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Efficient Signature File Methods for Text Retrieval

Dik Lun Lee, Member, I[EEE and IEEE Computer Society, Young Man Kim, and Gaurav Patel

Abstract—Signature files have been studied extensively as an
access method for textual databases. Many approaches have been
proposed for searching signatures files efficiently. However, dif-
ferent methods make different assumptions and use different per-
formance measures, making it difficult to compare their perform-
ance. In this paper, we study three basic methods proposed in the
literature, namely, the indexed descriptor file, the two-level super-
imposed coding scheme, and the partitioned signature file ap-
proach. The contribution of this paper is two-fold. First, we pres-
ent a uniform analytical performance model so that the methods
can be compared fairly and consistently. The analysis shows that
the two-level superimposed coding scheme, if stored in a trans-
posed file, has the best performance. Second, we extend the two-
level superimposed coding method into a multilevel superimposed
coding method, we obtain the optimal number of levels for the
multilevel method and show that for databases with reasonable
size the optimal value is much larger than 2, which is assumed in
the two-level method. The accuracy of the analytical formula is
demonstrated by simulation.

Index Terms—Access methods, text retrieval, performance
analysis, superimposed coding.

1. INTRODUCTION

IGNATURE FILES have been studied extensively as an access

method for textual databases. They have been used in a
variety of applications, ranging from textual databases such as
news databases [20] to multimedia office filing [3] to chemical
databases for DNA matching {15].

Research on signature files can be roughly classified into
two categories. The first category focuses on new signature
schemes for reducing the false drop probability without in-
creasing the storage overheads. Numerous methods have been
proposed and evaluated in the literature [9], [10], [14]. The
second category of research is motivated by the fact that the
search time on a signature file is directly proportional to the
size of the text file, resulting in an unacceptable performance
when the database is large. To alleviate the problem, many
efficient search methods have been proposed in the literature,
including the indexed descriptor file method [16] and its vari-
ant S-tree [4], the two-level superimposed coding method [1],
[19] and the partitioned signature file method [12], [13]. These
methods in general organize the signature file in a way such
that only a small number of the signatures are accessed in re-
sponse to a query. Methods utilizing special hardware proces-
sors have also been proposed [11], [21].

The research reported in this paper falls into the second
category. It is prompted by the differences in performance
measures and assumptions used by these various search meth-
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ods. For instance, different coding schemes were used for gen-
erating the signatures—disjoint coding was used in the indexed
descriptor file for generating the block signatures while super-
imposed coding was used in other methods. Further, different
techniques were employed to improve the search time (e.g., the
partitioned signature file is based on hashing while the other
methods are based on tree structures). The performance meas-
ures used in these methods were also different—the number of
disk accesses was used in some methods while signature re-
duction ratio was used in others. These wide differences make
it difficult to compare the performance of different methods in
a consistent manner.

In this paper, a uniform framework is used to analyze these
methods in the context of text retrieval. The analysis is per-
formed using the same signature coding technique and the
same performance measures. The analytical results reveal sev-
eral unexpected characteristics of the methods. The reasons for
these phenomena are discussed. Based on these results, we
propose a new method called the multilevel superimposed
coding, which is a generalization of the two-level method. For
the same storage overhead as a single-level method, the multi-
level method yields the same false drop probability for unsuc-
cessful searches and an excellent signature reduction ratio. The
optimal number of levels for the multilevel superimposed
coding method is obtained. It is found that for databases of
reasonable size the optimal value is much larger than 2, which
is assumed in the two-level method.

The rest of this paper is organized as follows. In Section I,
superimposed coding is reviewed to provide the readers with
the basic ideas and terminology used in this paper. A common
framework, the symbols adopted in our analysis, and the ana-
Iytic performance models of the methods are presented in Sec-
tion III. The results of the analysis and a discussion are given
in Section IV. Section V presents the multilevel superimposed
coding method and its performance analysis. Finally, Section VI
concludes our study and gives a look at some research issues
for further study.

II. SUPERIMPOSED CODING

Signatures can be obtained in a number of ways [5], {7].
Superimposed coding is perhaps the most common method
used. In superimposed coding, a text is divided into text blocks
containing the same number of unique, nontrivial, words. Each
word in a text block is hashed into a word signature. A block
signature is generated by superimposing all word signatures
generated from the block. In a query, the query terms are
hashed and superimposed into a query signature in a similar
way. Then the query signature is matched against each signa-
ture in the signature file. Fig. 1 is an example showing the
generation of the block signature from a text block.
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text block [ ---text ...« database --- |

word signatures:

text 001 000 110 010
database 000 010 101 001
block signature (V) 001 010 111 011
Queries Query Signatures Results
1) retrieval 010 001 000 011  « no match
2) database 000 010 101 001  « match
3) database A text 001 010 111 011  + match
4) information 001 000 111 000  « false drop

Fig. . Signature generation and comparison based on superimposed coding.

The signature file is a filtering mechanism which will elimi-
nate most, but not all, of the text blocks which will not match the
query. The first case shown in Fig. 1 illustrates this point. The
query signature doesn’t “match” with the text signature in that
some of the bits in the text signature are zero while the corre-
sponding bits in the query signature are set to one. If the query
term “retrieval” is indeed in the text, the query signature would
be one of the word signatures forming the text signature, thus
every bit set in the query signature will be set in the text signa-
ture. The second and third cases show a match between the
query signature and the block signature when, for each bit in the
query signature set to one, the corresponding bit in the block
signature is also set to one. The third case shows that a conjunc-
tive query of more than one query term can be matched in one
comparison. The fourth case is a false drop. False drops are text
blocks which the signature file identifies as containing the query
terms (i.e., a match) but indeed they don’t. They can be elimi-
nated by further comparing the query terms with the text blocks,
but the performance will be degraded. False drops are unique in
the signature file approach, and much work has been done on
minimizing the false drop probability [9], [14). Intuitively, for
the same number of distinct keywords in a text block, when the
length of the signatures increases, the “density” of ones in the
signatures decreases, and the chance of getting false drops will
decrease correspondingly. However, it will increase the storage
overhead (i.e., more bits are “unused”). It has been shown that in
order to minimize false drop probability, the expected number of
zeros and ones in a signature must be the same [2].

The advantage of the signature file method over the con-
ventional inverted file method is its moderate and controllable
storage overhead—10-20% for signature files compared to
over 100% for inverted files. The retrieval speed of the signa-
ture file method is much faster than full-text scanning but
slower than an inverted file. In other words, it is a compromise
between inverted file and full-text scanning methods.

III. ANALYTICAL MODELS

A. Basic Configurations and Assumptions
A.1. Methods to be Analyzed

The indexed descriptor file method [16] and the S-tree
method [4] are essentially the same in that superimposed index
nodes are used and that an index signature of a nonleaf node in
the tree is obtained from superimposing all signatures of its

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 7, NO. 3, JUNE 1995

descendent nodes. Thus, only the indexed descriptor method is
considered. The two-level superimposed coding scheme [18],
[19] is the second method to be analyzed. The partitioned sig-
nature file [12], [13] method has three variants according to
the ways that the keys are selected. According to Lee and Leng
[12], the extended prefix technique has a variable key length,
and its performance is not as good as the other two. Therefore,
we only analyze the fixed-prefix and the floating-key parti-
tioned signature file methods. To avoid the confusion with
different terminologies used in different methods, indexes in
the indexed descriptor file and segment signatures in the two-
level superimposed coding method are simply called signa-
tures, and the root in a tree structure is at level 1.

A.2. Signature Coding Method

In these four methods, the first method uses disjoint coding
and the other methods use superimposed coding. Superimposed
coding generates a block signature by superimposing word sig-
natures together. On the other hand, disjoint coding forms a
block signature by concatenating word signatures together. To
facilitate comparison, superimposed coding is used as the stan-
dard signature coding method. This assumption won’t affect the
basic superimposition mechanism used in the index descriptor
method for reducing the search space.

A.3. Hash Function

It is assumed that a hash function provides a uniform distri-
bution of ones in the signature and that the number of ones in a
word signature is much less than the length of the word signa-
ture. This assumption is required when the false drop prob-
ability is minimized.

A.4. Performance Measures

Two performance measures are studied: 1) the amount of
storage required for each method (i.e., the storage overhead),
and 2) the total number of block signatures and index signatures
which require comparison to the query signature. The latter is
normalized by the number of signatures in the original signature
file and becomes the signature reduction ratio [12]. However,
for the two-level and multilevel superimposed coding schemes,
the cost of searching a signature at the higher level is more ex-
pensive than that at the lower level due to the difference in signa-
ture lengths. Since the signature reduction ratio cannot reflect
this difference, the computation reduction ratio is introduced to
measure the ratio of the number of bit comparisons actually re-
quired in a method to that of a signature file with only one level
(hereafter referred to as the single-level method). The computa-
tion reduction ratio reflects the amount of CPU processing (i.c.,
comparison) involved. The bits actually requiring comparison in
a signature are those specified in the query signature [11]. The
reduction ratios are preferred over the actual number of disk
accesses as a performance measure, because the reductions ra-
tios give an implementation-independent measure of the ability
of a method to reduce the search space, and hence the I/O cost,
without considering the low-level implementation, whereas the
number of disk accesses depends on exactly how the signature
file is organized (e.g., as a sequential file or in bit slices).
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A.5. Signature Parameters

For a fair comparison of the performance, the same set of
parameters (e.g., the length of a block signature and the num-
ber of bits set in a word signature) must be used. These pa-
rameters can be obtained by minimizing the false drop prob-
ability [19] or the disk access cost function [2]. However, the
resulting equations for determining the parameter values are
similar. In this paper, the false drop probability is used as a
target for minimization [19].

Since the false drop probability affects the storage overhead
(thus the amount of processing required), the methods are
evaluated based on the same false drop probability so that they
can be compared fairly. For instance, if a method is faster for
searching than another method but it also has a higher false drop
probability, then no conclusion can be made on the relative su-
periority of the two methods. The false drop probability is the
probability that a signature may seem to qualify in a query when
the corresponding text does not actually satisfy the query. How-
ever, for a signature file structure with more than one level of
signatures, this definition must be extended. Thus, we define the
local false drop probability at the ith level as the probability at
which a signature at the ith level may seem to satisfy a query
although the corresponding descendent text blocks at the last
(leaf) level do not contain a qualified signature, and the global
false drop probability (or simply false drop probability when no
ambiguity arises) as the probability at which a text’s signatures
at all levels seem to qualify a query but the text itself actually
does not. In this paper, different methods are compared based on
the same global false drop probability, because it is the one
which affects the number of false drops seen by the user.

A.6. Dimensions

Several variables may affect the performance measures: the
total number of block signatures, the false drop probability, the
number of keywords per block, the number of query terms, the
number of blocks containing the query terms, the packing
factor (the number of index or block signatures per index
node) in the indexed descriptor file method, the segment size
in the two-level method, and the partition size in the partition
methods. We note that the number of blocks containing the
query terms (true drops) was largely ignored in previous
analysis. However, as we shall see in our analysis, it intensely
affects the performance of the two-level and the multilevel
methods. Thus, this parameter is selected as one of the vari-
ables in our performance study. In the following sections, the
general equations for each method are derived. The perform-
ance is obtained for different number of keywords per block
and different number of blocks containing the query words.

B. Symbols
A number of signatures searched (at all levels).
Ay number of signatures searched (at all levels) due to false drop.
Ay number of signatures searched (at all levels) due to true drop.
b packing factor (number of child signatures per index node).
C ratio of the number of searched index and block signatures to the

total number of block signatures (i.c., signature reduction ratio).
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D ratio of the number of bits compared in the searched block and
index signatures to the number of bits compared in the original
signature file method using a transposed signature access method
(i.e., computation reduction ratio).

h height of the index tree, A=logyn.

k key length in the partitioned signature method.

m length (in bits) of a signature.

M total number of bits required (i.e., storage requirement).
n number of blocks in a text file.

n number of segment signatures in the two-level method.

n number of blocks per segment in the two-level method.

P global false drop ratio

P(al,a2) probability that a particular set of a2 bits is set to 1 in a signature

superimposed from al word signatures.
number of distinct keywords per query.

s number of distinct keywords per text block.
number of blocks containing the query words (true drops).

w number of ones in a word signature.

Wy number of ones in a query signature.

W number of ones in a block signature.

C. Basic Equations

In this section, we describe some basic equations obtained
from false drop probability minimization. These equations are
common to all the methods to be studied and have been proved
elsewhere [17], [19]. Let m and w be the length and weight of
a word signature, respectively. It is assumed that bits are set

randomly in the signatures and each of the (';] possible word

signatures is equally likely to be chosen when a word signature
is generated. The probability, P(al, a2), that a2 bit positions
are set to one in a signature superimposed from al word signa-
tures with m and w is:

Pal,a2) = i(ﬂ) [?2} [m_j-)al [m]*“‘

=0 Y v W

If al is sufficiently large and w < m, then the following ap-
proximation can be obtained:

)

If we assume that w, is the weight of a signature superim-
posed from x word signatures, then the following equation
shows the relationship between P(al, a2) and wy:

wy = mP(x,1) = m (1—=(1-w/m)").
The false drop probability of a signature file, P/, can be rep-
resented by P(s,w).! Note that P/, which denotes the global
false drop probability, is used since for a single-level signature

file the global false drop probability is the same as the local
false drop probability.

P(al,GZ) = [1 _ (1 _ w/m)‘”]"z

P’=P(s,w)

By minimizing the false drop probability, the following re-
lationship can be obtained:

1. The probability is actually the false drop probability for an unsuccessful
search of a single-term query. However, it approximates accurately the false
drop probability for a successful search [8].
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(1-w/m)'=05
P/ =05"

Given P/, 5, and the above relationship, w and m have the
following values:

w=(1/log, 2)log,(1/ P)
m=(1/log, 2)2sloge(l/ P/ 3)

Equations (1), (2), and (3) are used extensively in the
analysis in the rest of this paper. In the single-level method,
given the number of blocks in a text file, », the required stor-
age in bits, M, is: M=mn .

@

D. Indexed Descriptor File

An indexed descriptor file structure is a tree with 4 levels
in which the lowest level consists of block signatures which
are superimposed codes obtained from the text blocks. A
group of b signatures at the ith level is superimposed to-
gether to form a signature at the (i—1)th level. Thus, a signa-
ture at the ith level is indirectly obtained from superimposing
all its descendent signatures, including signatures at the last
(leaf) level. We can also observe that every signature has the
same length in all levels. The structure of the indexed de-
scriptor3 file is shown in Fig. 2.

When there are n text blocks, the relationship between n
and 4 is: n = b"

During a retrieval, every signature in the first level is tested.
Then, for each signature matched with the query signature, its
child signatures in the next lower level are tested and so on.
Since signatures at the higher levels are a superimposition of
signatures at the lower levels, the global false drop probability
is exactly the same as the local false drop probability at the last
level. w, m, w,, and w, can be formulated as follows [19]:

w=(1/log, 2)log. {1/ ")

m=(1/log, 2)" slog,(1/ P/
w,=05m

@
®)

w, :m{l— 0,5%)
t f

S=_=

f superimposition function

—— access pointers

——— signature generation ———

indexed descriptor file text blocks

Fig. 2. Indexed descriptor file.

Since an indexed descriptor file consists of Z:’_l b’ signa-

tures, each of which is of length m, the total storage (in bits)
required is:

M= mi b
i=1

b-1 " ©)

Since mn is the storage overhead for a single-level signature
file at the same false drop probability, P/, the indexed descrip-
tor file takes b/(b—1) times the storage of a single-level signa-
ture file to yield the same false drop probability.

The total number of signatures searched at all levels, 4,
consists of two components: searches resulting from true drops
and those from false drops. In the following equations, ar; and
ar;; are the probabilities that a node at the ith level is searched
due to true drop and false drop, respectively. At the first level
(root), all signatures must be searched. Thus, ax;=ar =1. At
the ith level, where i > 1,

h
A= 2 b’ (aF,i tayr,—ag,; al‘,i)

i=l

M

Since the ith level has &' nodes, b'a;;; and b'ar,, represent the
number of signatures searched resulting from false drops and
true drops at the ith level, respectively. Thus, naj: and nal are
the respective number of signatures searched at the leaf level.

An informal proof of the above equations is given below. At
the root node of the index tree, there are b signatures, and all of
them must be compared. At the next level, there are b sets of
signatures, each in turn containing b signatures. A signature in
the root node is obtained by superimposing its corresponding
child signatures at the second level. The probability for a node at
the first level to be selected due to false drop is P(4"s, w,) (ie.,
ary), where (b'“s) is the number of words superimposed into a
signature at the root node and w, is the number of bits to be
tested. The probability for a node at the first level to be selected
because it actually contains the query terms can be similarly
derived as (1-(1-1/6)") (i.e., ar,), which is the probability for a
particular signature at the root level to have a block signature in
its subtree satisfying the query. Let’s explain more about this
result. There are ¢ blocks containing the query terms. Since these
blocks are uniformly distributed into b subtrees, the probability
for a subtree to contain a specific block is 1/b. The probability
for a subtree not to contain a specific block is (1—1/b). The
probability for a subtree not to contain any of the ¢ blocks is
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(1-1/bY. Thus, the probability for a subtree to contain one or
more of the ¢ blocks is (1—(1-1/b)). Since there are b sets, each
containing & signatures in the second level, the total number of
signatures searched at the second level due to false drop and true
drop becomes b*P(b"'s,w)=bar, and b*(1-(1-1/b))=Far,,
respectively. The derivation for other levels is similar to that of
the second level. Finally, we note that there are overlaps between
the nodes searched due to false drop and those due to true drop.
Since the distributions of false drops and true drops are inde-
pendent from each other, the region that is counted twice at the
ith level can be derived as biag iar;, which is reflected in (7).

The signature reduction ratio, C, and the computation re-
duction ratio, D, can be derived accordingly:

C=4/n

D=(dw,){(mw,)

=C

®

E. Two-Level Superimposed Coding Method

The two-level superimposed coding scheme consists of two
levels of signatures (see Fig. 3). Like the indexed descriptor
method, the signatures at the lower level (block signatures) are
superimposed codes generated from the text blocks. The dif-
ference between the indexed descriptor file method and the
two-level superimposed coding scheme is in the way that sig-
natures at the higher level (segment signatures) are con-
structed. In the two-level superimposed coding method, a sig-
nature at the higher level is a superimposed code generated
directly from a group of n, text blocks, instead of superimpos-
ing the », block signatures. In other words, a signature in the
higher level can be considered as being generated from a very
long text block consisting of approximately n,s words. There-
fore, the optimal signature length and weight at the higher
level are different from those at the lower level.

In the following equations, subscript 1 and 2 indicate, re-
spectively, the parameter at the segment level and the block
level. We use n; and n,, respectively, to denote the number of
signatures in the first (root) level and the number of signatures
in the second (leaf) level indexed by a signature at the higher

——— access pointers

-——— signature generation

2 level signature tree text blocks

Fig. 3. Two-level superimposed coding.
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level. Since a block signature is searched only when its parent
signature satisfies the query, the relationship between the
global false drop probability, P/, and the local false drop
probability for the first and second level, B/ and P/, respec-
tively, can be expressed as: P/ = B/ p/

Note that the relationship among the false drop probabilities
is different from that of the indexed descriptor file method.
This is because a signature at the higher level is generated in-
dependent of the block signatures at the lower level, which is
not the case for the indexed descriptor method.

For unsuccessful search (i.e., t=0), the following equations
can be derived [19]:

n=nn,
85| =S
§y =5

w =(1/log, 2) 1033(;117]
Wy z(l/l()ge )loge( ! J

m :(1/10ge 5 IOge[ ]

4
=
Wq,2=bl( (1-w/m) )
Wq,z:bz(l"(l"wz/mz)q)

Using the same approach as in the indexed descriptor file
method, we can find the effective value of w and m for a
single-level signature file having the same false drop prob-
ability as that of the two-level method:

w=(1/log, 2)log, (;}—f—]z w +w,

=(1/log, 2)’s, log,

2 1
m=(1/loge 2) s loge(ﬁ'):ml’b +my
Since the number of signatures in the higher level is n;, and

in the lower level, n, n, = n, the total storage required is:

M=rmm +nmn,m,

2 1
=n1n2(]/loge 2) S]Oge[;f—Pf*J
142

=n(1/log, 2)2 s loge(;lrj

=nm

®
Thus, if a two-level signature file has a global false drop
probability equal to the false drop probability of a single-level

signature file, then the above equation reveals a very important
fact, i.e., the storage required by both methods is the same. This
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may be surprising since intuitively the two-level method will
have more signature than a single-level method. However, since
the two levels are generated independently, a false drop intro-
duced at the first level may be eliminated by the second level
and vice versa. Hence, the local false drop probabilities in a two-
level method could be made smaller than that of a single-level
method, resulting in shorter signatures in the two-level method.
As noted in Section II1.C, the equations used to obtain this result
is based on the false drop probability of unsuccessful searches,
so it is fair to emphasize that for successful searches (¢>0) the
storage overhead of the two-level method (as well as the multi-
level method discussed in Section V) is greater than a single-
level method for the same false drop probability.

The cost of searching the two-level signature file is 4,+A4;,
which is the cost of searching the two levels. 4, and A4, are
derived in Section V.A, and is not repeated here. In general,
the two-level signature file is a special case of the multilevel
signature file described in Section V.

F. Partitioned Signature File Method (Fixed-Prefix)

In a partitioned signature file, a segment of the signature is
used as the key of the signature and signatures with the same
key are grouped into one partition. The common key of the
signatures in a partition forms the key of the partition and is
stored in a key table [13]. In the fixed-prefix method, a fixed-
length prefix of length & from the signature serves as the key of
the signature. Fig. 4 illustrates a possible organization for the
fixed-prefix method. The key table is small enough to fit into
main memory, so it doesn’t contribute to the search cost in the
analysis. The following equations are true for all partitioned
methods [19]:

w=(1/log, 2)log,(1/P)
m=(log, 2)" slog, (1/7”)
wy=m(1-(1- w/m)')=0.5m
w,=m(1-(1=w/m)")=m(1-05%)

Unlike the previous two methods, the number of true drops
won’t have any dramatic effect on the performance of this

k-bit fixed-prefix keys

pointers (m-k)-bit signatures
" —
!
L N g
key table °e

partitioned signature file

Fig. 4. Fixed-prefix partitioned signature file

method. This is because the existence of a true drop in a parti-
tion only causes that partition to be searched, whereas in the
indexed descriptor method (as well as the mutlilevel superim-
posed coding method described later) the true drop will cause
all its ancestor nodes to be searched as well.

The following equations are applicable exclusively to the
fixed-prefix method. In the equations, 4, and A4, represent, re-
spectively, the number of keys and block signatures searched
resulting from false drops. Since all keys in the key table have to
be examined, 4, is the number of keys in the key table. The
number of signatures searched in the partitions can be calculated
based on the number of partitions searched and the expected size
of each partition without distinguishing between true drops or
false drops [12]. Hence, the subscripts ¢ and f'in A4 are dropped.

A, is obtained directly from [12] while the other parameters
are derived in a way similar to the previous model equations.

4, =2*

= (kA +(m—k).4;) /(mn)

The storage requirement of the fixed-prefix method consists
of two parts: storage for the keys and storage for the block
signatures. Since there are at most 2* keys of length & and the
keys of the signatures need not be stored explicitly, the storage
overhead is: M =2k + (m—k)n

G. Partitioned Signature File Method (Floating-Key)

The floating-key method is similar to the fixed-prefix
method, except that the method for obtaining the keys is more
complicated. In the floating-key method, every consecutive,
but nonoverlapping, &-substrings of the signature is examined
and the substring with the least number of ones is chosen as
the key. Thus, a key in this case consists of a &-bit string and
the starting position of the kev in the signature. Fig. 5 depicts
an organization for the floating-key method, where the key
table keeps both the key segments and the starting positions of
the key segments in the respective signatures.

The equations describing the parameters m, w, w,, and w, are
the same as in the fixed-prefix method. In the following, the
equation describing 4, and its related parameters, P(i,/) and
x(i,j), are obtained from [12]. The others are derived in a way
similar to the previous model parameters. 4, is the size of the
key table, each entry of which consists of a 4-bit field for the key
and al m/k ]-bit field for the starting position of the key.
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k-bit floating keys

position pointers (m-Kk)-bit signatures
N
200
[N N J
key table
partitioned signature file

Fig. 5. Floating-key partitioned signature file.

P(i, j)={2k ‘%GJ]I [2k

I if P(i, j)nz1
X 0= .

P(l,])n otherwise
A] =2k+log2[m/kJ

) ) B

kfi ( ]Wf,l P(i, j)x(i, /)

=0 7=0

; Lm/kJ-jvl
_ Z[k]} 2m—kLm//c_]

y=o\Y

A=

A=A‘ +A2

The signature reduction ratio and the computation reduction
ratio can be derived as in the fixed-prefix method, except that
there are | m/k ] key tables (one for each possible key position)
and all of them must be searched.

C=Aln
D=(kd +(m~k) 4y )/ (mn)

The storage requirement increases slightly in com-
parison with that of the fixed-prefix method:
M=|mk 2*k+(m=k)n

IV. PERFORMANCE

There are many factors affecting the performance. In this
paper, two important parameters are studied, and their effects
on the performance are examined: the number of distinct key-
words per block, s, and the number of blocks containing the
query terms, 2. The performance measures we obtain are C, D,
and M. We fix the values for the other parameters as follows.

n=2%
g=1
m=n,=
k=15
b=4
Pl =n

212 =4,096

152
1 _12
P =P/ =—=2
Jn

The following sets of data are used for evaluating the model
equations:

t s
Set 1 1 5, 10, 20, 40
Set2 | 1,2,4,8, 16,32, 64, 128, 256, 20
512, 1,024, 2,048, 4,096

Figs. 6 and 7 are derived from Set 1 and Figs. 8 and 9 from
Set 2. The rest of this section discusses the observations we
made from the results.

A. Storage Overhead

The storage requirement of each method is evaluated
against the storage required by a single-level signature file
having the same false drop probability. The partitioned meth-
ods require the least amount of storage, since the key of a sig-
nature need not be stored explicitly. Neglecting the key table,
the fixed-prefix method can reduce the storage by a factor of
(m—k)/m. For 10 < k < 20 and 500 < m < 2,000, it saves up to
4% of storage compared to the original signature file. The
floating-key method will take slightly more storage since the
key table is larger than that of the fixed-prefix method.

Since the original storage required by the signature file
method is mn bits, we can obtain from (6) the extra storage
required by the indexed descriptor method compared to a
single-level signature file:

b | overhead
2 100%
4 33%
10 11%
20 5%

We can see that the indexed descriptor method requires a
storage space at most twice as much as a single-level signature
file.2 From (9), the two-level method requires no extra storage.
Therefore, we conclude that the storage overheads for the
partitioned method and the two-level method are about the
same, but the indexed-descriptor file is less efficient in storage
than the other two methods.

B. Optimal Blocking Factor in the Indexed Descriptor Method

As can be seen from (7) and (8), the signature reduction ratio
is dependent upon b, w,, ¢, g and indirectly on n. If we fix tand ¢

2. We only count the space.taken up by the signatures and indexes, and ig-
nore the pointers required to link the nodes.
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Fig. 6. Signature reduction ratio, C, vs. the number of keywords per text
block, s, in log and linear scales.
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Fig. 8. Signature reduction ratio, C, vs. the number of true drops, ¢, in log and
linear scales.
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Fig. 7. Computation reduction ratio, D, vs. the number of keywords per text
block, s, in log and linear scales.

to 1, then w, becomes w. From (4), we know that w is dependent
on the false drop probability. In practice, P’ is set to a very small
value to minimize the cost of unnecessary retrieval. If we set P/ to
1/n (i.e., one false drop is expected in a signature file of » signa-
tures) and » varies from 10° to 10", w would vary from 10 to 50.
Fig. 10 shows the signature reduction ratio versus b for w ranging
from 10 (when rn=10%) to 50 (when »=10"). The figure suggests

number of blocks containing query term (t)

Fig. 9. Computation reduction ratio, D, vs. the number of true drops, ¢, in log
and linear scales.

that 5=3 is optimal for w<30 (when »<10°) and =4 is optimal
for w30 (when #210°%). The minimum signature reduction ratio
shown in the graph is 0.373 at 5=4 and w=>50. From the table in
the last section, this corresponds to a storage overhead of 33%,
which seems rather profitable from a performance point of view.
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Fig. 10. Signature reduction ratio (C) for various packing factors and numbers
of keywords per text block, (s).

C. Optimal Signature Reduction Ratio of the Other Methods

The signature reduction ratio of the two-level method is de-
pendent on ¢, g, n;, EmdP,’ . If we set ﬁ/ and P2f to be inversely
proportional to n, and n, such that B/ = vrc—/ m, P = Je / ny
and P'=c/n with a constant c, then the factors reduce to 7, ¢, and
ny. If we further fix r and g, then the optimal case can be derived
by differentiating the signature reduction ratio with respect to ;.
For the case of unsuccessful search (i.e., /=0) and g=1, the sig-
nature reduction ratio, C, becomes

(14 ny sy, w, ))J,v/n = ("1 ++en/n, )/n .

By differentiating the expression with respect to n,, the opti-
mal value of n; for minimizing the signature reduction ratio is

o= Jen . For the parameters we used in our analysis, c=1
andn =n, =/n =22

In the partitioned method, the signature reduction ratio is
dependent upon the partition key length, k. Since the number

of partitions increases exponentially with &, there is a practical
limit on the value of .

D. Discussion

Some unexpected results can be observed from our analysis.
First, the two-level method shows a much better reduction ra-
tio than the other methods. The indexed descriptor method
uses a similar structure, but the problem with the way that
higher-level signatures are generated is apparent. For instance,
if m is 500, then about 250 bits is set in a block signature.
Let’s say 5=4. Then, each index node in the next higher level
is obtained from superimposing four different block signatures,
resulting in setting 468 bits, or 93.8%, of the bits in the a sig-
nature at the next higher level. This percentage will increase as
the index level goes up. Thus, the signatures at higher levels
provide little or no filtering effect.

The fixed-prefix method also has a similar problem. Since &
must be kept small in order not to generate too many parti-
tions, the chance that a query signature would specify a bit in
the key is small, depending on the ratio between & and m. The
floating-key method achieves better performance by minimiz-

ing the number of ones in the partition keys. However, for
single-term queries, the performance gain seems to be in the
neighborhood of 20-30% (see Figs. 7 and 8, and [12]). The
main advantage of the partitioned method is its simple file
structure, low storage overhead, and that partitions can be ac-
cessed directly without the need of following many levels of
pointers. Also, its performance would not be drastically af-
fected by the selectivity of the query.

The main feature of the two-level superimposed coding
method is that, unlike the indexed descriptor method, signa-
tures in the segment level is obtained directly from the text
blocks. In our analytical results, the signature reduction ratio,
C, with t=1 is approximately 2/n,=0.00049 or 0.049%. How-
ever, the signature length in the segment level is very large
compared to the signatures in the bottom level. Thus, even
though there are only 4,096 signatures in the first level in con-
trast to 2% signatures in the second level, the first level still
occupies one-half of the storage taken by the whole signature
tree (in (9)), the first term in the RHS accounts for the size of
the index signatures). However, if we use a transposed organi-
zation for the signatures [11], the computation reduction ratio,
D, with t=1, becomes 0.00037 or 0.037% which is in the same
order as that of the signature reduction ratio.

Second, the performance of the two-level method is de-
pendent on ¢. In the analysis, the segment size is 4,096. Thus if
there are 4,096 independent blocks containing the query
words, the performance degenerates to the level of (or even
worse than) the other methods. The extreme case where ¢ is
very large is analyzed in the next section. For the parameters
used in our analysis, the minimum gain in terms of computa-
tion reduction ratio is still 50% compared to a single-level
signature file. On the other hand, the indexed-descriptor
method is less vulnerable to the value of ¢, because 4 is small
and thus ¢ has to be very large to produce the degenerated case.
The partitioned method is best in terms of the independency of
the signature reduction ratio on +, since all signatures contain-
ing the same words tend to cluster in the same set of partitions.

Third, the number of distinct keywords per text block, s, af-
fects the reduction ratio of the partitioned methods signifi-
cantly, while the other methods are hardly affected. The reason
is that when s decreases, w/m, the probability of having a bit
set to one in a word signature, increases according to (4) and
(5). This will increase the query signature’s weight and thus
the chance of having some bits specified in the query signa-
ture’s key. For example, with k=15 in the fixed-prefix method,
the ratio kw/m equals to 0.52 and 1.04 for s=20 and 10, re-
spectively. In other words, the chance of having a one speci-
fied in the query signature’s key is doubled in the latter case.
From Fig. 7, it can be seen that the reduction ratio improves
(i.e., decreases) as s decreases.

Finally, the performance of the indexed descriptor method
and the partitioned methods are at the same level, and the
floating key scheme is better than the fixed-prefix method.

V. MULTILEVEL SUPERIMPOSED CODING METHOD

Observing the excellent performance of the two-level
method, we propose a multilevel superimposed coding method
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which performs even better than the two-level method and
show that the two-level method is indeed suboptimal.

The multilevel superimposed coding method is an exten-
sion of the two-level superimposed coding method. That is, it
can have more than two levels. A signature at a nonleaf node
is formed, by superimposed coding, from all the text blocks
indexed by the subtree of which the signature is the root. The
file structure is depicted in Fig. 11. Note that a word has to
generate different word signatures of different lengths for
different levels.

Multilevel signature file has been investigated in the literature
[1]. There are two problems associated with multilevel methods.
First, as more text blocks are included in the generation of higher-
level signatures, the bit density of the signatures will increase if
special precaution is not taken. In the method proposed below, this
problem doesn’t exist, since signatures at higher levels have corre-
spondingly longer lengths. Second, combinatorial errors will oc-
cur, if a query asks for text blocks containing a conjunction of
query terms. Higher-level signatures will satisfy the query even if
the text blocks indexed by them don’t contain the query terms in
the same block. This problem is more severe for relational data-
bases (or any record-based databases) since conjunctive query
conditions must be evaluated on the same tuple. However, the
problem is less critical for text retrieval since a document typically
generates a large number of signatures, and, a user is typically
interested in whether or not the query terms exist in the documents
regardless of the exact occurrence of the terms in the documents.
In other words, the conjunctive condition is evaluated over the
entire document instead of a single text block. To reduce the
combinatorial problem further, a method was proposed to generate
signatures using combinations of keywords [1]. This technique
doesn’t affect our analysis, since it only increases the effective
number of distinct keywords in a block (i.e., a combination of
keyword is considered as a new unique keyword).

A. Model Equations

A multilevel signature file is a forest of b-nary trees with
every node, except leaf nodes, in the structure having & child
nodes. The number of levels in the structure is /. To simplify the
analysis, it is assumed that the trees are complete b-ary trees of
level k. The relationships between n, b, and h are: n= 4" .

We denote a local parameter representing the value of some
global parameter p at level i as p;. For instance, at the ith level,

————p~ gccess pointars

—

text blocks

~———# signature generation

multi-level
signature tree

Fig. 11. Multilevel signature file.

the local false drop probability is represented by P,f . To fur-

ther simplify the analysis, it is assumed that the local false
drop probability is the same for every level. The relationship
between the global and local false drop probabilities is:

Pl =P/ Vij (10)
h
I1(7")
Pf‘—‘ i=1 .
n
g /
-117 an
B (7))’ (12)

Equation (12) can be derived from (10) and (11). In the
following equations, w, m, s, w,, and w, are the parameters for
a single-level method. The approximate expressions for w, and
w,,; are meaningful in the range of (wg)/m< 1 and (wq)/m; < 1,
respectively. This approximation is reasonable because w and
w; are much less than m and m;, respectively.

w=(1/log, 2)log, (1/P”)

m=(1/log, 2)’s loge(l/P-")

w,=0.5m
w, =m(1—(1—w/m)q)'=wq
5, =sb"

w, =(1/log, 2) loge(l/l’,-f)zw/h
m; = (l/loge 2)2Si lOge(l/P;f)=mbh_i/h

w,;=05m,
W, =m,(l -(1- w,‘/m,)q)’—*wiq=wq/h

Wyt =W, =w/h

The required storage (in bits) of the mulitlevel method, M, is:

h
M =2 b'm;=nm
i=l

That is, if the global false drop probabilities of the single-level
and the multilevel method are the same, the required storage is
the same for both methods. The same conclusion has been
observed in the two-level method, and the same discussion
applies to the multilevel method.

The search performance of the multilevel method can be
derived as follows. Let

¢ = number of blocks containing the query terms,
b = packing factor = number of signatures at the first level,
w,,; = number of bits set in the query signature at level 7.

We want to obtain A, the total number of signatures searched in
the multilevel signature tree in order to answer a query. At the
first level, all the b signatures have to be searched. Let

A;=number of signatures searched at level /,
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Az;=number of signatures matched at level / due to true drops,
Ap;=number of signatures matched at level / due to false drops.

We have,

-

4=

i

b i=1
(AJ ettt Ap )b

{
i
S

b(1~1/B) (05)" i=1

Fli =

(4, ~ 4; ,)(05)" i>1

where (0.5)"+ is the probability of a match due to false drops

at level i. Note that for optimality, about half of the bits in a
block signature should be 1s.

A = total number of signatures searched at all levels
)
= 2 4,
i=}

The other measures, C and D can be obtained as follows:

c=A
n
Alw,_ /h
[)=-( 4/ ):E
w,n h
D,.,=h"

where w, is the number of bits set in a query signature in the
single-level method.
B. Optimal Performance of the Multilevel Method

To derive the optimal number of levels, we assume for
simplicity that 7 = 0. Then,

Ap,=0
b(0.5)" i=1
" 4 05)" i>1
= 4,(05)"
A={b i=1
o Ap b i>1

The following closed-form formulas for A, and 4 can be ob-
tained as shown below:

g, =b'(05")
=@5Wwy

A

1

0
M=

¥

MMWQH

Il
Mw

1

-
il

=

=b

I

@5Wwf

I
<

1—@5“wy

~fosy)

Since b" = n, h=logn / logb, and w, = (w,)h,
1-0.5"n

A=b——
I-05"%d

=(1-2zn) where z = 0.5"

1— bl+l/log:7 ’
It can be shown easily that 4 is monotonically increasing with
respect to 4. Thus, the value of b should be as small as possi-
ble in order to minimize 4, which means that 5=-2 and that the
optimal number of levels is log, n.

C. Performance

We evaluate the performance model of the multilevel
method with the following parameter values. The number of
levels, A, is set using the optimal value 5=2:

n=2% blocks
b=2
h=24

P =1/n

The model equations are evaluated with the same set of data as
given in Section IV. The results are displayed in Figs. 6-9. We can
sce that the optimal multilevel superimposed coding method shows
a superior performance than the two-level and all other methods.

A simulation is performed to verify the analytical results of the
multilevel method. A text file containing random words is generated
and multiple-level signature trees are generated with packing factors of
two and four. For practical reasons, the number of signatures used in
the simulation is 2'. Then random queries are generated. Figs. 12 and
13 show the computation reduction ratios for successful searches
=1, ¢=123,45 b=24) and unsuccessful searches
(1=0; g=1,2,3,4,5; b=2,4), respectively. In both cases, the analytical
results are almost identical with the simulation results. It is shown that
the performance for 5=2, which is optimal, is better than that for 5=4.

D. Other Issues
D. 1. Storage Overhead and False Drop Probability

If the same false drop probability is used, the multilevel
method requires the same storage space as the single-level
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Fig. 12. Computation reduction ratio, D, vs. number of query terms in a multi-
level signature file (number of true drops = 1).

method. For signatures at the ith level, the required storage is
b'm;=mn/h. In other words, each level consumes the same
amount of storage. We can observe that for each level up the
hierarchy, the length of a signature increases b times and the
number of signatures in a level decreases 1/b times. Thus, the
required storage for each level remains constant.

The extreme case in which all text blocks contain a query
word shows that the number of bits compared at all levels is
inversely proportional to the number of levels of the structure,
h. For example, with two levels (h=2,b>> 1), D,,=0.5, or one-
half of the original total search space. With A=5 and 6> 1
(this is a reasonable assumption with large data base), it re-
duces to one-fifth of the total search space. Thus, we can see
that the two-level method is not optimal.

Next we consider the effect of the false drop probability /" on the
storage required. Consider two cases:

1) P/=1/n=1/b", and

2) PP=1/p".

The ratio between the storage requirements for these two cases
is nm’Inm=log(b*Vlog(b")=x/h. That is, if case 2 is to take half as
much storage as case 1, x has to be 0.54. This means that the false
drop probability for case 2 would be B =n, resulting in an
intolerable number of false drops. We can see from this example
that the false drop probability is not a significant factor affecting
the storage. Thus, it is not advisable to compromise false drop
probability for lower storage overhead.

D.2. Insertions and Deletions

When a text block is inserted in the multilevel method, 4
different signatures are generated, one for each level, and su-
perimposed into the corresponding index signatures. The su-
perimposition requires only (#—1) simple updates to the index
hierarchy (i.e., the nonleaf nodes). Note that, when a new rec-
ord is inserted, the total number of bits set by the new record
on all levels is the same as that for the single-level method.
However, since the bits are spread on ali levels, the number of
disk access is higher for the multilevel method.

If a text block is deleted, the / index signatures along the
path from the deleted block to the root node must be regener-
ated. This requires b(b"-1)/(b—1) signature generations,
which is unacceptable for large databases. To alleviate the
problem, when a block is deleted, only the signature at the leaf

1995
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Fig. 13. Computation reduction ratio, D, vs. number of query terms in a multi-
level signature file (number of true drops = 0).

level is removed. This simplification increases the signature
reduction ratio C by hb/n=>5b(b/n)log,n, when the words inside
the removed block are used as query words. Since the increase
is small, this simple method is a reasonable compromise.

D.3. Combinatorial Errors

It has been shown that combinatorial errors result in false
drops when a number of records are combined to form a block
or a segment signature in a two-level signature file method
[18]. The false drops due to combinatorial errors are more of a
problem for queries with many search terms. The same applies
to the multilevel method. Our model does not take the effect of
combinatorial errors into account for calculating the number of
signatures searched due to false drops. As a result, our method
underestimates the number of signatures searched due to false
drops for multiterm queries. However, since the blocking fac-
tor plays an important role in combinatorial errors, our
method, where the optimal blocking factor is two, minimizes
the effects of combinatorial errors. This can also be observed
from Fig. 13, where the simulation results closely match the
analytical results for queries with multiple query terms.
Moreover, these false drops are concentrated over the first few
levels of the signature hierarchy where the number of constitu-
ent records for a signature is large. At higher (leaf) levels, sig-
natures are generated from fewer blocks, hence lowering the
effect of combinatorial errors.

VI. CONCLUSION

In this paper, we compare the performance of three basic
search methods for signature files using a uniform perform-
ance model. We further propose a multilevel superimposed
coding method which shows superior performance over the
other methods while consuming the same amount of storage. In
the analysis of the methods, we introduce the notion of global
and local false drop probabilities and distinguish between
searches due to false drops and true drops. For the multilevel
signature file, we obtain the optimal number of levels and
show that the optimal point is when the degree (packing factor)
of the tree is two. Thus, for a signature file with » signatures,
the optimal number of levels is logyn. Since the number of
levels grows with the database size, the multilevel level is par-
ticularly suitable for indexing large databases. The analysis
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performed on these methods also reveals other important char-
acteristics of the methods, which are otherwise difficult to ob-
serve. For instance, the same storage overhead is incurred for
the single-level, two-level, and multilevel method to yield the
same false drop probability for unsuccessful searched, and, if
the false drop probability is set to 1/n, as is in our analysis, the
number of bits set by each keyword in a signature is one.

The partitioned signature files are not as competitive as the
other methods. However, they are attractive because of their
simple file structures, low storage overheads, and the direct ac-
cess to the partitions (assuming the key table is small enough to
fit into main memory). Hence, it can be combined with the multi-
level superimposed coding method easily (or for that matter any
other methods). That is, the partitions themselves can be organ-
ized using a multilevel structure. The performance of this
“hybrid” method is an interesting topic for further research. An-
other interesting research problem is the relaxation of (10). It is
quite possible that the search performance of the multilevel
method would be different if local false drop probabilities are
not the same for every level. In this case, further investigation is
needed to find out the best way of assigning false drop prob-
abilities to each level in the tree. Deletion in the multilevel
method is problematic. Schemes for regenerating the signatures
only for a small subtree containing the deleted text block and an
analysis incorporating the cost of periodic reorganization of the
tree structure are interesting research problems.
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