ii) that a user can only be assigned to a single
event in any feasible assignment. This is, however, not a con-
cern, since we are interested in an upper bound.

In a similar manner, we can obtain an upper bound on
the worst possible cost of any NEPS as follows: Assume
that one event takes the worst possible value Ξ

p
(1) among

all |P| events; another event takes the worst possible value

123

A unified agent-based framework for constrained graph partitioning 239

Ξ
p
(2) among all |P| events; and, finally, the remaining event

takes the worst possible value Ξ
p
(|P|) among all |P| events.

In other words, we can upper bound the total cost of any
NEPS equilibrium by the quantity

∑|P|
k=1 maxp∈P Ξ

p
(k). On

the other hand, the optimal solution has a cost of at least∑
v∈V minp∈P c(v, p), since in the best case scenario each

user v is assigned to his event with the least cost and all v’s
friends with positive friendship weight are assigned to the
same event.

Since the numerator is an upper bound on the total cost
of a NEPS and the denominator a lower bound on the total
cost of the optimal assignment, we can upper bound the PoA
by

∑|P|
k=1 max

p∈P
Ξ

p
(k)

α · ∑
v∈V min

p∈P
c(v, p)

.

��

Lemma 3 For a unilateral deviation in assignment pwhere a
user v switches from event pv to p′

v , the change in Objective
Function (1) is:

ΔCUN I (v, pv, p
′
v, pv)

=
(
α · d(v, p′

v) + (1 − α) ·
∑

(v, f)∈E∧p f =pv

w(v, f)
)

−
(
α · d(v, pv) + (1 − α) ·

∑

(v, f)∈E
∧p f =p′

v

w(v, f)
)

Proof Before v deviates, Objective Function (1) is equal to:

α ·
∑

u∈V∧u �=v

d(u, pu) + (1 − α) ·
∑

(u, fu)∈E∧u �=v
∧p fu �=pu

w(u, fu)

+α · d(v, pv) + (1 − α) ·
∑

(v, f)∈E
∧p f �=pv

w(v, f)

(18)

After v deviates to p′
v , Objective Function (1) becomes:

α ·
∑

u∈V∧u �=v

d(u, pu) + (1 − α) ·
∑

(u, fu)∈E∧u �=v
∧p fu �=pu

w(u, fu)

+α · d(v, p′
v) + (1 − α) ·

∑

(v, f)∈E
∧p f �=p′

v

w(v, f)
(19)

If we subtract Eq. (18) from Eq. (19), we have:

ΔCUN I (v, pv, p
′
v, pv)

=
(
α · d(v, p′

v) + (1 − α) ·
∑

(v, f)∈E
∧p f �=p′

v

w(v, f)
)

−
(
α · d(v, pv) + (1 − α) ·

∑

(v, f)∈E
∧p f �=pv

w(v, f)
)

(20)

which proves Lemma 3. (The right-hand sides of Eq. (20) and
Lemma 3 are equal, for the same reasoning as in the proof of
Lemma 1.) ��
Lemma 4 For a bilateral deviation in assignment p where
two users v, u ∈ V swap events (v/u from pv/pu to pu/pv),
the change in Objective Function (1) is:

ΔCBI (v, u, p)

=
(
c̃v(p

′
v, pu ∪ pvu) − c̃v(pv, pu ∪ pvu) + w(v, u))

+
(
c̃u(p

′
u, pv ∪ pvu) − c̃u(pu, pv ∪ pvu) + w(v, u))

Proof In a similar manner to the proof of Lemma 2, we
express the bilateral deviation as two unilateral deviations.
The only difference is the factor 2 in the cost (1−α)·w(v, u),
obviously because in LS the agent cost does not include the
factor 1

2 as in GAME . ��
Proposition 4 describes the complexity of I N I T ; it uses

the following lemma.

Lemma 5 The expected number of trials to draw with
replacement m distinct items from a set of M ≥ m items
is M · (HM − HM−m), where Hi = ∑i

k=1
1
k is the i-th Har-

monic number (with H0 = 0).

Proof Let the random variable Xi , 1 ≤ i ≤ m, be the number
of trials to draw the i th item after the first i − 1 have been
obtained already. The total number of trials is then: X =
X1 + . . . + Xm . By linearity of expectation, the expected
number of trials to see all m items will then be: E[X] =
E[X1] + . . . + E[Xm]. Consider the random variable Xi .
Since all items are equally likely to be drawn, the probability
of drawing an item different from the i − 1 already seen is:
Pi = 1 − i−1

M = M−i+1
M . Given the trials are independent

(Bernoulli), the expected number of draws to see item i given
the first i − 1 is 1

Pi
= M

M−i+1 . But then E[X] = E[X1] +
. . . + E[Xm] = ∑m

i=1
M

M−i+1 = M · (HM − HM−m). ��
Proposition 4 For n << |V |, I N I T has a time complex-
ity of O(max(|V |n, |E ||P|, |V ||P| log(|P|))), and a space
requirement of Θ(|V ||P|), where n, |V |, |E |, |P| are the
number of samples, nodes, edges and classes, respectively.

123

240 L. Ntaflos et al.

Proof The total running time of I N I T consists of three com-
ponents. The first concerns initialization (Lines 1–6) and
heap creation. During initialization, obtaining c(v, p) for a
single user v and event p (Lines 3–6) incurs 1+degv compu-
tations, where degv is the degree of v. Repeating the process
for all |P| events and summarizing over all users yields
complexity

∑
v∈V |P|(1 + degv) = |V ||P| + 2|E ||P| =

O((|V | + |E |)|P|). Recall that Phase 2 uses the user-event
costs from Phase 1, without requiring initialization. Regard-
ing the complexity of heap creation, since the size of each
user heap is O(|P|), heapifying the costs of all users requires
O(|V ||P|), which is dominated by O((|V | + |E |)|P|).

The second component of the cost is due to the while
iterations (Lines 7–24) of both phases. Observe that the
total number of iterations equals the number of users, since
every iteration performs an non-revocable assignment of a
user. An iteration (i) finds the minimum among the top of
the heaps of the n samples (Lines 13–17), (ii) updates the
cost heaps for each friend of the user v to be assigned
(Lines 18–20), and (iii) if the assigned event closes, it is
removed from the heaps of all unassigned users (Lines 21–
24). Summarizing, over all iterations (i.e., number of users
|V |), the total cost of (i) is O(|V |n). Item (ii) involves updat-
ing the heaps of degv friends of v. The cost for all users is∑

v∈V degv log(|P|) = 2|E | log(|P|) = O(|E | log(|P|)).
Regarding (iii), observe that an event closes at least once
(when it reaches its minimum capacity during Phase 1), and
at most twice (if it also reaches its maximum capacity during
Phase 2).When this happens, the eventmust be removed from
the heaps of at most |V | users with cost O(|V | log(|P|)).
Repeating for all events yields O(|V ||P| log(|P|)). Sum-
marizing items (i) to (iii), the complexity of the second
component is O(|V |n + (|V ||P| + |E |) log(|P|)).

Recall that each iteration of I N I T selects n distinct
users from the set Vun . If users are drawn equiprobably with
replacement, then byLemma 5 the expected number of draws
until n users are selected is |Vun|(H|Vun | − H|Vun |−n). I N I T
performs sampling when |Vun| = {n + 1, n + 2, . . . , |V |};
for |Vun| ≤ n it just considers all users in |Vun|. So,
the total number of draws is

∑|V |
k=n+1 k(Hk − Hk−n) =

∑|V |
k=n+1 k(

1
k−n+1 + · · · + 1

k). Observe that each term 1
k

can only occur at most n times with coefficients k, k +
1, . . . , k + n − 1. The last expression can be rewritten as∑|V |

k=1
1
k (k+k+1+· · ·+k+n−1) ≤ ∑|V |

k=1
1
k n(k+n−1) =

n
∑|V |

k=1
1
k (k + n − 1) = n

∑|V |
k=1(1+ n−1

k) = n|V | + n(n −
1)

∑|V |
k=1

1
k . Since the sum of the first |V | harmonic numbers

is O(log(|V |)), the required number of samples in expecta-
tion is O(|V |n + n2 log(|V |)).

Considering that in practice n << |V |, the complexity of
I N I T , including all three components, can be simplified to
O(max(|V |n, |E ||P|, |V ||P| log(|P|))). The space require-

ments are Θ(|V ||P|) because of the |V | user heaps, each of
size |P|, and the cost table |V ||P|. ��

Proposition 5 The time complexity of a super-round of uni-
lateral and bilateral deviations is O(|P|2|V |(log(|P|) +
log(|V |))).

Proof Regarding the complexity of UN I , each round con-
siders all users. In the worst case, for each user v we
must scan the entire heap of size |P| in order to find a
valid event to re-assign v. After re-assignment, the costs
of degv friends change, triggering degv heap operations
in user heaps (resp. event pair heaps) with complexity
O(degv log(|P|))(resp. O(degv · log(|V |))). Summariz-
ing over all users, the complexity of a single round is∑

v∈V (|P| + degv(log(|P|) + log(|V |)) = O(|V ||P| +
|E |(log(|P|) + log(|V |)). Similarly, for BI , each swap
between users v and u updates the costs of their friends
(and possibly the costs of v, u, if they are connected) for
both events, triggering a maximum of degv + degu + 2
heap operations (in both user and event pair heaps) per swap.
Given that degv and degu are O(|V |) and assuming that all
event pairs incur swaps, the complexity of a round of BI is
O(|P|2|V |(log(|P|) + log(|V |))). ��

The bound in Proposition 5 is loose, because in prac-
tice only a small fraction of event pairs causes swaps and
degv << |V |.

References

1. Aarts, E., Lenstra, J.K. (eds.): Local Search in Combinatorial Opti-
mization, 1st edn. Wiley, Hoboken (1997)

2. Agarwala, A., Dontcheva, M., Agrawala, M., Drucker, S., Colburn,
A., Curless, B., Salesin, D., Cohen, M.: Interactive digital photo-
montage. ACM Trans. Graph. 23(3), 294–302 (2004)

3. Andrews, M., Hajiaghayi, M.T., Karloff, H., Moitra, A.: Capac-
itated metric labeling. In: Proceedings of the Twenty-Second
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
11, SIAM, pp. 976–995 (2011)

4. Anshelevich, E., Sekar, S.: Approximate equilibrium and incen-
tivizing social coordination. CoRR arXiv:1404.4718 (2014)

5. Armenatzoglou, N., Pham, H., Ntranos, V., Papadias, D., Shahabi,
C.: Real-time multi-criteria social graph partitioning: a game the-
oretic approach. In: SIGMOD (2015)

6. Barnard, S.: Stochastic stereo matching over scale. Int. J. Comput.
Vis. 3(1), 17–32 (1989)

7. Boykov, Y., Jolly,M.P.: Interactive graph cuts for optimal boundary
and region segmentation of objects inN–D images. In: Proceedings
of Eighth IEEE International Conference on Computer Vision, vol.
1, pp. 105–112 (2001)

8. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy min-
imization via graph cuts. IEEE Trans. PAMI 23(11), 1222–1239
(2001)

9. Calinescu, G., Karloff, H., Rabani, Y.: Improved approximation
algorithms for multiway cut. In: Proceedings of the ACM Sympo-
sium on Theory of Computing, ACM (1998)

123

http://arxiv.org/abs/1404.4718

A unified agent-based framework for constrained graph partitioning 241

10. Feldman, M., Friedler, O.: A unified framework for strong price
of anarchy in clustering games. In: Proceedings of the 42nd Inter-
national Colloquium on Automata, Languages, and Programming,
Part II, Springer International Publishing, Lecture Notes in Com-
puter Science, vol. 9135, pp. 601–613 (2015)

11. Kleinberg, J., Tardos, E.: Approximation algorithms for classifi-
cation problems with pairwise relationships: metric labeling and
Markov random fields. JACM 49(5), 616639 (2002)

12. Kolmogorov, V., Zabih, R.: What energy functions can be mini-
mized via graph cuts. IEEE Trans. PAMI 26, 147–159 (2004)

13. Leskovec, J., Krevl, A.: SNAP datasets: Stanford large network
dataset collection (2014). http://snap.stanford.edu/data. Accessed
May 2015

14. Levandoski, J.J., Sarwat, M., Eldawy, A., Mokbel, M.F.: Lars: a
location-aware recommender system. In: 2012 IEEE 28th Interna-
tional Conference on Data Engineering, pp 450–461. IEEE, Wash-
ington, DC, USA (2012). https://doi.org/10.1109/ICDE.2012.54

15. Li, K., Lu, W., Bhagat, S., Lakshmanan, L.V., Yu, C.: On social
event organization. In: Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Min-
ing. KDD ’14, pp 1206–1215. ACM, New York, NY, USA (2014).
https://doi.org/10.1145/2623330.2623724

16. Naor, J., Schwartz, R.: Balancedmetric labeling. In: Proceedings of
the Thirty-Seventh Annual ACM Symposium on Theory of Com-
puting. STOC ’05, pp 582–591.ACM,NewYork,NY,USA (2005).
https://doi.org/10.1145/1060590.1060676

17. Orlin, J.B., Punnen, A.P., Schulz, A.S.: Approximate local
search in combinatorial optimization. In: Proceedings of the Fif-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA’04, pp. 587–596 (2004)

18. Rahn, M., Schäfer, G.: Efficient Equilibria in Polymatrix Coordi-
nation Games, pp. 529–541. Springer, Berlin (2015)

19. Rother, C., Kolmogorov, V., Blake, A.: “GrabCut”-interactive fore-
ground extraction using iterated graph cuts. ACM Trans. Graph.
23(3), 309–314 (2004)

20. Schaeffer, S.E.: Survey: graph clustering. Comput Sci Rev 1(1),
27–64 (2007). https://doi.org/10.1016/j.cosrev.2007.05.001

21. Wainwright, M., Jaakkola, T., Willsky, A.: Map estimation via
agreement on trees: message-passing and linear programming.
IEEE Trans. Inf. Theory 51, 3697–3717 (2005)

22. Yedidia, J., Freeman,W.,Weiss,Y.:Generalizedbelief propagation.
In: Advances in Neural Information Processing Systems, pp. 689–
695 (2000)

123

http://snap.stanford.edu/data
https://doi.org/10.1109/ICDE.2012.54
https://doi.org/10.1145/2623330.2623724
https://doi.org/10.1145/1060590.1060676
https://doi.org/10.1016/j.cosrev.2007.05.001

	A unified agent-based framework for constrained graph partitioning
	Abstract
	1 Introduction
	2 Related work
	2.1 General
	2.2 Game theory
	2.3 Local search in combinatorial optimization

	3 Game-theoretic framework for CGP
	4 Local search framework for CGP
	5 Algorithms
	5.1 Initial assignment
	5.2 Unilateral and bilateral deviations

	6 Special cases and additional constraints
	7 Experiments
	7.1 Behavior of proposed algorithms
	7.2 Comparison to state of the art

	8 Conclusion
	9 Appendix
	References

