Agora: A Privacy-Aware Data Marketplace

Vlasis Koutsos, Dimitrios Papadopoulos, Dimitris Chatzopoulos, Sasu Tarkoma, and Pan Hui, Fellow, IEEE

Abstract—We propose Agora, the first blockchain-based data marketplace that enables multiple privacy-concerned parties to get
compensated for contributing and exchanging data, without relying on a trusted third party during the exchange. Agora achieves data
privacy, output verifiability, and atomicity of payments by leveraging cryptographic techniques, and is designed as a decentralized
application via smart contracts. Particularly, data generators provide encrypted data to data brokers who use a functional secret key to
learn nothing but the output of a specific, agreed upon, function over the raw data. Data consumers can purchase decrypted outputs
from the brokers, accompanied by corresponding proofs of correctness. We implement a working prototype of Agora on Ethereum and
experimentally evaluate its performance and deployment costs. As a core building block of Agora, we propose a new functional
encryption scheme with additional public parameters that operate as a trust anchor for verifying decrypted results.

Index Terms—Data Marketplace, Functional Encryption, Blockchain.

1 INTRODUCTION

HE proliferation of Internet-connected devices with

multiple functionalities and sensing abilities, in addi-
tion to the development of services with access to large
volumes of user-generated data, has resulted in the emer-
gence of a data-exchange market. Using data marketplaces
data owners can broker their data to interested buyers, re-
ceiving corresponding payments. This has found a plethora
of applications, e.g., combined medical data records from
multiple hospital authorities can be employed to speed
up the development of a cure [1]-[3]. Data from Internet
of Things (IoT) devices can accelerate the development of
personalized models that improve users’ quality of expe-
rience [4], [5]. Electricity smart meter measurements can
be used to provide feedback to households and assist in
reducing their electricity bills or even detect malfunctioning
appliances [6]. Therefore, data owners can be incentivized
to participate in such a marketplace as long as they get
sufficiently compensated for their data [7].

In many applications there exists a third, intermediary,
party between the data owners and the buyers, eg., a
statistical analysis company [8]. Such an intermediary re-
ceives the owners’ raw data, processes them, and sells the
processed results to the buyers, reimbursing the owners. In
this work, we consider this extended data marketplace with
the three following types of entities: (a) data generators who
provide their data; (b) data brokers who reimburse generators
for their data, compute functions over it, and sell the outputs
to interested parties; and (c) data consumers who purchase
these outputs from the brokers.

Modeling a Secure Data Marketplace. According to stud-
ies [9], [10], in the seller-buyer only setting, privacy and
security concerns may deter generators from participating

e V. Koutsos, D. Papadopoulos, and D.Chatzopoulos are with the Depart-
ment of Computer Science and Engeneering, The Hong Kong University
of Science and Technology, Hong Kong.

E-mail: {vkoutsos, dipapado, dcab}@cse.ust.hk

e P. Hui is with the Department of Computer Science and Engeneering, The
Hong Kong University of Science and Technology, Hong Kong and the
University of Helsinki.E-mail: panhui@cse.ust.hk

o S.Tarkoma is with University of Helsinki.E-mail: sasu.tarkoma@helsinki.fi

in data marketplaces. Disclosure of sensitive data could lead
to major privacy breaches e.g., the energy consumption of
a household is directly related to the living patterns of the
inhabitants (i.e., whether someone is at home or not), thus
no such information should be publicly revealed.

In the extended setting things can be even worse. Exist-
ing data marketplaces [11]-[14] require entities to place too
much trust on the intermediate broker. First, generators are
expected to fully trust brokers to manage and process their
data. This means that generators effectively relinquish control
over their data, do not know which functions are computed
over them, or whether they are altered. Consumers are
also expected to trust brokers to provide them with the
correct requested result. Importantly, a consumer cannot
check whether the broker has altered the result, without
having access to the data of the generators. Last, payments
are usually handled via a third party (e.g., banks or credit
institutions). Ideally, in a secure marketplace owners should
maintain some control over the types of computations that
can be performed on their data [10], consumers should be
able to verify that a received result is honestly computed,
and payments should be guaranteed. Thus, we propose the
following properties for a secure data marketplace:

Data privacy: no party can learn any information about the
raw data of the generators, apart from the function out-
put that is learnt by the broker and paying consumers.

Output verifiability: no broker can successfully sell an in-
correct or falsified result to a consumer.

Atomicity of payments: no entity can avoid paying for ser-
vices, i.e., generators are reimbursed for their data and
brokers are paid for providing function outputs.

The problem we are concerned with in this paper is
designing such a secure data marketplace. A number of
previous works model the broker as a trusted party or
assume secure hardware and by doing this they manage
to satisfy independently some of the above properties [15]-
[18]. Utilizing such trusted components in our design is not
ideal, as trusted parties relax significantly the threat model
of any system, and secure hardware has been proven sus-

Figure 1: Agora allows multiple types of data owners to
share encrypted data and offers selective disclosure of func-
tions of the data without compromising users’ privacy.

ceptible to side-channel attacks [19], [20]. Section 2 describes
previous works in detail and explains why they do not
provide a satisfactory solution to our problem.

Our Solution. In this work we propose Agora, the first data
marketplace that satisfies data privacy, output verifiability,
and atomicity of payments, without relying on secure hard-
ware or requiring a trusted party to be involved in the data
purchase process. Instead Agora relies solely on the use of
cryptographic components. Specifically, we propose a novel
functional encryption (FE) scheme with additional public pa-
rameters that guarantees data privacy. Additionally, we in-
tegrate into our system a tailored zero-knowledge proof (ZKP)
protocol that is compatible with our FE scheme and ensures
output verifiability. To satisfy atomicity of payments we
build Agora atop a blockchain supporting smart contracts.
Finally, we optimize Agora to support efficient batch purchase
of function outputs, while keeping the maintenance cost
constant regardless of the number of purchased outputs.

The operation of Agora (see Section 5 for details) consists
of the following three phases, as shown in Figure 1: (i) data
generation, (ii) data collection, and (iii) data brokerage. Genera-
tors gather and encrypt their data during data generation.
Following, during data collection brokers receive the indi-
vidual ciphertexts, and later on combine and decrypt them
to get a function output. This data generation-collection
cycle may be performed repeatedly. Finally, during data bro-
kerage consumers pay brokers for selected function outputs
and receive proofs of their correctness.

Agora supports brokerage of weighted sum function
outputs. Beyond the obvious use cases in statistical analysis,
Section 6 shows that even this restricted class of functional-
ities is expressive enough to allow using Agora for privacy-
preserving campaigns, linear regression [21] and computa-
tion of the first hidden layer of neural networks [22]. Agora’s
limitation to this class of functions is due to our choice of
FE scheme; other alternatives do exist but they come with
limitations of their own (see discussion in Section 8).

Implementation and experimental evaluation. We devel-
oped a working prototype of Agora on top of Ethereum.
Figure 2 depicts the software components of Agora, i.e.,
three off-chain applications (generator, broker, consumer)
and one DApp, and their interactions. The DApp consists
of two types of smart contracts, one deployed by brokers to
initiate data collection and one deployed by consumers for
data brokerage. Off-chain applications are implemented in
Java and interact with the DApp using a Web3]J-based pro-
tocol [23]. Our experimental evaluation shows that Agora

1/ Smart contract |
1A deployment |
<}~ Functional S !

i decryption F-gl,
o ZK-proof L
o generation YN

Ly

-

Collection K

\: sufficient[samples

Lock funds
Verify proof

valid]proof

Send Data| —»

-| Read Data| - » Functional

encryption

Payment N
N art
- -[Deployment} - » | % Contract &

Payment Payment

AT N .

Figure 2: Components and basic interactions between the
data generators, the data broker and the data consumers.

scales well with the number of generators and purchased
results. For example, when computing a weighted sum for
data from 1K generators, the gas cost for the data collection
smart contract is 31.62 USD, and decrypting the result takes
< 0.5 seconds. Similarly, the purchase of 10K different
results requires < 10 seconds of computing time. Using
our batch-purchase optimization, the total gas cost for result
verification is ~ 0.02USD (without this optimization, the
corresponding cost is 175.5 USD).

Overview of techniques. At first glance, it seems that our
three target properties can be achieved independently using
FE, ZKPs, and blockchain smart contracts. First, in standard
encryption anyone with a secret key can retrieve the original
data. In contrast, FE [24] allows the creation of a functional
secret key fsk that given a collection of ciphertexts can be
used to retrieve only a predetermined function of the origi-
nal data. E.g., in our aforementioned electricity smart meter
example, a special fsk could be used to decrypt only the
average of the readings and none of them separately. Hence,
FE can be used to guarantee the individual generators’ data
privacy. Second, ZKPs [25] allow a prover to convince a
verifier about the validity of a statement, without disclosing
any additional information about how it learned it. E.g.,
during data brokerage brokers could use a ZKP to guarantee
the correctness of a traded function output, without reveal-
ing the corresponding fsk. Finally, blockchains with smart
contracts support automated payments and rely solely on
the security properties of their decentralized architecture;
a marketplace built on such a decentralized architecture
has no need of a trusted third party to conduct payments.
However, it is not trivial to combine these techniques to get
a secure and efficient data marketplace. Indeed, we need to
address the following three issues.

1) Combining FE with ZKP. Unfortunately, existing FE
schemes cannot be readily combined with a ZKP to allow
consumers to verify the correctness of traded function
outputs, unless they also know the secret fsk. To avoid
this, we propose a new FE scheme with additional public
parameters. We build on the existing multi-client functional
encryption (MCFE) scheme of [26] by introducing a functional
public key fpk, that can be viewed as a public analog of the
fsk. This fpk that is known by the consumer will then be
used during brokerage as a “trust anchor.” Le., the broker

proves the validity of an output with respect to the fsk that
corresponds to this fpk.

We prove that even with the addition of fpk our scheme
remains secure under the standard MCFE security defini-
tion [26]. Additionally, we propose a new passive security
definition for MCFE against adversaries without fsk, ie.,
without decrypting capabilities, and we prove our scheme
secure also against this definition. These two definitions
differ in the following sense. The first protects against bro-
kers and guarantees that fsk reveals only function outputs
of the generators’ raw data, whereas the second protects
against other parties that should learn nothing about the data
(except purchased outputs). We stress that these definitions
are complementary and both are necessary for our system.

2) Achieving atomicity of payments. A different issue has to
do with atomicity of payments. Consider the data broker-
age phase. If the broker discloses the requested function
output alongside its corresponding proof of correctness to
the consumer, the latter may never pay. Similarly, if the
consumer pays ahead of time, the broker may never disclose
the requested output. Note that this problem is orthogonal
to output verifiability. To solve this, we can execute the
ZKP protocol on-chain using smart contracts. Particularly,
the consumer will time-lock funds, which will be transferred
to the broker if and only if the latter uploads a convincing
proof. However, if done naively, this can blow up the gas
cost or disclose the result to all blockchain participants.
Instead, we split the ZKP execution into off-chain and on-
chain. The bulk of the ZKP execution takes place off-chain
via direct communication of the parties and only a final,
lightweight, step is performed by the data-brokerage smart
contract in order to release the funds. Atomicity of payments
between data generators and broker is also achieved in
a similar way. The broker time-locks funds on the data-
collection smart contract. This reimburses each generator
automatically when the latter provides its data.

3) Handling batch purchases. Executing ZKP verification on-
chain introduces the following efficiency issue: Each output
purchase requires a separate smart contract transaction.
Hence, purchasing multiple outputs (as is typically the case)
may incur a prohibitive cost. E.g., the gas cost for the pur-
chase of one output with Agora is roughly 0.2USD, meaning
that a consumer that wants to buy 10K outputs must pay
1, 755USD. To avoid this, we observe our chosen ZKP can
be modified so as to run the on-chain verification step only
once, even for multiple purchases. This optimization makes
the gas cost constant, independently of the number of pur-
chased outputs (see experimental evaluation in Section 7.3).

2 RELATED WORK

Decentralized architectures. A line of previous works
which are built on decentralized architectures achieve the
desired functionality of marketplaces. The authors of [27]
propose a solution where participants exchange data via
a blockchain that records their interactions. Similarly, the
authors of [28] propose a marketplace to assist the collab-
oration between IoT device vendors and data consumers.
Also, the authors of [29] propose a model for trading data
generated by IoT devices using the scripting capabilities of
Bitcoin. Similarly, [30] implemented a protocol for sensors to

3

exchange data for Bitcoins. However, none of these works
considers data privacy.

Regarding decentralized architectures for data sharing,
[18] presents a blockchain-based design for distributed ac-
cess control and data management for IoT. The authors of
[31] develop an edge-IoT framework using Ethereum smart
contracts to control the resources lIoT devices can obtain
from edge servers. Storj [32] and FileCoin [33] introduce
distributed file storage systems, monetized by operating
over a blockchain. Enigma [34] uses blockchain for access
control and enables sharing of off-chain stored data. Data
privacy is not ensured in any of the above proposals.

Private data marketplaces. Considering works that aim
for data privacy, the authors of [16] propose a centralized
marketplace where the privacy of the data generators is
preserved via homomorphic encryption. A crucial difference
between FE and homomorphic encryption is that the latter
does not guarantee the privacy of each individual genera-
tor’s data. To bypass this issue, the authors of [16] rely on
a trusted third party for decryption, significantly relaxing
the threat model. Our MCFE scheme assumes a trusted
authority that generates keys initially. This is a strictly
weaker assumption, as the key-generating algorithm is run
only once and the trusted authority is never involved in the
protocol afterwards. In comparison, the trusted decryptor
of [16] is actively involved in all protocol phases, making
it a constant liability. Finally, it is worth noting that with
Agora there are ways to eliminate the trusted authority
entirely, by running instead a decentralized key-generation
procedure among the data generators (at an additional one-
time overhead) [35], [36].

A different approach is followed in [17], based on
differential-privacy (DP)-however, that work does not con-
sider output verifiability. DP relies on perturbing the data
with noise, hence the results have an inherent error margin.
We note that DP and encryption can potentially be used
jointly, as they guarantee orthogonal notions of privacy.

The authors of [37] list necessary privacy requirements
for the exchange of healthcare data and discuss how a
blockchain can be used for that purpose, however, they
do not provide any concrete solution. Finally, the authors
of [15] design a decentralized privacy-preserving crowd-
sourcing architecture where they aggregate private values
without compromising the privacy of the data contributors.
Their solution relies on secure hardware to guarantee the
validity of the computed outputs, however, recent works
have clearly demonstrated that secure hardware can be
compromised [19], [20]. Similarly, requiring the existence of
a trusted entity for the data exchange is not ideal (e.g., in
case it is compromised or misbehaves).

Verifiability in FE. The notion of verifiability in the context
of functional encryption has been examined before in [38]-
[40]. However, we point out that the security property
proposed in these works is different than ours and they
do not guarantee our desired output verifiability. In par-
ticular, their adversarial model includes the key-generating
and encrypting parties in FE, whereas they consider the
party holding the fsk to be honest. Therefore, their security
property is orthogonal to ours.

3 PRELIMINARIES

Negligible function. By negl : N — R we denote a negli-
gible function, i.e., for every positive polynomial p()) there
exists a A\g € N, such that for all A > Ag : negl(\) < 1/p(N).

Functional encryption. FE and multi-input FE enable the
control of the amount of information that a specified re-
ceiver can decrypt from ciphertexts [24], [35]. With multi-
input FE a designated party using a functional secret key
fsk can decrypt only a specific function of the encrypted
data, contrary to standard encryption. Concretely, given
N ciphertexts c1,c2,...,cy with corresponding plaintext
values x={z1,%2,...,2x} and an fsk for a pre-agreed
function ¢, the decrypting party can only access the value

¢ (21,22, ...,2N), and nothing else. In particular:
fsk fsk
ci > x;, but{ci,co,...,cn} — ¢ (z1,22,...,2N)

FE was first defined in [24] and subsequent works proposed
general-purpose schemes that can work for any polynomial-
time computable ¢ [41], [42]. However, such general-
purpose FE schemes are based on strong assumptions and
rather inefficient primitives (such as indistinguishabiliy ob-
fuscation of multi-linear maps), limiting their applicability
for adoption in practice. On the other hand, if we limit
the supported functions to linear arithmetic computations, a
number of works proposed schemes with support for inner-
products [43], [44], the most efficient of which are based
on different versions of the ElGamal cryptosystem [45]. In
Agora we use the multi-client functional encryption (MCFE)
of [26], the most efficient adaptively secure actively-secure,
inner-product, recent FE scheme, as a baseline, on which
we expand to satisfy our model. MCFE supports multiple
clients, who produce their ciphertext individually and inde-
pendently, without the need for interaction among them; a
crucial property in our model.

Zero-knowledge proofs. ZKPs [25] are protocols between
provers and verifiers. Given a statement x, a prover wishes
to prove to a verifier that there exists witness w such that
(x,w) € Ry, where Ry, is the corresponding relation of the
NP language L. A ZKP achieves two security guarantees:
(i) soundness, i.e., no cheating prover can convince the veri-
fier for « ¢ L, and (ii) zero-knowledge, i.e., the verifier learns
nothing about the witness w (besides its existence).

A special case is referred to as X-protocols [46], [47],
which are very efficient schemes that can be used (among
other things) for proving certain algebraic relations among
“ElGamal-style” ciphertexts. The prover initially makes an
announcement, the verifier responds with a challenge and
the prover answers with a response. Non-interactive zero-
knowledge (NIZK) proof schemes eliminate the need for
message exchange between the prover and the verifier.
Instead, the prover generates a proof for a statement and
an algorithm by which a verifier can use to verify the proof.
In particular, we consider the E() protocol [48, Ch. 5.2], that
is used to prove that a given tuple g, h, g¥, hY, is indeed
a Diffie-Hellman (DH) tuple, i.e., the third and the fourth
terms are computed by raising the first and the second to the
same exponent (assuming a cyclic group G with prime order
p and generators g, h). Figure 3 shows its NIZK version
(assuming a hash function H modelled as a random oracle).

Common Inputs: G, g,p, H(g, h, g¥, h¥)
Witness: y
Prover:
1: Choose v € Z, uniformly at random. Set by < g¥ and by < h"
2: Compute ¢ < H(g,h,g¥,hY,b1,b2) and set z + v + cy
3: Send to verifier (b1, ba, 2)
Verifier:
4: Compute c < H(g, h,g¥,hY,b1,b2)
5: Check that g* = b1 (g¥)° and h* = by (hY)".

Figure 3: EQ-(X—)protocol for the DH tuple (g, h, g¥, hY).

Blockchain and smart contracts. In the seminal paper from
2009 [49], Satoshi Nakamoto proposed Bitcoin. Its under-
lying technology is known as a blockchain and has since
been widely used as a tool for building secure distributed
ledgers. Blockchains are maintained by distributed systems
of Internet-connected nodes. Each block in the chain con-
tains data generated by users and information necessary for
its operation. The most popular blockchain application is
currency exchange. However, blockchains have also been
used to store other types of data and support executable
scripts. Such scripts are known as smart contracts and the
most prominent blockchain that supports them is Ethereum.
Smart contracts contain methods and variables that define
their state. After its deployment, a smart contract acquires
its own Ethereum address. Reading data from a smart
contract is free, while transacting with a contract, i.e., by
creating it, or interacting with it via a method and changing
its state (by submitting or altering data) requires gas and
time. The number and type of instructions the method
executes defines the amount of gas needed for the trans-
action, and is called gas cost. Whenever a transaction is
created, it is processed by the network before altering the
state of a contract. Transaction owners specify the gas price
they are willing to pay, affecting accordingly the blockchain
transaction processing time.

4 MCFE SCHEME OF AGORA

Here, we present the underlying MCFE scheme of Agora,
which extends the state-of-the-art scheme of [26]. Our con-
struction is a modified version of [26] by adding as a
public parameter the public-key equivalent of fsk. This will
then allow us to accommodate zero-knowledge proofs of
correctness for the function outputs, (in Agora, this will
be necessary during data brokerage, see Section 5.2). We
denote by M the MCFE scheme of [26] and by M’ our new
MCEFE scheme. Following M, M’ supports weighted sums
between a known vector of weights w = (wy,ws, ..., wy,)
and a plaintext vector x: wTx.
M/’ consists of the following four algorithms:

« SetUp(1*): Takes as input the security parameter A and
generates a prime-order group G := (G, p, g) of an addi-
tive cyclic group G of order p for a 2)\-bit prime p, whose
generator is g, and ‘H a full-domain hash function onto
G2. Tt also generates the encryption key of each generator
8; = (sl(-l), 352)) s 72 fori = 1,...,n. The public param-
eters mpk consist of (G, p, g, H), while the master secret
key is msk = {{sgl), 552)}, {sgl)7 552)}, ce {sg), 3512)}}.

o DKeyGen(msk, w): Takes as input msk and a vector of
weights w and outputs a functional decryption key fsk =

(>, wis; s SO WS, st)) € Z2 and a functional public
key fpk = (w, g2i=1 v s gZ",le s) € Z' x G*.

o Encrypt(s;, z;,t): Takes as input z;, the value to be en-
crypted, under the encryption key s; and label ¢. It com-
putes u; := H(t) = (u ,E” ug)) € G?, and outputs the

@

el
ciphertext ¢;(t) = u(l) ’ uﬁ” "¢t eG.

o Decrypt(fsk,t,c(t)) Takes as input the functional decryp-
tion key fsk, a label ¢, and a vector with the n ciphertexts
c(t) from all the generators. It computes u; = H(t),
[Ty ci(t) /g St vl DT wesl) = w0,
and solves the discrete logarithm to extract wTx(¢).

We now prove that M is actively secure as per [26, Definition

2], by a reduction to the security of M. For completeness we

provide the active security definition in the Appendix.

Theorem 1. Assuming M is actively secure, so is M.

Proof. We prove this by contraposition. We consider a PPT

adversary A’ that has non-negligible probability ¢ of win-

ning the IND-Security game for M’. We will show that an
adversary A can use A’ to win in the IND-security game for

M with non-negligible probability.

o Initialization: A receives mpk from C and runs A’ on input
(1%, mpk).

o Encryption queries QEncrypt(i,z°,z',(): When A’ issues
an encryption query, A forwards it to C, receives the
ciphertext Cy; and gives it to A’.

o Functional encryption key queries QDKeyGen(f): When A’
issues a query, A forwards it to C who gives back
fsk = (w,> 1 =, w;S;) DI])wz) A computes the
values gXi=1 wis; Z'Lfl wi S< and returns to A’ both
fskand fpk = (w gzl 1 wis| gzr 1“”9(2)).

o Corruption queries QCorrupt(i): When A’ issues a query,
A forwards it to C to receive key s; of the corresponding
party and returns it to A’

o Finalization: A’ sends b’ to A who forwards it to C.

A runs in polynomial-time as it runs the probabilis-
tic polynomial-time (PPT) adversary A’ and additionally
performs polynomial-time operations (i.e. exponentiations).
Moreover, A perfectly emulates the challenger that A’ is
expecting to communicate with while playing the IND-
Security game of M’, which means that the view of A’ is
identical in both cases. This happens because g is already
known to A from the mpk, and given (g, fsk) A can
compute the unique fpk. Therefore, considering that A’ has
a non-negligible probability € of winning the IND-security
game of M’, A has also the same non-negligible probab1hty
e of winning the IND-security game of M.

Passive security definition. As stated before, we use our
MCEFE scheme in the context of an Ethereum Dapp where
parties have access to the fpk and the individual cipher-
texts of the generators. These parties should not be able
to infer any information about the generators’ raw data.
This is in contrast with active security that considers only
an adversary that knows fsk and can decrypt functional
ciphertexts (see Appendix for the definition of active secu-
rity [26]). Thus, we need to capture this class of attacks in
a new security definition. Below we provide a game-based
definition of passive security for MCFE schemes with fpk.

5

Definition 1 (Passive-IND-security game for MCFE
schemes). Let us consider an MCFE scheme over a set of n
senders. No PPT adversary A should be able to win the following
security game against a challenger C:

o Initialization: the challenger C runs the setup algorithm
(mpk,msk,(s;);) < SetUp(1*) and chooses a random bit
b <+s{0, 1}. It provides mpk to the adversary A.

o Encryption queries QEncrypt(i,x°,x',0): A has unlimited and
adaptive access to a Left-or-Right encryption oracle, and re-
ceives the ciphertext Cy;, generated by Encrypt(s;xb,(). We
note that any further query for the same pair (¢, 1) is ignored.

o Functional public key queries QPKeyGen(f): A has unlimited
and adaptive access to the DKeyGen(msk, f) algorithm for any
function f of its choice. It gets the functional public key fpk.

o Finalize: A provides its guess b’ on the bit b.

A wins in the game if b’ = b and we remark that a naive
adversary, by sampling randomly b’ has probability of winning
equal to 3. We denote the advantage that A has of winning as
AdvPasstve=IND(A) and we say this MCFE is Passive-IND-
secure if for any PPT adversary A, AdvPassive=IND(f) =
|Pri/ = 1|b = 1] — Pr[b’ = 1|b = 0]] is negligible.

We now prove M’ satisfies our passive security defi-
nition. The proof includes Lemmas 3, 4, which we prove
separately in the Appendix in order to improve readability.

Theorem 2. M’ is passively secure under the DDH assumption.

Proof. We consider the following encryption scheme & =
(KeyGen,Encrypt,Decrypt) which resembles both a labelled
encryption scheme [50] and M’, for n = 1.

o KeyGen(1*): Takes as input the security parameter A
and generates a prime-order group G := (G,p,g) of an
additive cyclic group G of order p for a 2\-bit prime p,
whose generator is g, and H a full-domain hash function
onto G?. It also generates the keys s = (s(1), s(2)) 572
and pk = (gs(1>
of (G,p,g,H).

« Encrypt(s, z,l): Takes as input z;, the value to be en-
crypted, under the key [s] = [s(!), 5(?)] and the label .
It computes [ug] := H({) = [uél),ug)] and outputs the

s 52
ciphertext ¢, = u(l) : 1(,2) < g°.

« Decrypt(s,f,c): Takes as input the key [s] = [s(V,5(2)], a
label ¢, and the C1Fhertext ce. It computes [ug] = H({),

ce/ UEU “z) =g

rithm to extract and return x.

, gs()). The public parameters pp consist

, and solves the discrete loga-

We consider the following indistinguishability game:

o Initialization: C runs Keygen and chooses b <s{0,1}. It
returns pp and pk to A.

o Oracle queries QOracle((): A has access to a random oracle
to which it provides a label ¢ and returns a tuple (v, v2).

o Encryption queries QEncrpyt(z®,z',¢): A chooses 2°,z!
and 1ssues an encrpytion query to C who returns

(1)3 <2>5("t

Ce = : g
. Fzmzlzzatzon A sends its guess b’ on the bit b to C, and
this procedure outputs the result 8 of the security game,

according to the analysis given below. A wins if 5 = b.

The output 5 of the game depends on the following condi-
tion. We set the output to 8 « b/, unless QEncrypt(¢) has

Legend Data Generator: ‘\3_-‘ {Data generators get rewarded for their data samples P — ,
Secretkeys | ™ € -0 . 21_6 _Data Broker _ i i
ocreLreys &) & i Data broker deposits funds for 'thel—| ! !
Functional | w8 ! payment of the data generators ! '
unctional ot t | J 1
Secret Gmr I . ! | @ | ! !
Key (FSK) | \,;;v\. = | | i Data Consumer pays for a g i
—_— e A P Machine/D set of encrypted results and /\—& | i
Eggmp‘ed s VB | !Learnairfg IRani:fi'onsi learning outcomes and | |
v land Learning Models | _ receives the outcomes _._E1 _ ‘] i |
ZKP f' H lAgora DApp | accompanied with ZKPs © ! '
o | p—————— | 1
: | A DA i i
P! gora DApp E Data Broker has ! '
| 1 |Producesan {3~ the FSK and can 1 |
v encrypted [Encrypted decrypt the result . i
;o result Result [i

[

Figure 4: Agora allows data consumers to pay for functions of privacy-sensitive information using smart contracts and
cryptographic primitives that guarantee the integrity of the produced function outputs.

been issued for the same label ¢ more than once, in which
case we set 3 < {0, 1}. A wins in the previously described
game if § = b and we remark that a naive adversary, by
sampling randomly $3, has probability of winning equal to 1.
We denote the advantage that A has of winning as Adv® (A),
where Adv® (A) = |Pr[=1/b=1] — Pr[8 = 1|b = 0]|.

Lemma 3. For all PPT adversaries A, Adv®(A) < negl()\),
under the DDH assumption.

Lemma 4. Assuming Adv®(A) < negl(\), then M' is pas-
sively secure.

O

5 AGORA DATA MARKETPLACE

Agora is a round-based system running atop a blockchain,
with three phases: data generation, data collection, and
data brokerage. It requires a one-time setup during which
all keys are generated. This is performed by a trusted
authority who does not participate in the system again
(or, alternatively, by a decentralized protocol among the
generators [35], [36]). Data generation and data collection
happen sequentially and periodically while data brokerage
may happen independently and at any time. We denote
by N the set of data generators, and let |N'| = n. During
the data generation phase of round ¢, the i-th generator
produces data x;(t) and encrypts it into a ciphertext ¢;(t)
using our MCFE scheme. Agora supports inner product
functionalities, i.e., weighted sums between the plaintext
vector x(t) (21(t), 22(t),...,z,(t)) and a known vec-
tor of weights w = (wy,wa,...,w,): WTx(t). We define
X(t) := g™ and C(t) := [} ci(t)™:. Figure 4 depicts
the participating entities and their interactions.

5.1

Brokers initiate a data collection campaign by deploying
a smart contract on the Ethereum blockchain to attract
generators. A broker forks and deploys SClnnerProducts,
a smart contract on Ethereum, and deposits funds onto it.
The Ethereum address of SCInnerProducts is broadcast to
generators who can use it to share their encrypted data.
SClnnerProducts is in charge of collecting the ciphertexts,
reimbursing the generators, and calculating the encrypted
weighted sums of the plaintexts using our MCFE scheme.

Data Collection

AppendCipher
ClpherCollectlon PE E (

— |CollectlonEnded|
setEligible() O
______________ I
S el
{ProcessingEnded | - ! _Legend “I
----- .
i -.ﬁ_v'ézf{: '

ProdCipher ()

Figure 5: States and methods of SCInnerProducts.

In more detail, SClnnerProducts transitions between
four states: SetUp, CipherCollection, CipherProcessing, and
Terminated (see Figure 5). This happens either via a received
transaction, or via automatically triggered events. During
the SetUp state the owner of the contract (i.e., the broker
that sponsors the campaign) whitelists the addresses of
the participating generators using the SetEligible method.
Then, the broker specifies the duration of the ciphertext sub-
mission period and the total number of rounds, changing
the state of the contract to CipherCollection and the data
collection phase begins. During round ¢, generators submit
their ciphertexts ¢;(t) using AppendCipher method. After
receiving all n ciphertexts, SCInnerProducts goes to the Ci-
pherProcessing state, i.e., the broker triggers the ProdCipher
method to calculate C(t). The contract then switches again
to CipherCollection, starting the collection for round ¢ + 1.
This process is repeated until the funds on the smart contract
are depleted or the termination phase is manually triggered.

At any time, the broker can retrieve the weighted sum
for a round ¢ by retrieving C(t) from the blockchain, and
use the fsk to decrypt it.

5.2 Data Brokerage

Interested consumers can purchase weighted sum outputs
from brokers. However, remember that this raises the ques-
tion “how can a consumer be certain that the purchased value
for round t is the correct decryption of C(t)?” Note that the
broker who has access to the fsk can easily manipulate
the decrypted output. Agora addresses this by requiring
the broker to provide a ZKP proof for the fact that the
provided result is the decryption of C'(t) under the fsk that
corresponds to the fpk held by the consumer. Recall that
every fpk is uniquely tied to its respective fsk and both are

Broker (G, g, fsk®, u,®)

t <

Ethereum

Consumer (¢, H(-), g, G)

Pick round ¢ and send it

Sample a «sZ,

Compute and send g°, g“‘fSkU), (ugi))“'fSk(i)

Compute H(t) = (uim» ng)) ‘

) Sa-Fsk(®
L Fek(® (3) fs
;ga/ ga fs , Uy

[Broker and Consumer engage in 4 xEQ-protocol execution (Figure 3)]

Send transaction tx(a) -

@

Get payment -

SCPayments

Check z < g®

Deploy SCPayments
- Send transaction tx(g%=z)

Read a from SCPayments

Compute uina'ﬁk(l) ~u(2)a'f5k(2)

t
a-fskD) a fsk® _ _
Get C(t)/(uM 7" L@@y

®

Figure 6: ZKP-protocol of Agora between a broker and a consumer for the trading of one weighted sum.

generated securely during the setup phase of the system.
Hence the consumer regards fpk as an anchor trust. Below
we present our ZKP in detail.

Assume a consumer that wishes to purchase the de-
cryption of C(t). Recall that, by construction, this is of the
form C(t) = ry - 7o - g™ where r; = uﬁ”fsk‘“’ and
ro = u§2)f sk are known to the broker (see Section 4). In
practice, it suffices for the broker to send r; and 73 to the
consumer who can retrieve g% X(*) as C(t) /(r1-73). (To avoid
having to solve the discrete logarithm, the broker may also
send wTx(¢) to the consumer, who checks the purchased
result with one exponentiation.) The problem is to prove
that 71 and ro are the correct terms for C(t). This can be
done by using the EQ X-protocol that we described in
Section 3, for the Diffie-Hellman tuples (g, g/ u{") 1)
and (g, gfsk®, uf), rg). The first two terms of each tuple are
part of the public parameters and the fpk respectively, and
the consumer can calculate directly the third term via the
pubic hash function H. By running two E(Q protocols, the
broker proves that the third and fourth term in each tuple
were produced by raising the first and second ones to the
same exponent, which suffices for convincing the consumer
about the correctness of r; and r5.

The above guarantees output verifiability. However,
there still remains the challenge of atomicity of payments.
E.g., if the broker sends 71, 72, and the proofs before getting
paid, the consumer has no motivation to pay, having already
acquired the requested information. We can avoid this by
running the ZKP on a smart contract that will automatically
transfer the money to the broker upon successful verifica-
tion. A naive way to do this would be to ask the broker to
upload r; and 7 together with their £Q proofs, in order to
get paid. In this way, the broker is guaranteed payment but
every blockchain participant can now compute the result!

We deal with this by running the two E(Q protocols
for “blinded” values r{,r§, where a is a value randomly
chosen by the broker. To convince the consumer that
it used the same a for these, the broker provides two
additional EQ proofs for tuples (g, g%, go, ga-fsk"),
(g, ngk(z) ,9%, g“'f“"k<2)). The consumer then verifies all four
proofs. Up to this point, all interactions between broker
and consumer take place off-chain. Only after verifying the
proofs the consumer deploys a smart contract SCPayments
that transfers funds to the broker if and only if the latter
uploads the discrete logarithm of g* with respect to g. Af-

terwards, the consumer computes r; = (rf)“il, fori=1,2,
and uses them to calculate the result, as explained above.

The methods of SCPayments are as follows. The con-
sumer uses SetPayment to set the amount of the payment,
upload ¢, and specify the deadline until which the funds
will be time-locked in the contract. The broker uploads
a using the ValidityCheck method, upon whose successful
execution the broker receives the locked funds. The con-
sumer may use the WithdrawPayment method to reclaim the
deposit if the deadline expires.

In this way, a consumer that aborts without deploying
SCPayments learns nothing; at the same time, a consumer
that follows the protocol is convinced about the correctness
of the result. Moreover, an honest broker always gets paid,
while no third party can infer information about the result
(as the first part is executed off-chain via direct communica-
tion between the parties).

The detailed protocol, as depicted in Figure 6, is de-
scribed in the following five steps:

(1) The consumer selects the round ¢ and sends it to the
broker, while also computing H(t) = (ugl), u§2)).
(2) The broker chooses a < Z, uniformly at ran-

(i)a~fsk(i)
dom and computes u;

i . a-fsk:(")
g“,g“'f sk), ugb) to the consumer. The two enti-

ties run four instances of the F() protocol for the tu-

- sk
ples (g,gfslc“)’ga’gwfsk(l))’ (g7ga~fsk(1)7u§1)7u£1)n s

@ k(2 @ (2) (2)a-fsk® ,
(9:97F7 g%, g T*), (g, 9" T+ 0 uf®). If

any verification fails, the consumer aborts.

(3) The consumer deploys SCPayments storing g,z = g°
and programs it to release a payment to the broker upon
submitting the discrete logarithm of g¢, on time.

@ The broker submits a to SCPayments. The contract
checks whether g* = z and proceeds accordingly.

(5) If the contract was successful, the consumer computes

for i = 1,2 and sends

—1
1 a<fsk(1) 2 a-fsk(z) @
() (u§ RSN — X(t)

Batch purchases. In practice, it is realistic to assume that
most consumers would be interested in purchasing multiple
results. According to the protocol described above, this
would increase the gas cost associated with verification
linearly with the number of purchased results. Ideally, we

!AgoraNNi Iagora Data] |
{_DApp | | Broker | Offchain computing

Figure 7: Architecture of a neural network based on Agora.

would like to accommodate batch purchases, where the on-
chain cost remains constant regardless of the number of pur-
chased results. We optimize Agora to achieve this as follows.
For purchasing D results, the two parties run the off-chain
verification phase for all of C(t1),C(t2),...,C(tp) using
the same a. Then, the on-chain phase is executed via a single
SCPAyments smart contract for a with one ValidityCheck
execution. In this way, while the off-chain computation
and communication increases with D (it requires 4D EQ
protocol executions, or 2D + 2 for the same function), the
on-chain cost remains constant.

6 MACHINE LEARNING APPLICATIONS OF AGORA

Machine learning (ML) services assist data owners to in-
terpret their data, but require copying them to centralized
machines. In distributed settings, however, data are split
among multiple computers. The most popular distributed
and privacy-preserving ML algorithms are based on secure
multi-party computation [51], while recent proposals also
employ DP techniques [52]. Training traditional ML models
require a few iterations to converge [53]-[55], while the
training of deep learning models requires multiple itera-
tions [56]. Agora can support regression [57] and a com-
ponent neural networks [58], two popular ML algorithms.

Regression algorithms estimate the relationship between
two or more variables. For example, given the reading
of an electricity smart meter at a given time, a regres-
sion algorithm can predict the number of people in the
apartment. Agora supports regression via smart contracts
similar to SCInnerProducts that store weights that have
been derived by training. For example, let us consider
n owners of fitness trackers paired with mobile applica-
tions that summarise all the data x4 (t) of the day ¢ and
use Agora to encrypt x(t) and share it. A promotion
company has composed a privacy-preserving regression
model that predicts the probability of finding consumers
for targeted advertisement among the n users. The pro-
motion company can clone SClnnerProducts and deploy
it with the weights w”™ to be the ones found by the
training of the model and receive the corresponding fsk =
{fsk), fsk®) = {3 wf™s", S, w!™s”)} in order
to integrate the trained model. Given the decrypted result,
the last step (i.e., the sigmoid calculation) is performed by
the promotion company.

Neural networks are graph-based layered computing
systems composed of three types of layers. The first is
called input layer, the last is called output layer and all
the layers in between are hidden layers. The input layer
receives data and uses a number of predetermined weights
to copy weighted inputs from every node of the input layer
to every node of the first hidden layer (FHL). This means

Name Gas Needs Cost
Deployed Smart Contracts
SCPayments 2461646 0.59
SClnnerProducts 2934214 0.71
SCPredictionModel 3514457 0.85
SCNNPrivatelnputLayer (m = 10) 8736644 2.10
Smart Contracts Methods
SetEligible 1335488 0.32
SetWeights 573843 0.14
GoToCipherCollection 41921 0.01
GoTolnnerProduct 26712 <0.01
AppendCipher 99930 0.02
SetPayment 31906 0.01
ValidityCheck 72864 0.02
WithdrawPayment 27825 <0.01

Table 1: Deployment and transactional cost per method of
smart contracts in Agora. The cost (USD) is calculated based
on the ETH price on 10-7-2020.

that each node of the FHL stores a weighted sum of the
original datapoints. One can clone SClnnerProducts and
deploy a SCNNPrivatelnputLayer smart contract and store
as many vectors of weights as the nodes of the FHL. Let
m be the nodes of the FHL and c(¢) the encrypted data
generated by n generators. Then SCNNPrivatelnputlLayer
needs to store an m X n array W and calculate m weighted
sums via W - ¢(t) = hy € ZFI*!. For each node in the
FHL, an fsk needs to be calculated. h; can be then de-
crypted by the broker. Splitting a neural network in two
parts partially preserves data privacy since raw data are not
transmitted [22]. Figure 7 depicts the architecture of a neural
network that is based on Agora. SCNNPrivatelnputLayer can
calculate the encrypted values of every node of the FHL.
These can be then decrypted by the broker and forwarded
to the consumer for the computation of the remaining layers.

7 PERFORMANCE EVALUATION

We implement a working prototype of Agora over
Ethereum, using Solidity [59] for the development of the
contracts and Java for the off-chain applications. We initially
measure the cost for deploying the contracts and executing
transactions in gas and USD. Next, we examine the impact
of the selected gas price on the time needed for processing
one transaction through the Ethereum network. After that,
we analyze the computation time and communication size
of the off-chain parts of Agora. Finally, we measure the
transaction cost per weighted sum, for batch purchases.

Setup. We develop SCInnerProducts and SCPayments with
bytecode size 16KB and 10KB respectively, and deploy
them via the Remix IDE [60] on the Rinkeby Ethereum
testnet [61]. Additionally, we deploy two cloned versions
of SCInnerProducts, named SCPredictionModel and SCN-
NPrivatelnputLayer corresponding to the two use cases pre-
sented in Section 6. We connect the developed applications
to the deployed smart contracts using the Web3J library
[23] and monitor the created transactions using Etherscan
[62]. Each generator is connected to the Rinkeby network
with a unique Ethereum address. We implement our MCFE
scheme over the Secp256k1 elliptic curve group [63] using

100 135
__130F USD Cost
«:g 125

=120
R3]

3115
2110

S105
100
95
0.1 90

S
USD (logscale)

1 10

Number of Data Generators

Gas B2

Number of Bits

100 18 1 Number of blocks 1
[}
= 2 0.1 2
5 = iof g
g ¢ 5
Eiii E 8 97 0019)
8 E =)
0° Z O
0.001
£ £ k4
15 20 25 30 10 0001005 01 05 1 5 0.0001

Gas Price (Gwei)

(a) Gas needs and cost of ProdCipher for (b) Gas needs and cost of ProdCipher for (c) Transaction verification time and cost

different number of generators.

different weights, for 1000 generators.

of AppendCipher for different gas prices.

Figure 8: Miscellaneous gas and time measurements of different components of Agora.

the Solidity library of [64] for the smart contracts and the
Bouncy Castle library [65] for the off-chain applications. For
the hash function H, we use the index-based solution with
SHAZ256 (see, e.g., [66, App. A]). For the performance evalu-
ation of the off-chain components, we conduct experiments
on a machine with Intel i7-8750H CPU @2.20 GHz, 32 GB of
memory and 1 TB hard drive.

7.1

Deployment costs. We measure the (one-off) deployment
cost of each smart contract, which depends on the size of
its bytecode. Table 1 lists the deployed contracts together
with their gas needs, in wei, and a mapping to US dollars
using the ETH price of 10 July 2020 (1 ETH = 240.86 USD).
SCPayments requires the least gas among the four since it
does not store multiple variables and does not have com-
plex methods. SCInnerProducts costs more to deploy, as its
methods require more memory and perform elliptic curve
operations. SCPredictionModel and SCNNPrivatelnputLayer
cost even more to be deployed, since they need an a-priori
initialization of the weights acquired from the training of
learning models. For SCNNPrivatelnputLayer we report the
gas needs for m = 10 nodes in the FHL. For every extra
node it increases by 580243, as shown below:

Gas Measurements

NN _deployment_gas = 580243 - m + 2934214

Transaction gas needs. In contrast to deployment costs,
triggering a method requires gas if it changes the state of
the contract. Table 1 contains all the methods of SCinner-
Products and SCPayments that have fixed gas needs. SetEl-
igible, GoToCipherCollection and GoTolnnerProduct are the
same for SClInnerProducts, SCPredictionModel and SCN-
NPrivatelnputLayer since they only change local variables
in the contracts. SetWeights has a variable cost, depending
on both the bit-length L of the weights and the number of
generators n. We report the cost for 20-bit weights and 100
generators and note that its cost grows linearly with n, while
variable L affects the cost marginally.

Whenever CipherCollection ends, the broker triggers the
ProdCipher method to calculate the weighted sums of the
stored vector of weights with the encrypted values. Simi-
larly to the previous method, the gas needs of ProdCipher
depend also on n and L. As ProdCipher is likely to be called
multiple times and is of immediate financial interest to the
broker we examine its behavior separately. Figures 8a and 8b
depict the gas cost of the ProdCipher method for n =

10, 50, 100, 250, 500, 1000 and L = 1,5,10,15, 20, 25, 30,
respectively. As expected, the gas needs, and thus the cost
in USD, increase linearly with n, while we see again that
increasing L rises marginally the gas needs of the method.
Triggering ProdCipher in the SCPredictionModel smart con-
tract requires the same gas since the methods are identical.
In the case of SCNNPrivatelnputLayer, the gas needs of
ProdCipher are multiplied by the nodes m of the FHL.

Gas price vs. transaction processing time. Until now we
use the gas price of 1 GWei = 10~Y ETH, the Rinkeby testnet
default, to map the gas needs to USD. After generating
25 AppendCipher transactions, we measure the average
number of blocks needed until the transaction is processed,
which is 1.36 blocks (20s), with a standard deviation of 0.7
blocks. Generators may choose a different gas price, e.g.,
higher (to speed up the transaction processing), depending
on the duration of each round. Motivated by this, we exam-
ine the verification time of transactions for AppendCipher
for gas prices of [0.01,0.05,0.1,0.5,1,5] GWei. Figure 8c
shows that, for 0.01 GWei, transactions are processed on
average after 6 blocks (90s) with a standard deviation of 3.4
blocks. Hence, in applications with high round duration,
consumers may select a gas price of 0.01 GWei and be able
to submit more than 1000 samples with a total cost of less
than 1 USD and with high confidence all of them will be
processed in time. Notably, even with the default gas price
(i.e., 1 GWei) the cost of AppendCipher is close to 0.024 USD.
We also observe that gas prices higher than 1 GWei do not
guarantee significantly faster transaction processing.

7.2 Off-chain Computation and Communication

We measure the performance of the generator producing a
ciphertext, the broker decrypting the ciphertexts and gen-
erating the ZKPs required during data brokerage, and the
consumer performing the ZKP verification.

Encryption and decryption. The average time for a gener-
ator ¢ to produce ciphertext c;(t) is less than 0.14ms with
standard deviation < 1%, and a ciphertext size of 64 bytes.
After the termination of ProdCipher, the broker uses fsk
to calculate " X(*). Retrieving wTx(t) requires solving the
discrete logarithm of g *(*) which is only possible for small
data sizes. In our experiments, we set wTx(t) € [0,23% — 1].

Our Java implementation of the broker precomputes the
discrete logarithm of all possible 32-bit messages ahead
of time. In fact, it creates a conceptual table of the form
< gV wTx(t) > with 232 entries. Each entry is of length

1 ms

20minr pyata Consumer B
o) Data Broker
S 1 minf
&
S 10secr
=2
) %o
E lsec K
=
0.1 secr g
i
10 ms &
B X
g S
1

10100 TOK T00K 1
Number of Datapoints

Figure 9: Computation time for broker and consumer during
data brokerage.

257+32 bits since it stores an elliptic curve point in com-
pressed form (the y-coordinate is represented by a single
bit) and 32 bits for the weighted sum output, and total size
of this table is 380GB. Since we cannot load it to memory,
we split it into 2!9 sets of 2!3 tuples indexed by the last 19
bits of the x-coordinate of the curve point. For each set, we
build a hashmap with the elliptic curve point as the key and
the weighted sum as the value. Each hashmap is stored in a
file with size 721KB.

For our choice of parameters, the average decryption
time is approximately 422ms with a standard deviation
of < 3%. This is strongly dominated (> 99%) by the file
loading time. For smaller message spaces, a single hashmap
for all the values can plausibly be stored in main memory,
eliminating the file loading time per decryption. E.g., for
wTx(t) € [0,2%° — 1], the hashmap file has size 2.95GB.
In this case, the average decryption time is 0.17ms with
standard deviation < 1%.

The reason we chose to follow this approach of pre-
computing and storing results is that it makes decryption
very efficient. Indeed, decrypting a ciphertext C(t) requires
a constant number of group operations, identifying the file
that stores the resulting elliptic curve point, and performing
a hashmap lookup to retrieve wTx(t). We remark that there
are other ways of solving the discrete log for small domains
e.g., using an online algorithm [67] that would require no
additional space but significantly worse decryption time.

Data brokerage. The computation and verification of the
ZKP proofs requires time both from brokers and consumers.
Figure 9 shows the computation time for the two entities,
as a function of the number of purchased weighted sums,
which clearly increases linearly. The communication size,
similarly, for D weighted sums is 1028 - D 4 512 bits (e.g.,
for 10K datapoints it is 1.23MB).

7.3 Transaction cost for multiple purchases

As shown in Table 1, the standard cost for a transaction
to purchase a single weighted sum is roughly 0.02 USD.
Depending on the application, this might be a significant
overhead over the price of the data as set by the broker. One
attractive feature of Agora is that it allows the batch pur-
chase of multiple weighted sums with a single transaction.
Figure 10 depicts the transaction cost per weighted sum in
USD with and without batch purchase. In the second case
a separate ValidityCheck transaction is required per resukt,
and we refer to it as the “naive” approach. Clearly, the one-

10

batch cost —+—
10+ naive cost

USD (logscale)
=

3
%

10 100 1K 10K 100K IM

Number of Outputs

Figure 10: Naive versus batch purchase transaction costs.

off transaction cost is constant and the “per weighted sum”
cost decreases linearly with the number of weighted sum.

8 CONCLUSION & DISCUSSION

In this work we proposed Agora, a blockchain-based data
marketplace where multiple generators share their en-
crypted data with brokers in a way that allows for the
efficient evaluation of inner product computation on the
underlying values with chosen weights, without revealing
the raw data. Consumers may opt to buy produced results
from brokers at any time and in batches. At a technical
level, Agora is built atop a blockchain supporting smart
contracts and uses two cryptographic techniques: a novel
MCEFE scheme for protecting users’ privacy (proven secure
against active and passive attacks), and a ZKP protocol
for ensuring the correctness of purchased values. Our ex-
periments demonstrated the feasibility of deploying Agora
in real-world settings, as it scales well with the number
of generators and through the batch purchases option the
gas cost for consumers remains constant, regardless of the
number of traded results.

On the use of blockchain. Deploying Agora on top of a
public blockchain guarantees atomicity of payments, i.e.,
no party can avoid payments. Alternatively, this could be
achieved by relying on a trusted third party for handling
payments (e.g., a bank or credit network). This would
eliminate the transaction processing cost and delays that are
induced by the blockchain. We stress that Agora is compati-
ble with this, assuming the existence of a “bulletin board” of
sorts, so that the consumers can verifiably purchase results
from brokers for respective generator-produced ciphertexts.
This bulletin board could be implemented with an online
platform deployed by the broker, assuming generators sign
and authenticate their ciphertexts.

Limitations and future work. Agora supports a relatively
small message domain, due to the discrete log computation
required for decryption, and it only supports weighted
sums. Moreover, it does not allow dynamic changes in
the group of generators. All three limitations are inherited
by the employed multi-client FE scheme. Other candidate
schemes exist, but they all come with limitations of their
own. State-of-the-art general-functionality FE schemes [41],
[42] are far from practical while the system of [68] supports
dropouts but has higher overhead compared to [26]. We
remark that by design, the Agora framework can work with
other FE and ZKP schemes. Future developments in these
cryptographic tools can result in improved performance or

enhanced functionality. Notably, we leave enriching Agora
with more functionalities, e.g., realizing quadratic functions,
as future work. We stress, though, that state-of-the-art FE
schemes for quadratic functions are not good candidates as
they rely on stronger assumptions and they do not consider
passive attacks as well. Hence, we need to develop a scheme
for quadratic functions that supports output verifiability in
order to be deployed over a blockchain.

ACKNOWLEDGEMENTS

This work was supported in part by Hong Kong RGC grant
ECS-26208318.

REFERENCES

(1]

(2]
(3]
(4]

(5]
6]

(71
(8]
(%]
[10]
(11]

[12]

[13]
[14]
(15]

[16]

(17]

(18]

[19]

[20]

P. T. S. Liu, “Medical record system using blockchain, big data
and tokenization,” in Information and Communications Security -
18th International Conference, ICICS 2016, Singapore, November 29
- December 2, 2016, Proceedings, 2016, pp. 254-261.

T. B. Murdoch and A. S. Detsky, “The inevitable application of big
data to health care.” JAMA, vol. 309 13, pp. 1351-2, 2013.

W. Raghupathi and V. Raghupathi, “Big data analytics in health-
care: promise and potential,” HISS, vol. 2, no. 1, p. 3, 2014.

Y. Sun, H. Song, A.]. Jara, and R. Bie, “Internet of things and big
data analytics for smart and connected communities,” IEEE Access,
vol. 4, pp. 766-773, 2016.

A. B. Zaslavsky, C. Perera, and D. Georgakopoulos, “Sensing as a
service and big data,” CoRR, vol. abs/1301.0159, 2013.

K. Zhou, C. Fu, and S. Yang, “Big data driven smart energy man-
agement: From big data to big insights,” Renewable and Sustainable
Energy Reviews, vol. 56, pp. 215 — 225, 2016.

N. C. Luong, D. T. Hoang, P. Wang, D. Niyato, D. I. Kim, and
Z. Han, “Data collection and wireless communication in internet
of things (iot) using economic analysis and pricing models: A
survey,” IEEE Communications Surveys & Tutorials, vol. 18, no. 4,
pp- 2546-2590, 2016.

“Cambridge Analytica,” https://cambridgeanalytica.org/.

G. Omale, “Gartner predicts for the future of privacy,”
https:/ /www.gartner.com/smarterwithgartner/gartner-predicts-
2019-for-the-future-of-privacy/, 2019.

“Public opinion on privacy,” https://epic.org/privacy/survey/.
“Microsoft Azure Marketplace,” https://azuremarketplace.
microsoft.com.

“Twitter Enterprice Data,” https://developer.twitter.com/en/
enterprise.

“Datacoup,” https:/ /datacoup.com/.

“Datasift,” https:/ /datasift.com/.

H. Duan, Y. Zheng, Y. Du, A. Zhou, C. Wang, and M. H. Au,
“Aggregating crowd wisdom via blockchain: A private, correct,
and robust realization,” in 2019 IEEE International Conference on
Pervasive Computing and Communications, PerCom, March 11-15,
2019, pp. 1-10.

C. Niu, Z. Zheng, F. Wu, X. Gao, and G. Chen, “Achieving data
truthfulness and privacy preservation in data markets,” IEEE
Trans. Knowl. Data Eng., vol. 31, no. 1, pp. 105-119, 2019.

C. Niu, Z. Zheng, E. Wu, S. Tang, X. Gao, and G. Chen, “Unlocking
the value of privacy: Trading aggregate statistics over private
correlated data,” in Proceedings of the 24th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, KDD 2018,
August 19-23, 2018, pp. 2031-2040.

H. Shafagh, L. Burkhalter, A. Hithnawi, and S. Duquennoy,
“Towards blockchain-based auditable storage and sharing of iot
data,” in Proceedings of the 9th Cloud Computing Security Workshop,
CCSW@CCS 2017, November 3, 2017, pp. 45-50.

F. Brasser, U. Miiller, A. Dmitrienko, K. Kostiainen, S. Capkun,
and A. Sadeghi, “Software grand exposure: SGX cache attacks
are practical,” in 11th USENIX Workshop on Offensive Technologies,
WOOT 2017, Vancouver, BC, Canada, August 14-15, 2017, 2017.

A. Biondo, M. Conti, L. Davi, T. Frassetto, and A. Sadeghi, “The
guard’s dilemma: Efficient code-reuse attacks against intel SGX,”
in 27th USENIX Security Symposium, USENIX Security 2018, Balti-
more, MD, USA, August 15-17, 2018, 2018, pp. 1213-1227.

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]
(33]

(34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

11

K. Chaudhuri and C. Monteleoni, “Privacy-preserving logistic
regression,” in Advances in Neural Information Processing Systems
21, Proceedings of the Twenty-Second Annual Conference on Neural
Information Processing Systems, Dec 8-11, 2008, pp. 289-296.

P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar, “Split
learning for health: Distributed deep learning without sharing raw
patient data,” CoRR, vol. abs/1812.00564, 2018.

Web3 Labs, “Where Java meets the blockchain,” http:/ /web3j.io.
D. Boneh, A. Sahai, and B. Waters, “Functional encryption: Defi-
nitions and challenges,” in Theory of Cryptography - 8th Theory of
Cryptography Conference, TCC 2011, March 28-30. Proceedings, 2011,
pp- 2563-273.

S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge com-
plexity of interactive proof systems,” SIAM]. Comput., vol. 18,
no. 1, pp. 186-208, 1989.

J. Chotard, E. D. Sans, R. Gay, D. H. Phan, and D. Pointcheval, “De-
centralized multi-client functional encryption for inner product,”
in Advances in Cryptology - ASIACRYPT 2018 - 24th International
Conference on the Theory and Application of Cryptology and Informa-
tion Security, Dec 2-6, Proceedings, Part 11, 2018, pp. 703-732.

J. Chen and Y. Xue, “Bootstrapping a blockchain based ecosystem
for big data exchange,” in 2017 IEEE International Congress on Big
Data, BigData Congress, June 25-30, 2017, 2017, pp. 460-463.

K. R. Ozyilmaz, M. Dogan, and A. Yurdakul, “Idmob: Iot data mar-
ketplace on blockchain,” in Crypto Valley Conference on Blockchain
Technology, CVCBT, June 20-22, 2018, 2018, pp. 11-19.

Y. Zhang and J. Wen, “An iot electric business model based on the
protocol of bitcoin,” in 18th International Conference on Intelligence
in Next Generation Networks, ICIN, Feb 17-19, 2015, pp. 184-191.

D. Woérner and T. von Bomhard, “When your sensor earns money:
exchanging data for cash with bitcoin,” in The 2014 ACM Confer-
ence on Ubiquitous Computing, UbiComp '14 Adjunct, - Sept 13 - 17,
2014, 2014, pp. 295-298.

J. Pan, J. Wang, A. Hester, I. AlQerm, Y. Liu, and Y. Zhao,
“Edgechain: An edge-iot framework and prototype based on
blockchain and smart contracts,” IEEE Internet Things]., vol. 6,
no. 3, pp. 4719-4732, 2019.

“Storj: A peer-to-peer cloud storage network,” Tech. Rep., 2016.
“Filecoin: A cryptocurrency operated file network,” Tech. Rep.,
2014.

G. Zyskind, O. Nathan, and A. Pentland, “Decentralizing privacy:
Using blockchain to protect personal data,” in 2015 IEEE Sympo-
sium on Security and Privacy Workshops, SPW 2015, San Jose, CA,
USA, May 21-22, 2015, 2015, pp. 180-184.

S. Goldwasser, S. D. Gordon, V. Goyal, A. Jain, J. Katz, F. Liu, A. Sa-
hai, E. Shi, and H. Zhou, “Multi-input functional encryption,” in
EUROCRYPT 2014. Proceedings, 2014, pp. 578-602.

M. Abdalla, F. Benhamouda, M. Kohlweiss, and H. Waldner,
“Decentralizing inner-product functional encryption,” in Public-
Key Cryptography - PKC 2019 - 22nd IACR International Conference
on Practice and Theory of Public-Key Cryptography, Beijing, China,
April 14-17, 2019, Proceedings, Part 11, 2019, pp. 128-157. [Online].
Available: https:/ /doi.org/10.1007 /978-3-030-17259-6_5

W. J. Gordon and C. Catalini, “Blockchain technology for health-
care: facilitating the transition to patient-driven interoperability,”
Computational and structural biotechnology journal, vol. 16, pp. 224~
230, 2018.

S. Badrinarayanan, V. Goyal, A. Jain, and A. Sahai, “Verifiable
functional encryption,” in Advances in Cryptology - ASIACRYPT
2016 - 22nd International Conference on the Theory and Application of
Cryptology and Information Security, Hanoi, Vietnam, December 4-8,
2016, Proceedings, Part 11, 2016, pp. 557-587.

N. Soroush, V. Iovino, A. Rial, P. B. Renne, and P. Y. A. Ryan,
“Verifiable inner product encryption scheme,” in Public-Key Cryp-
tography - PKC 2020 - 23rd IACR International Conference on Practice
and Theory of Public-Key Cryptography, Edinburgh, UK, May 4-7,
2020, Proceedings, Part I, 2020, pp. 65-94.

C. Badertscher, A. Kiayias, M. Kohlweiss, and H. Waldner, “Con-
sistency for functional encryption,” IACR Cryptol. ePrint Arch., vol.
2020, p. 137, 2020.

S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Wa-
ters, “Candidate indistinguishability obfuscation and functional
encryption for all circuits,” in 54th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2013, 26-29 October, 2013,
2013, pp. 40-49.

P. Ananth and A. Sahai, “Projective arithmetic functional encryp-
tion and indistinguishability obfuscation from degree-5 multilin-

[43]

[44]

[45]

[46]
[47]

[48]
[49]

(50]

[51]

[52]

(53]

[54]

[55]

[56]

(57]
(58]
[59]
[60]
[61]
[62]
[63]
[64]
[65]
[66]
[67]

[68]

ear maps,” in Advances in Cryptology - EUROCRYPT 2017 - 36th
Annual International Conference on the Theory and Applications of
Cryptographic Techniques, April 30 - May 4, Proceedings, Part I, 2017,
pp- 152-181.

M. Abdalla, F. Bourse, A. D. Caro, and D. Pointcheval, “Simple
functional encryption schemes for inner products,” in Public-Key
Cryptography - PKC 2015 - 18th IACR International Conference on
Practice and Theory in Public-Key Cryptography, March 30 - April 1,
Proceedings, 2015, pp. 733-751.

S. Agrawal, B. Libert, and D. Stehlé, “Fully secure functional
encryption for inner products, from standard assumptions,” in
Advances in Cryptology - CRYPTO 2016 - 36th Annual International
Cryptology Conference, August 14-18, Proceedings, Part III, 2016, pp.
333-362.

T. E. Gamal, “A public key cryptosystem and a signature scheme
based on discrete logarithms,” IEEE Trans. Inf. Theory, vol. 31, no. 4,
pp. 469472, 1985.

R. Cramer, “Modular design of secure yet practical cryptographic
protocols,” 1997.

I. Damgard, “On o-protocols,” Lecture Notes, University of Aarhus,
Department for Computer Science, p. 84, 2002.

B. Schoenmakers, “Lecture notes cryptographic protocols,” 2020.
S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
Manubot, Tech. Rep., 2019.

M. Abdalla, FE. Benhamouda, and D. Pointcheval, “Public-key
encryption indistinguishable under plaintext-checkable attacks,”
in Public-Key Cryptography - PKC 2015 - 18th IACR International
Conference on Practice and Theory in Public-Key Cryptography, March
30 - April 1, Proceedings, 2015, pp. 332-352.

I. Damgard and Y. Ishai, “Scalable secure multiparty compu-
tation,” in Advances in Cryptology - CRYPTO 2006, 26th Annual
International Cryptology Conference, August 20-24, Proceedings, 2006,
pp. 501-520.

M. A. Heikkild, E. Lagerspetz, S. Kaski, K. Shimizu, S. Tarkoma,
and A. Honkela, “Differentially private bayesian learning on dis-
tributed data,” in Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems, 4-9
December, 2017, pp. 3226-3235.

W. Du, A. Li, and Q. Li, “Privacy-preserving multiparty learning
for logistic regression,” in Security and Privacy in Communication
Networks - 14th International Conference, SecureComm 2018, Singa-
pore, August 8-10, 2018, Proceedings, Part 1, 2018, pp. 549-568.

J. Ge, Z. Wang, M. Wang, and H. Liu, “Minimax-optimal privacy-
preserving sparse PCA in distributed systems,” in International
Conference on Artificial Intelligence and Statistics, AISTATS, 9-11
April, 2018, pp. 1589-1598.

M. T. Smith, M. A. Alvarez, M. Zwiessele, and N. D. Lawrence,
“Differentially private regression with gaussian processes,” in
International Conference on Artificial Intelligence and Statistics, AIS-
TATS, 9-11 April, 2018, pp. 1195-1203.

M. Mohammadi, A. I. Al-Fuqaha, S. Sorour, and M. Guizani,
“Deep learning for iot big data and streaming analytics: A survey,”
IEEE Commun. Surv. Tutorials, vol. 20, no. 4, pp. 2923-2960, 2018.
N. R. Draper and H. Smith, Applied regression analysis. John Wiley
& Sons, 1998, vol. 326.

S. Haykin, Neural networks: a comprehensive foundation.
Hall PTR, 1994.

“Solidity,” https:/ /solidity.readthedocs.io.

“Remix IDE,” https:/ /remix.ethereum.org.

“Rinkeby Ethereum Testnet,” https:/ /www.rinkeby.io.
“Etherscan: The Ethereum Block Explorer,” https:/ /etherscan.io/.
“Secp256k1 Elliptic Curve,” https:/ /en.bitcoin.it/wiki/
Secp256k1.

“Open Vote Network,”
anonymousvoting.
“Bouncy Castle Java Library,” https:/ /www.bouncycastle.org/.
D. Papadopoulos, D. Wessels, S. Huque, M. Naor,]. Vceldk,
L. Reyzin, and S. Goldberg, “Can NSECS5 be practical for DNSSEC
deployments?” IACR Cryptol. ePrint Arch., vol. 2017, p. 99, 2017.
D. Shanks, “Class number, a theory of factorization and genera,”
Proc. Symp. Pure Math, vol. 20, pp. 415440, 1969.

K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggre-
gation for privacy-preserving machine learning,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017, Oct 30 - Nov 03, 2017, 2017, pp. 1175-1191.

Prentice

https:/ /github.com/stonecoldpat/

APPENDIX

Here we provide the definition for active security as in [26]
and proofs for the lemmas presented earlier in Section 4.

Definition 2 (IND-Security Game for MCFE [26]). Let us
consider an MCFE scheme over a set of n senders. No PPT
adversary A should be able to win the following security game
against a challenger C:

o Initialization: the challenger C runs the setup algorithm
(mpk,msk,(s;);) < SetUp(1*) and chooses a random bit
b <= {0, 1}. It provides mpk to the adversary A.

e Encryption queries QEncrypt(i,z°,x*0): A has unlimited
and adaptive access to a Left-or-Right encryption oracle, and
receives the ciphertext Cy ;, generated by Encrypt(s;,a?,0).
We note that any further query for the same pair (£,1) will
later be ignored.

e Functional decryption key queries QDKeyGen(f): A has
unlimited and adaptive access to the DKeyGen(msk, f) al-
gorithm for any input function f of its choice. It is given
back the functional decryption key fsk.

o Corruption queries QCorrupt(i): A can make an unlimited
number of adaptive corruption queries on input index i, to
get the encryption key s; of any sender 4 of its choice.

o Finalize: A provides its guess b’ on the bit b, and this proce-
dure outputs the result [3 of the security game, according to
the analysis given below.

The output [of the game depends on some conditions, where
CS is the set of corrupted senders (the set of indexes i input to
QCorrupt during the whole game), and H S is the set of honest
(non-corrupted) senders. We set the output to B < b, unless
any out of the three cases below is true, in which case we set
B <+s{0,1}:
i) some QEncrypt(i,x°,x')-query has been asked for an index
i € CS with 29 # z}.
ii) for some label {, encryption-queries QEncrypt(i,x®,x'0)
have not been asked Vi € HS.

iii) for some label ¢ and for some function f asked to QDKeyGen,
there exists a pair of vectors (z° = (29);, 2! = (z}).), such
that f(z°) # f(z1). when
o 20 =ual forallie CS.

o QEncrypt(i,x?,x},0)-queries have been asked for all i €
HS.

A wins in the previously described game if § = b and we
remark that a naive adversary, by sampling randomly 3 has
probability of winning equal to 5. We denote the advantage that
A has of winning as AdvIN P (A) and we say this MCFE is IND-
secure if for any adversary A, AdvINP(A) = |Pr[3 = 1|b =
1] — Pr[B8 = 1|b = 0]| is negligible.

Proof of Lemma 3. A PPT adversary A; can use an adver-
sary A, who has a non-negligible advantage ¢ of winning
in the game for &, to solve the DDH problem for the tuple

(9,9%, 9", Z), thus identifying whether Z z g*Y. We denote

the event that 4; wins as W, the advantage that .A; has of

winning as AdvPP*(A;), and we say the DDH problem

is hard, if for any PPT adversary A;: AdvPPH(A;) =

|PriW|Z = g®¥] — PriW|Z # ¢®Y]| < negl(N).

o Initialization: A; runs Keygen, chooses & <—sZ,,
b<-s{0,1} , and runs A on input (1*, pp, ¢%, g%, g%, Z).
A, also, uses a bookkeeping table, for storing tuples of

the form T (index) = (indew,wgizem,wl(z)dex,pmdm) The
bookkeeping table is initially empty.

e Oracle queries: Whenever a query QOracle(¢), for la-
bel ¢, is issued from A, A; checks if T'(¢) is empty.
If T(¢) is not empty, A; returns (wél),l/}éz)) from
T(¢) to A. Otherwise, if T(¢) is empty, A; chooses

a§1)7aé) s 7, computes (gy)"?) and (g%)%", stores

T) = (¢ (g¥) (),gaf),aél)), and returns to A
IR CONN e

((g")% g%).

o Encrypt queries: When a QEncrypt(z?, 2!, /) is issued
from A, A; proceeds as follows: If T'(¢) is empty then
it fills the entry of T'(¢) as if a QOracle(f) has been
called. Then, it calculates Z*¢, (wéz))g, and returns to A

b

cp = ZPe . (ﬂ,(g?))g g
o Finalization: A outputs S5 to A;. A; wins if it distinguishes
whether Z = g*y.
Aj runs in polynomial time as it runs the PPT adver-
sary A while additionally performing polynomial-time op-

erations in A, i.e., multiplications and exponentiations. If
Z # g%, Prl[A = b|Z +# gmy] < , while if Z = ¢,

PrlA = bZ = g™ = 1 +e Thus AdvDDH(Al) =
PrW|Z = g) — |PrW|Z # g7 = Advf(A) =
|PrlA = b|Z # ¢*¥] — Pr[A = b|Z = ¢g"™Y]| > € meaning

AdvPPH(A) > negl()). This violates the original assump-
tion, so Adv® (A) < negl()\). O

Proof of Lemma 4. We prove this by contraposition. That is,
if 3 PPT adversary A’ that can break the security of M’
€ > negl(A), then a PPT adversary A can use A’ to win in
the game of £ with non-negligible probability.

o Initialization: A receives pp, pk from C, chooses an index
0 < j < nand runs A’ on input (1*, pp).

o Functional public key queries QPKeyGen(f): When A’ is-
sues a query, A assigns pubkey = pk = (pk(M) pk®?)
to the index j, that is pk; = pubkey, chooses and
stores n — 1 values s; <s ZIQ,, and computes and stores

pk; = (¢° 51) SP),W # j. Note that g is already known
as part of the public parameters (pp) of the scheme. A
now uses (pk;); and the known, from the description of
f, weights (w;); to compute the functional public key
of the irmer—product functionality f, and returns to A’
Sk = (T k™), T 1<pk:<2>).

o Encryption queries QEncrypt(i,x°,x!,0): In the case of i = j,
A forwards the query to C, receives the ciphertext Cy ;
and gives it to A’. Contrary, Vi < j A chooses always
to encrypt z°, while Vi > j chooses always to encrypt
z!, and computes, using the already sampled s;, the
coresponding ciphertext Cy; which gives to A’

o Finalization: A’ provides its guess b’ on the bit b to A who
forwards it to C, and this procedure outputs the result 3 of
the security game, according to the analysis given below.
A1 wins if 8 = 0.

The output S of the game depends on the following con-
dition. We set the output to 8 < b, unless QEncrypt(¢)
has been issued for the same label ¢ more than once, in
which case we set § < {0,1}. A runs in polynomial-time
as it runs the PPT adversary A’ and additionally performs
polynomial-time operations in A (i.e. multiplications and
exponentiations).

2

The view of the adversary A’ is indistinguishable regard-
less of playing against C or A. C encrypts the following

message distribution X? = (z%,... ,xf,) resulting in the
ciphertext distribution C® = (clg’l, ey o) for b e {0,1},
whereas A encrypts X; = (29,...,29_,, 28,21, ... 2b),

e S R A
resulting in C; = (0271, . ,cgyj_l, c'jd, Cl it c}m).
Claim: Let H® = (2%,...,2%) be the message distribution
resulting in the ciphertext distribution C* = (¢} ,,--- , ¢}),
for b € {0,1}, using £. We denote by ~ the indistin-
guishability between two distributions and we claim that
C'~ C.

Proof: We prove this, via a hybrid argument. First, let
H; = (af,...,29,2},,,...,2,) be the message dis-
tribution resulting in the ciphertext distribution C; =
(f1se s jiChiy1re 1€l), forb e {0,1}. Suppose 3j* €
{0,n — 1} s.t. Cj= % Cj+41, then 3 PPT distinguisher D s.t.
Adv(D) = |Pr[D(\, %) = 0|Z < Cj=]—Pr[D(\, &) = 0|7 +
Cj+41]| > negl(X). Ay can use D(\, ¥) to decide whether
z = c) or x = ¢}. Ay samples at random i s {1,n}, sets
Ty = (1, €15, C}HU.. ,¢4.,) and runs D(A, 7).
The advantage of A; is + - Adv(D) > "egri(’\), still non-
negligible, which contradicts Lemma 3, so Vj*,Cj- =
Cj*Jrl- Thus, CO ~ 01,01 ~ CQ, s ,Cn,1 ~ Cn,Cn ~ Cl,
and since n is polynomially bound C° ~ C'. u

Following the previous claim we conclude that the view
of A’ is indeed indistinguishable. Therefore, considering
that A" has a non-negligible probability € of winning the
passive-IND security game of M’, A has non-negligible
probability € as well of winning in the game of £, which
contradicts our initial assumption. O

