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Abstract—A major problem of current Web search is that search queries are usually short and ambiguous, and thus are insufficient for

specifying the precise user needs. To alleviate this problem, some search engines suggest terms that are semantically related to the

submitted queries so that users can choose from the suggestions the ones that reflect their information needs. In this paper, we

introduce an effective approach that captures the user’s conceptual preferences in order to provide personalized query suggestions.

We achieve this goal with two new strategies. First, we develop online techniques that extract concepts from the web-snippets of the

search result returned from a query and use the concepts to identify related queries for that query. Second, we propose a new two-

phase personalized agglomerative clustering algorithm that is able to generate personalized query clusters. To the best of the authors’

knowledge, no previous work has addressed personalization for query suggestions. To evaluate the effectiveness of our technique, a

Google middleware was developed for collecting clickthrough data to conduct experimental evaluation. Experimental results show that

our approach has better precision and recall than the existing query clustering methods.

Index Terms—Clickthrough, concept-based clustering, personalization, query clustering, search engine.
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1 INTRODUCTION

AS the Web keeps expanding, the number of pages
indexed in a search engine increases correspondingly.

With such a large volume of data, finding relevant
information satisfying user needs based on simple search
queries becomes an increasingly difficult task. Queries
submitted by search engine users tend to be short and
ambiguous. A study by Jansen et al. [20] found that the
average query length on a popular search engine was only
2.35 terms. These short queries are not likely to be able to
precisely express what the user really needs. As a result,
lots of pages retrieved may be irrelevant to the user needs
because of the ambiguous queries. On the other hand, users
may not want to reformulate their queries using more
search terms, since it imposes additional burden on them
during searching.

To improve user’s search experience, most major

commercial search engines provide query suggestions to

help users formulate more effective queries. When a user
submits a query, a list of terms that are semantically related

to the submitted query is provided to help the user identify
terms that he/she really wants, hence improving the

retrieval effectiveness. Yahoo’s “Also Try” [6] and Google’s
“Searches related to” features provide related queries for

narrowing search, while Ask Jeeves [1] suggests both more
specific and more general queries to the user. Unfortu-

nately, these systems provide the same suggestions to the
same query without considering users’ specific interests.

In this paper, we propose a method that provides

personalized query suggestions based on a personalized

concept-based clustering technique. In contrast to existing

methods that provide the same suggestions to all users, our

approach uses clickthrough data to estimate user’s con-

ceptual preferences and then provides personalized query

suggestions for each individual user according to his/her

conceptual needs. The motivation of our research is that

queries submitted to a search engine may have multiple

meanings. For example, depending on the user, the query

“apple” may refer to a fruit, the company Apple Computer

or the name of a person, and so forth. Thus, providing

personalized query suggestion (e.g., users interested in

“apple” as a fruit get suggestions about fruit, while users

interested in “apple” as a company get suggestions about

the company’s products) certainly helps users formulate

more effective queries according to their needs.
The underlying idea of our proposed technique is based

on concepts and their relations extracted from the sub-
mitted user queries, the web-snippets,1 and the click-
through data. Clickthrough data was exploited in the
personalized clustering process to identify user preferences:
A user clicks on a search result mainly because the web-
snippet contains a relevant topic that the user is interested
in. Moreover, clickthrough data can be collected easily
without imposing extra burden on users, thus providing a
low-cost means to capture user’s interest.

Our approach consists of the following four major steps.
First, when a user submits a query, concepts (i.e., important
terms or phrases in web-snippets) and their relations are
mined online from web-snippets to build a concept
relationship graph. Second, clickthroughs are collected to
predict user’s conceptual preferences. Third, the concept
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relationship graph together with the user’s conceptual

preferences is used as input to a concept-based clustering

algorithm that finds conceptually close queries. Finally, the

most similar queries are suggested to the user for search

refinement. Fig. 1 shows the general process of our

approach.
To evaluate the performance of our approach, we

developed a Google middleware for clickthrough data

collection.2 Users were invited to test our middleware with

test queries selected from a spectrum of topical categories.

We evaluate the performance of our approach using the

standard recall-precision measures. Beeferman and Berger’s

agglomerative clustering algorithm [11] (or simply called

BB’s algorithm in this paper) is used as the baseline to

compare with our concept-based approach. Our experi-

mental results show that the average precision at any recall

level is better than the baseline method.
The main contributions of this paper are given as

follows:

1. Most of the previous approaches on query clustering
consider two different queries to be semantically
similar if they lead to common clicks on the same
pages. However, the chance for different queries
leading to common clicks on the same URLs are rare
in Web search engines (see Section 2 for more
discussion). Based on this important observation, we
propose to use concepts, not pages, as the common
ground for relating semantically similar queries.
That is, two queries are considered related if they
lead to clicks on pages that share some common
concepts, which are mined from the web-snippets in
the search results.

2. To our knowledge, there is no previous study on the
personalization of query suggestions. We propose a
two-phase clustering method to cluster queries first
within the scope of each user and then for the
community.

3. We conduct experiments to evaluate different meth-
ods and show that our concept-based two-phase
clustering method yields the best precision and
recall.

The rest of this paper is organized as follows: In Section 2,
we compare our method with other similar approaches. We
also discuss some works related to concept mining. In
Section 3, we review BB’s algorithm, which is also an
effective technique in personalized query clustering. In
Section 4, our concept mining method for extracting
concepts from web-snippets is presented. In Section 5, we
adapt BB’s algorithm to our concept-based approach. We
further extend the concept-based BB’s algorithm to a
personalized clustering algorithm by utilizing the user
concept preference profiles. Experimental results compar-
ing BB’s algorithm with our methods are presented in
Section 6. Section 7 concludes this paper.

2 RELATED WORK

Query clustering techniques have been developed in
diversified ways. The very first query clustering technique
comes from information retrieval studies [26]. Similarity
between queries was measured based on overlapping
keywords or phrases in the queries. Each query is
represented as a keyword vector. Similarity functions such
as cosine similarity or Jaccard similarity [26] were used to
measure the distance between two queries. One major
limitation of the approach is that common keywords also
exist in unrelated queries. For example, the queries, “apple
iPod” (an MP3 player) and “apple pie” (a dessert), are very
similar since they both contain the keyword “apple.”
However, the queries are actually expressing two different
search needs.

Chuang and Chien [14] proposed to cluster and organize
users’ queries into a hierarchical structure of topic classes. A
Hierarchical Agglomerative Clustering (HAC) [25] algo-
rithm is first employed to construct a binary-tree cluster
hierarchy. The binary-tree hierarchy is then partitioned in
order to create subhierarchies forming a multiway-tree
cluster hierarchy like the hierarchical organization of Yahoo
[6] and DMOZ [3].

Baeza-Yates et al. [10] proposed a query clustering
method that groups similar queries according to their
semantics. The method creates a vector representation Q for
a query q, and the vector Q is composed of terms from the
clicked documents of q. Cosine similarity is applied to the
query vectors to discover similar queries. More recently,
Zhang and Nasraoui [33] presented a method that discovers
similar queries by analyzing users’ sequential search
behavior. The method assumes that consecutive queries
submitted by a user are related to each other. The sequential
search behavior is combined with a traditional content-
based similarity method to compensate for the high sparsity
of real query log data.

Recently, Beitzel et al. [12] proposed a query classifica-
tion method that combines multiple classifiers. The method
combines techniques from machine learning and computa-
tional linguistics. Their results were compared to those from
the 2005 KDD Cup [5], showing that their combined
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Fig. 1. The general process of concept-based clustering.

2. The middleware approach is for facilitating experimentation. The
techniques developed in this paper can be directly integrated into any
search engine to provide personalized query suggestions.
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approach produced higher recall and smoother tradeoffs
between recall and precision than any of the component
approaches.

On Web search engines, clickthrough data is a kind of
implicit feedback from users. Table 1 is an example
clickthrough data for the query “apple,” which shows the
URLs returned from the search engine for the query and the
URLs clicked on by the user. Clearly, it is a valuable resource
for capturing the user’s interest for building personalized
Web search systems [7], [8], [17], [18], [21], [22], [24], [27],
[28], [29]. Joachims [21] proposed a method that employs
preference mining and machine learning to rerank search
results according to user’s personal preferences. Later on,
Smyth et al. [27] suggested that user search behavior is
repetitive and regular. They proposed to rerank search
results such that the results that have been previously
selected for a given query are promoted ahead of other
search results. More recently, Deng et al. [17] proposed an
algorithm that combines a spying technique together with a
novel voting procedure to determine user preferences from
the clickthrough data. Dou et al. [18] also performed a large-
scale evaluation on different personalized search strategies,
including clickthrough-based and profile-based personali-
zation. They suggested that click-based personalization
strategies perform consistently and considerably well when
compared to profile-based methods (Table 2).

To resolve the disadvantage of keyword-based clustering
methods, clickthrough data has been used to cluster queries
based on common clicks on URLs. Beeferman and Burger
[11] proposed an agglomerative clustering algorithm (i.e.,
BB’s algorithm) to exploit query-document relationships
from clickthrough data. Given a search engine log,
BB’s algorithm first constructs a bipartite graph with one
set of vertices corresponding to queries, and another
corresponding to documents. If a user clicks on a document,
a link between the corresponding query and document is
created on the bipartite graph. After the bipartite graph is
obtained, the agglomerative clustering algorithm is used to
obtain the clusters. The algorithm is content-independent in
the sense that it exploits only the query-document links on
the bipartite graph to discover similar queries and similar

documents without examining the keywords in the queries
or the documents. The details of the algorithm will be
described in Section 3.

Wen et al. [31] proposed a clustering algorithm combin-
ing both query contents and URL clicks. They suggested
that two queries should be clustered together, if they
contain the same or similar terms, and lead to the selection
of the same documents. However, since Web search queries
are usually short and common clicks on documents are rare
(see discussion below), Wen et al.’s method may not be
effective for disambiguating Web queries. In contrast, our
approach relates the queries with a set of extracted concepts
in order to identify the precise semantics of the search
queries.

One major problem with the clickthrough-based method
is that the number of common clicks on URLs for different
queries is limited. This is because different queries will
likely retrieve very different result sets in very different
ranking orders. Thus, the chance for the users to see the
same results would be small, let alone clicking on them. It
was reported that in a large clickthrough data set from a
commercial search engine the chance for two random
queries to have a common click is merely 6:38� 10�5 [11].
The small number of common clicks leads to low recall.

To alleviate this problem, we introduce the notion of
concept-based graphs by considering concepts extracted
from web-snippets and adapt BB’s method to this new
context. In contrast to the existing methods, our approach
provides effective personalization effect by using the
concept preference profiles that are built upon the extracted
concepts and clickthroughs. The use of concepts helps
reduce the size of the resulted profiles, while retaining the
accuracy and capability to capture user’s interests.

Along the line of concept extraction from web-snippets,
Koester [23] combined Web mining techniques and formal
concept analysis to extract concepts from web-snippets and
build a concept lattice capturing user’s conceptual needs.
However, it was not concerned with personalization. Xu
et al. [32] proposed a method to extract concepts from users’
browsed documents to create hierarchical concept profiles
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The Clickthrough Data for the Query “Apple”
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Frequently Used Symbols
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for personalized search in a privacy-enhanced environment.
Their method assumes that the system knows the docu-
ments that the user is interested in, instead of using
clickthrough. Thus, their method is quite different from
ours.

Another technique to discover related queries is query
expansion. The aim of query expansion is to improve
retrieval effectiveness by expanding the query with words
or phrases to match additional documents. Cui et al. [15]
proposed a query expansion method based on user
interactions recorded in the clickthrough data. The method
focuses on mining correlations between query terms and
document terms by analyzing user’s clickthroughs. Docu-
ment terms that are strongly related to the input query are
used together to narrow down the search.

3 BB’S GRAPH-BASED CLUSTERING ALGORITHM

In BB’s graph-based clustering [11], a query-page bipartite
graph is first constructed with one set of the nodes
corresponding to the set of submitted queries, and the
other corresponding to the sets of clicked pages. If a user
clicks on a page, a link between the query and the page is
created on the bipartite graph. After obtaining the bipartite
graph, an agglomerative clustering algorithm is used to
discover similar queries and similar pages. During the
clustering process, the algorithm iteratively combines the
two most similar queries into one query node, then the two
most similar pages into one page node, and the process of
alternative combination of queries and pages is repeated
until a termination condition is satisfied. The main reason
for not clustering all the queries first and then all the pages
next is that two queries may seem unrelated prior to page
clustering because they link to two different pages but they
may become similar to each other if the two pages have a
high enough similarity to each other and are merged later.
The example in Fig. 2 helps illustrate this scenario.

To compute the similarity between queries or documents
on a bipartite graph, the algorithm considers the overlap of
their neighboring vertices as defined in the following
equation:

simðx; yÞ ¼
NðxÞ\NðyÞj j
NðxÞ[NðyÞj j ; if NðxÞ [NðyÞj j > 0;

0; otherwise;

�
ð1Þ

where NðxÞ is the set of neighboring vertices of x, and NðyÞ
is the set of neighboring vertices of y. Intuitively, the
similarity function formalizes the idea that x and y are
similar if their respective neighboring vertices largely
overlap and vice versa.

As discussed in Section 2, a problem of the BB’s method
is its low recall rate since the number of common clicks on
the URLs is rather small. Another problem of the similarity
function proposed by BB is that it cannot identify “noise”
links in the clustering process. Consider the example shown
in Fig. 3, where the number attached to a link is the total
number of clicks on the document. In Fig. 3a, q2 is a hot
query, which generates 1,000 clicks for each of the
documents d2 and d3, while q1 is a cold query, which only
generates 10 clicks for each of the documents d1 and d2.
Even though the click distributions for q1 and q2 are
different, we can see that d1 and d2 are both relevant to q1

because the number of clicks on d1 and the number of clicks
on d2 are roughly the same for q1 (i.e., 10 clicks). Similarly,
we can see that d2 and d3 are both relevant to q2 because the
number of clicks on d2 and the number of clicks on d3 are
roughly the same for q2 (i.e., 1,000 clicks). Thus, we
conclude that q1 and q2 are similar queries because they
share the common relevant document d2. However, in
Fig. 3b, d2 cannot be considered relevant to q1 because only
a small fraction of the clicks (10 out of 1,010) supports that
conclusion. Consequently, we cannot conclude that q1 and
q2 are similar queries. BB’s similarity function does not
detect the “noise” link as shown Fig. 3b. It gives the same
similarity score of 1/3 in both cases. To solve the problem,
the following similarity function was proposed in our
earlier work [13]:

simðx; yÞ ¼
Lðx;yÞj j

LðxÞ[LðyÞj j ; if LðxÞ [ LðyÞj j > 0;

0; otherwise;

�
ð2Þ

where Lðx; yÞ is the set of links connecting x and y to the
same vertices, LðxÞ and LðyÞ are all the links connecting to x
and y, respectively, and jLð�Þj is the cardinality of Lð�Þ.

Applying the similarity function, we get a similarity
score of 1;010=2;020 ¼ 1=2 for simðq1; q2Þ in Fig. 3a, and
similarity score of 1;010=3;010 ¼ 1=3 for simðq1; q2Þ in
Fig. 3b. Note that the score for simðq1; q2Þ in Fig. 3a is
higher than that in Fig. 3b, because most people are
selecting document d1 in Fig. 3b, and the links between q1

and d2 can be considered as “noise.” Therefore, it is
reasonable to assign a lower score to simðq1; q2Þ in Fig. 3b.
Using the noise-tolerant similarity function, the similarity
between two vertices always lies between [0, 1]. The
similarity for two vertices is 0, if they share no common
neighbor, and the similarity between two vertices is 1, if
they have exactly the same neighbor vertices.

It is noted that noise elimination by itself is a difficult
problem since it requires complex inference rules to
distinguish the informative from the erroneous clicks. Since
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Fig. 2. (a) Queries q1 and q3 seem unrelated before document clustering.

(b) After document clustering, queries q1 and q3 are then related to each

other because they are both linked to the document cluster fd1; d2g.

Fig. 3. (a) A bipartite graph without “noise.” (b) A bipartite graph with a

“noise” link, where the solid edges represent “real” links and the dash

edge represents a “noise” edge.
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the noise-tolerant version has been shown to be superior to
the original version [13] and we are not aware of any better
methods, in the rest of this paper, BB’s algorithm refers to
this improved version of similarity function.

4 CONCEPT EXTRACTION

Before explaining our concept-based clustering method, we
first describe our concept extraction method, which is
composed of the following three basic steps: 1) extracting
concepts using the web-snippets returned from the search
engine, 2) mining concept relations, and 3) creating a user
concept preference profile using the extracted concepts,
concept relations, and user’s clickthroughs.

4.1 Concept Extraction Using Web-Snippets

Our concept extraction method is inspired by the well-
known problem of finding frequent item sets in data mining
[9], [19]. When a user submits a query to the search engine,
a set of web-snippets are returned to the user for identifying
the relevant items. We assume that if a keyword or a phrase
appears frequently in the web-snippets of a particular
query, it represents an important concept related to the
query because it coexists in close proximity with the query
in the top documents. We use the following support
formula for measuring the interestingness of a particular
keyword/phrase ti with respect to the returned web-
snippets arising from a query q:

supportðtiÞ ¼
sfðtiÞ
n
� jtij; ð3Þ

where n is the total number of web-snippets returned, sfðtiÞ
is the snippet frequency of the keyword/phrase ti (i.e., the
number of web-snippets containing ti), and jtij is the
number of terms in the keyword/phrase ti. For simplicity,
we omit q in the above expression if no ambiguity arises.

To extract concepts for a query q, we first extract all the
keywords and phrases from the web-snippets returned by
the query. After obtaining a set of keywords/phrases ðtiÞ,
we compute the support for all ti ðsupportðtiÞÞ. If the
support of a keyword/phrase ti is bigger than the threshold
s ðsupportðtiÞ > sÞ, we would treat ti as a concept for the
query q. Table 3 illustrates the extracted concepts for the
query q ¼ ‘‘apple’’.

4.2 Mining Concept Relations

To find relations between concepts, we apply a well-known
signal-to-noise ratio formula from data mining [16] to
establish similarity between terms t1 and t2. The similarity
value of Church and Hanks’ formula always lies between
[0, 1] and thus can be used directly in step 3:

simðt1; t2Þ ¼
n � dfðt1 [ t2Þ
dfðt1Þ � dfðt2Þ

�
logn; ð4Þ

where n is the number of documents in the corpus, dfðt1 [
t2Þ is the joint document frequency of t1 and t2, and dfðtÞ is
the document frequency of the term t.

In our context, two concepts ti, tj could coexist in a web-
snippet in the following situations: 1) ti and tj coexist in the
title, 2) ti and tj coexist in the summary, or 3) ti exists in the
title, while tj exists in the summary (or vice versa).

Therefore, we modify Church and Hanks’ formula for the

three different cases in our context as follows:

simRðti; tjÞ ¼ simR;titleðti; tjÞ þ simR;summaryðti; tjÞ
þ simR;otherðti; tjÞ; ð5Þ

where simRðti; tjÞ is the similarity between concepts ti and

tj, which is composed of simR;titleðti; tjÞ, simR;summaryðti; tjÞ,
and simR;otherðti; tjÞ as follows:

simR;titleðti; tjÞ ¼ � � log
n � sftitleðti [ tjÞ
sftitleðtiÞ � sftitleðtjÞ

� ��
logn; ð6Þ

simR;summaryðti; tjÞ ¼

� � log
n � sfsummaryðti [ tjÞ

sfsummaryðtiÞ � sfsummaryðtjÞ

� ��
logn;

ð7Þ

simR;otherðti; tjÞ ¼ � � log
n � sfotherðti [ tjÞ

sfotherðtiÞ � sfotherðtjÞ

� ��
logn;

ð8Þ

where n is the total number of web-snippets returned,

sftitleðti [ tjÞ is the joint snippet frequency of concepts ti and

tj in document titles, sftitleðtÞ is the snippet frequency of

concept t in document titles, sfsummaryðti [ tjÞ is the joint

snippet frequency of ti and tj in document summaries,

sfsummaryðtÞ is the snippet frequency of concept t in

document summaries, sfotherðti [ tjÞ is the joint snippet

frequency of concept ti in a document title and tj in the

document’s summary (or vice versa), and sfotherðtÞ is the

snippet frequency of concept t in either document summa-

ries or document titles.
Using the extracted concepts and concept relations, we

can create a concept relationship graph with the extracted

concepts as nodes and mined concept relations as links.

Fig. 4a shows a concept preference graph for the query

q ¼ ‘‘apple’’. A link is created between concept ti and tj, if

their similarity, simRðti; tjÞ, is greater than zero. The

strength of each link is determined by simRðti; tjÞ, which

is the similarity between concepts ti and tj.
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TABLE 3
Extracted Concepts for the Query “Apple”
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4.3 Creating User Concept Preference Profile

The concept relationship graph is first derived without

taking user clickthroughs into account. Intuitively, the

graph shows the possible concept space arising from user’s

queries. The concept space, in general, covers more than

what the user actually wants. For example, when the user

searches for the query “apple,” the concept space derived

from the web-snippets contains concepts such as “ipod,”

“iphone,” and “recipe.” If the user is indeed interested in

the concept “recipe” and clicks on pages containing the

concept “recipe,” the clickthroughs should gradually favor

the concept “recipe” and its neighborhood (by assigning

higher weights to the nodes), but the weights of the

unrelated concepts such as “iphone,” “ipod,” and their

neighborhood should remain zero. Therefore, we propose

the following formulas to capture user’s interestingness wti
on the extracted concepts ti when a clicked web-snippet sj,

denoted by clickðsjÞ, is found as follows:

clickðsjÞ ) 8ti 2 sj; wti ¼ wti þ 1; ð9Þ

clickðsjÞ)8ti 2 sj; wtj ¼ wtj þ simRðti; tjÞ if simRðti; tjÞ > 0;

ð10Þ

where sj is a web-snippet, wti is the interestingness weight

of the concept ti, and tj is the neighborhood concept of ti.

When a user clicks on sj, the weight of concepts ti
appearing in sj is incremented by 1 to reflect the user’s
interestingness on the concepts embedded in the clicked
page sj. For other concepts that are related to the clicked
concepts on the concept relationship graph, they are
incremented according to the similarity score given in (4),
which is normalized to the range [0, 1]. Therefore, if a
concept is closely related to the clicked concept, it is
incremented to a higher value (which could be as close to
1 as the clicked concepts). Otherwise, it is only incremented
by a small fraction (close to 0). By imposing user’s
interestingness on the concepts, a concept preference profile
with respect to the input query is created. Fig. 4b shows an
example of concept preference profile in which the user is
interested in information about “apple macintosh.” wti in
Fig. 4b represents the interestingness of the concepts to the
user. The values of wti for “macintosh” and “mac” are
highest because the users have interest in them (and the
values of wti are incremented using (9)). Indirectly, the
values of wti for “mac os,” “software,” “apple store,” “iPod,”
“iPhone,” and “hardware” are increased because they are
related to “apple macintosh” and thus incremented using
(10). Finally, the weights of the concepts about “apple” as
fruit are not changed. As a result, the concepts formed two
clusters representing the user concept preference profile.

5 CONCEPT-BASED CLUSTERING

Using the concepts extracted from web-snippets, we propose
two concept-based clustering methods. We first extend
BB’s algorithm to a concept-based algorithm in Section 5.1.
In Section 5.2, the concept-based algorithm is further
enhanced to achieve effective personalized clustering.

5.1 Clustering on Query-Concept Bipartite Graph

We now describe our concept-based algorithm (i.e.,
BB’s algorithm using query-concept bipartite graph) for
clustering similar queries. Similar to BB’s algorithm, our
technique is composed of two steps: 1) Bipartite graph
construction using the extracted concepts and 2) agglom-
erative clustering using the bipartite graph constructed in
step 1.

Using the extracted concepts and clickthrough data, the
first step of our method is to construct a query-concept
bipartite graph, in which one side of the vertices correspond
to unique queries, and the other corresponds to unique
concepts. If a user clicks on a search result, concepts
appearing in the web-snippet of the search result are linked
to the corresponding query on the bipartite graph. Algo-
rithm 1 shows the first step of our method.

Algorithm 1 Bipartite Graph Construction

Input: Clickthrough data CT , Extracted Concepts E

Output: A Query-Concept Bipartite Graph G

1: Obtain the set of unique queries Q ¼ fq1; q2; q3 . . .g from
CT

2: Obtain the set of unique concepts C ¼ fc1; c2; c3 . . .g
from E

3: NodesðGÞ ¼ Q [ C where Q and C are the two sides in G

4: If the web-snippet s retrieved using qi 2 Q is clicked by
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Fig. 4. (a) A concept relationship graph for the query “apple” derived
without incorporating user clickthroughs. (b) A concept preference
profile constructed using the user clickthroughs and the concept
relationship graph in (a). wti is the interestingness of the concept ti to
the user. More clicks on a concept gradually increase the interesting-
ness wti of the concept.
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a user, create an edge e ¼ ðqi; cjÞ in G, where cj is a

concept appearing in s.

After the bipartite graph is constructed, the agglomera-

tive clustering algorithm is applied to obtain clusters of

similar queries and similar concepts. The noise-tolerant

similarity function (recall (2)) is used for finding similar

vertices on the bipartite graph G. The agglomerative

clustering algorithm would iteratively merge the most

similar pair of white vertices and then merge the most

similar pair of black vertices and so on. We present the

details in Algorithm 2.

Algorithm 2 Agglomerative Clustering

Input: A Query-Concept Bipartite Graph G

Output: A Clustered Query-Concept Bipartite Graph Gc

1: Obtain the similarity scores for all possible pairs of

queries in G using the noise-tolerant similarity function

given in (2).

2: Merge the pair of queries ðqi; qjÞ that has the highest

similarity score.

3: Obtain the similarity scores for all possible pairs of

concepts in G using the noise-tolerant similarity

function given in (2).
4: Merge the pair of concepts ðci; cjÞ that has the highest

similarity score.

5. Unless termination is reached, repeat steps 1-4.

The terminating condition for BB’s algorithm is when

all connected components in Gc satisfy the following

conditions:

max
qi;qj2Q

simðqi; qjÞ ¼ 0 and max
ci;cj2C

simðci; cjÞ ¼ 0:

However, this terminating condition possibly generates a
single big cluster of queries and a single big cluster of
concepts because having the similarity threshold set to zero
means that two queries (concepts) would be assigned to the
same cluster even if they have only a tiny fraction of
overlapping concepts (queries). To resolve this problem, we
apply higher similarity thresholds, which have been
observed from our experiments to yield high precision
and recall:

max
qi;qj2Q

simðqi; qjÞ ¼ 0:18 and max
ci;cj2C

simðci; cjÞ ¼ 0:18:

5.2 Personalized Concept-Based Clustering

We now explain the essential idea of our personalized
concept-based clustering algorithm with which ambiguous
queries can be clustered into different query clusters.
Personalized effect is achieved by manipulating the user
concept preference profiles in the clustering process.

In contrast to BB’s agglomerative clustering algorithm,
which represents the same queries submitted from different
users by one query node, we need to consider the same
queries submitted by different users separately to achieve
personalization effect. In other words, if two given queries,
whether they are identical or not, mean different things to
two different users, they should not be merged together
because they refer to two different sets of concepts for the
two users.

Therefore, we treat each individual query submitted by
each user as an individual vertex in the bipartite graph by
labeling each query with a user identifier. Moreover,
concepts appearing in the web-snippet of the search result
with interestingness weights greater than zero in the
concept preference profile are linked to the corresponding
query on the bipartite graph. An example is shown in
Fig. 5a. We can see that the query “apple” submitted by
users User1 and User3 become two vertices “appleðUser1Þ”
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Fig. 5. Performing personalized concept-based clustering algorithm on a small set of clickthrough data. Starting from top left: (a) The original bipartite

graph. (b), (c) Initial clustering. (d), (e) Community merging.
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and “appleðUser3Þ.” If User1 is interested in the concept
“apple store,” as recorded in the concept preference profile,
a link between the concept “apple store” and the query
“appleðUser1Þ” would be created. On the other hand, if User3
is interested in the concept “fruit,” a link between the
concept “fruit” and “appleðUser3Þ” would be created.

After the personalized bipartite graph is created, our
initial experiments revealed that if we apply BB’s
algorithm directly on the bipartite graph, the query
clusters generated will quickly merge queries from
different users together, thus losing the personalization
effect. We found that identical queries, though issued by
different users and having different meanings, tend to
have some generic concept nodes such as “information” in
common, e.g., “appleðUser1Þ” and “appleðUser3Þ” both connect
to the “information” concept node in Fig. 5a. Thus, these
query nodes will likely be merged in the first few
iterations and cause more queries from different users to
be merged together in subsequent iterations. Considering
Fig. 5a again, if “appleðUser1Þ” and “appleðUser3Þ” are merged,
the next iteration will merge the concept nodes “apple
store,” “fruit,” and “information.” When the clustering
algorithm goes further, queries across users will be further
clustered together. At the end, the resulting query clusters
have no personalization effect at all.

To resolve the problem, we divide clustering into two
steps. In the initial clustering step, an algorithm similar to
BB’s algorithm is employed to cluster all the queries, but it
would not merge identical queries from different users.
After obtaining all the clusters from the initial clustering
step, the community merging step is employed to merge
query clusters containing identical queries from different
users. We can see from Fig. 5d that “appleðUser1Þ” and
“appleðUser3Þ” belong, correctly, to different clusters. We will
see further in Section 6.3 that the initial clustering step is
able to generate high precision rate because it preserves the
preference of each user, while the community merging step
is able to improve the recall rate because of the collaborative
filtering effect.

Algorithm 3 shows the details of the personalized
clustering algorithm. Similar to the BB’s algorithm, a
query-concept bipartite graph is created as input for the
clustering algorithm. The bipartite graph construction
algorithm is similar to Algorithm 1, except each individual
query submitted by each user is treated as an individual
vertex in the bipartite graph.

Algorithm 3 Personalized Agglomerative Clustering
Input: A Query-Concept Bipartite Graph G

Output: A Personalized Clustered Query-Concept

Bipartite Graph Gp

// Initial Clustering

1: Obtain the similarity scores in G for all possible pairs of

queries using the noise-tolerant similarity function

given in (2).
2: Merge the pair of most similar queries ðqi; qjÞ that does

not contain the same queries from different users.

3: Obtain the similarity scores in G for all possible pairs of

concepts using the noise-tolerant similarity function given

in (2).

4: Merge the pair of concepts ðci; cjÞ having highest
similarity score.

5. Unless termination is reached, repeat steps 1-4.

// Community Merging

6. Obtain the similarity scores in G for all possible pairs of

queries using the noise-tolerant similarity function given in

(2).

7. Merge the pair of most similar queries ðqi; qjÞ that

contains the same queries from different users.
8. Unless termination is reached, repeat steps 6 and 7.

Initial clustering (i.e., steps 1-5 of Algorithm 3) is
similar to BB’s agglomerative algorithm as already
discussed in Section 5.1. However, queries from different
users are not allowed to be merged in initial clustering.
Figs. 5b and 5c show examples of query and concept
merging, respectively. Fig. 5d illustrates the result of
initial clustering. In community merging (i.e., steps 6-8 of
Algorithm 3), query clusters containing identical queries
from different users are compared for merging. Figs. 5d
and 5e show an example of query cluster merging. The
query clusters fapple computerðUser2Þ; appleðUser1Þg and
{appleðUser2Þ and apple macðUser1Þ} both contain the query
“apple” and are leading to the same concept “apple
store.” Therefore, they are merged in community mer-
ging as one big cluster.

Good timing to start community merging is important
for the success of the algorithm. If we stop initial clustering
too early (i.e., not all clusters are well formed), community
merging merges all the identical queries from different
users first and thus generates a single big cluster without
much personalization effect. However, if we stop initial
clustering too late (i.e., clusters are being overly merged in
this case), the low precision rate generated by initial
clustering would not be improved by community merging.
To obtain the optimal results in our experiments, we use the
following terminating conditions for initial clustering
ði-clusteringÞ and community merging ðc-mergingÞ in
Algorithm 3. These parameters are empirically investigated
in our experiment. We will further justify our choice using
Table 10 in Section 6.3:

maxi�clustering
qi;qj2Q

simðqi; qjÞ ¼ 0:29 and

maxi�clustering
ci ;cj2C

simðci; cjÞ ¼ 0:29;

maxc�merging
qi;qj2Q

simðqi; qjÞ ¼ 0:39 and

maxc�merging
ci;cj2C

simðci; cjÞ ¼ 0:39:

The query clusters outputted by the algorithm are shown
in Fig. 5e. We assume in this example that the links between
the generic concept nodes, “information,” and the two
query clusters are weak and the terminating similarity is
able to prevent the merging of the query clusters about
“apple computer” and “apple juice.” We can see in the
resulting clusters that User1 and User2 both submit the
query “apple” in order to seek information about “apple
computer,” while User3 submits the query “apple” to look
for information about “apple juice.” In this example, even
the query “apple” submitted by User1, User2, and User3
appear to be the same, the algorithm can successfully
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differentiate them to archive personalization effect accord-
ing to individual user conceptual preferences. Finally, we
can see that queries about “apple computer” (e.g., “apple
mac,” “apple computer”) are suggested to User1 and User2,
while queries about “apple juice” (e.g., “apple juice”) are
suggested to User3.

6 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
clustering methods for obtaining related queries using user
clickthroughs. In Section 6.1, we first describe the experi-
mental setup for collecting the required clickthrough data. In
Section 6.2, we compare the performance of BB’s algorithm
using query-URL, query-word, and query-concept bipartite
graphs (or simply called the QU, QW, and QC methods). In
Section 6.3, we evaluate the effectiveness of our proposed
personalized concept-based clustering (or simply called the
P-QC method). In Section 6.4, we discuss the algorithmic
complexities based on the related parameters.

6.1 Experimental Setup

To collect the clickthrough data to evaluate our proposed
methods, we implemented a Google middleware to track
user clicks. Google3 was chosen as a common basis for
comparing the performance of the methods under
evaluation.

We invited 40 students from our department to use the
middleware to search 200 given test queries, which are
accessible in [2]. To avoid any bias, the test queries are
randomly selected from 10 different categories and sub-
mitted to Google without any modification by the middle-
ware. Table 4 shows the topical categories in which the
queries we have chosen. When a query is submitted to the
middleware, the top 100 search results from Google are
retrieved, and the web-snippets of the search results are
displayed to the users. Since most users would examine
only the top 10 results, our concept extraction method,
digging deep into the first 100 results, will discover
concepts related to the query that would otherwise be
missed by the users.

The extracted concept relationship graph is then stored
in our database. If a user clicks on one of the web-snippets
of the returned results, the user’s clickthrough together with
his/her concept preference profile are updated as discussed
in Section 4.3. The threshold s for concept mining was set to

0.03 and the threshold for establishing concept relations (as
specified in (10)) is set to zero. We chose these small
thresholds so that as many concepts as possible are mined.
The quality of the query suggestions is then relied more on
the clustering algorithms, which are the main focus of this
paper.

In the first experiment (which will be described in
Section 6.2), 30 students were asked to search the 150 test
queries, all of which have unambiguous meanings (e.g.,
“apple pie” and “cheese cake”). The 150 test queries are
separated into 10 predefined clusters (e.g., the queries
“apple pie,” “cheese cake,” and “brownies” belong to the
cluster about dessert recipes). The users were asked to
click on the web-snippets of the returned results that are
relevant to the queries. The clickthrough data collected are
used to measure the performance of the concept-based
clustering method as discussed in Section 5.1. Table 5
shows the statistics of our collected clickthrough data for
this experiment.

In the second experiment (which will be described in
Section 6.3), 10 students were asked to search using another
50 test queries. Some of the test queries are intentionally
designed to have ambiguous meanings (e.g., the query
“Canon” could mean a digital camera or a printer). The
50 test queries are separated into eight predefined clusters.
Some of the queries could possibly exist in more than one
cluster (e.g., the query “Canon” could belong to the cluster
about digital cameras or the cluster about printers). Each
user is assigned with one of the information seeking tasks
shown in Table 6. The users are then asked to click on the
web-snippets of the returned results that are both relevant
to the queries and their information needs. The clickthrough
data collected are used to measure the performance of the
personalized concept-based clustering method as discussed
in Section 5.2. Table 7 shows the statistics of our collected
clickthrough data for this experiment.

6.2 Comparing QU, QW, and QC Methods

We now discuss the result of the first experiment, which
compares the performance of QU, QW, and QC methods.
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3. Google is one of the most popular commercial search engines. If a
different search engine is used, we expect the absolute performances of the
methods under evaluation to be different but their relative performances
remain the same.

TABLE 4
Categories of the Test Queries

TABLE 5
Statistics of the Clickthrough Data Collected

in the First Experiment
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QU method is the original input of BB’s algorithm, which

serves as a baseline for comparison. QW method uses

query-word bipartite graph, which is similar to the query-

concept bipartite graph in that they are both constructed

using Algorithm 1. The difference is that the former

contains all words (excluding stopwords) from the web-

snippets and the latter contains the extracted concepts. QW

and QC methods are necessary, since they allow us to study

the benefits of concept extraction. The three methods are

also employed to cluster the collected data. The results are

compared to our predefined clusters for precision and

recall. Given a query q and its corresponding query cluster

fq1; q2; q3 . . .g generated by a clustering algorithm, the

precision and recall are computed using the following

formulas:

precisionðqÞ ¼ jQ relevant \Q retrievedj
jQ retrievedj ; ð11Þ

recallðqÞ ¼ jQ relevant \Q retrievedj
jQ relevantj ; ð12Þ

where Q relevant is the set of queries that exist in the

predefined cluster for q, and Q retrieved is set of the related

queries fq1; q2; q3 . . .g generated by the algorithm. The

precision and recall values from all queries are averaged

for plotting the precision-recall figures. The performance of
the three methods is compared using precision-recall
figures and best F -measure values.

Fig. 6 shows the precision-recall figures for QU, QW, and
QC methods. We observe that QC method yields better
recall rate than QU method (i.e., the original BB’s algo-
rithm), while preserving high precision rates. This can be
attributed to the fact that the average number of over-
lapping URLs between queries is only 16.3 according to the
statistics in Table 5, whereas the average number of
overlapping concepts between the queries is 48.8, which is
much higher than the URL overlap rate. As a result, related
queries that cannot be discovered by URL overlap can be
brought together by our QC method, thus improving the
recall rate. The effect of high concept overlap rate is also
apparent in Fig. 6, which shows that the recall of
QU method can only go up to around 0.8, while QW and
QC methods can go beyond 0.9. Note that QU method can
yield high precision rate because of the valuable URL
overlaps between queries. However, QC method benefits
both precision and recall compared to QU method, showing
that the use of extracted concepts is much better for finding
similar queries.

We also observe that QW method performs the worst
among the three methods because common nonstopwords
such as “discussion,” “information,” and “news” bring
unrelated queries together, thus lowering both the precision
and recall rate. The main difference between QW and
QC methods is the availability of concept extraction.
Intuitively, QC method outperforms QW method because
the concept extraction process can successfully eliminate
unrelated common words within web-snippets.

Figs. 7 and 8 show the change of precision and recall,
respectively, for the three clustering methods. In Fig. 7,
when the cutoff similarity score is around 0.3, the
precision obtained using QU method is very close to that
of QC method, which is much better than the precision
obtained using QW method. In Fig. 8, at the same cutoff
similarity score, the recall obtained using QU method is
close to zero, which is much lower compared to the
recalls obtained using QW and QC methods. We can
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TABLE 7
Statistics of the Clickthrough Data Collected

for the Second Experiment
Fig. 6. Precision versus recall when performing QU, QW, and

QC methods.
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easily see from Figs. 7 and 8 that QC method is able to

generate good recall, while achieving a precision compar-

able to that of QU method.
We observe that the three methods are able to achieve

their optimal precision/recall at different cutoff similarity

scores. To obtain and compare the best F -measures [30] (i.e.,

evenly weighted harmonic means of precisions and recalls)

for the three different methods, the following three

terminating strategies are used:

max URL
qi ;qj2Q

simðqi; qjÞ ¼ 0:017 and max URL
ci;cj2C

simðci; cjÞ ¼ 0:017;

max word
qi ;qj2Q

simðqi; qjÞ ¼ 0:39 and max word
ci;cj2C

simðci; cjÞ ¼ 0:39;

maxconcept
qi ;qj2Q

simðqi; qjÞ ¼ 0:18 and maxconcept
ci ;cj2C

simðci; cjÞ ¼ 0:18:

The F-measure, F , is defined by the following formula:

F ¼ 2 � ðprecision � recallÞðprecisionþ recallÞ : ð13Þ

Table 8 shows the best F -measure values for the QU,

QW, and QC methods. From the results, we can conclude

that query clusters obtained using QC method are much

more accurate compared to those obtained from QU and

QW methods.

6.3 Personalized Concept-Based Clustering

In the second experiment, QU, QW, QC, and P-QC methods
are employed to cluster queries that are intentionally
designed to have ambiguous meanings. Again, the results
are compared to our predefined clusters in terms of precision
and recall. We analyze the performance of P-QC method
using precision-recall figures and best F-measure values.

Fig. 9 shows the precision-recall figures of P-QC
methods. The solid line is the precision-recall graph if only
initial clustering is performed. We can observe that recall is
max out at 0.62. The other three lines illustrate how
community merging can further improve recall beyond
the limit of initial clustering. We observe that the timing for
switching from initial clustering to community merging is
very important to the precision and recall of the final query
clusters. When initial clustering is stopped too early (see the
dark-triangle and white-triangle graphs in Fig. 9), initial
clustering achieves high precision and low recall, as can be
expected, but community merging fails to improve the
recall—it drags down precision without improving recall.
The drop of precision is due to easy merging of identical
queries from different users, thus generating a single big
cluster without personalization benefit.

When initial clustering is switched to community
merging at the optimal point (see the white-circle graph
in Fig. 9), community merging clearly boosts up the
precision-recall envelop, which means that both precision
and recall achieved in initial clustering are improved. This
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Fig. 7. Change of precision when performing QU, QW, and QC methods.

Fig. 8. Change of recall when performing QU, QW, and QC methods.

TABLE 8
Best F-Measure Values of QU, QW, and QC Methods

for the First Experiment

Fig. 9. Precision versus recall when performing P-QC method. The solid

line represents the results obtained from initial clustering of Algorithm 3,

and the dash lines represent the results obtained from community

merging of Algorithm 3.
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indicates that community merging is successful in choosing

query clusters with identical queries from different users

for merging.

Finally, when the switching from initial clustering to

community merging is performed later than the optimal

point, we can observe that recall is increased but precision

is lowered, which is a typical phenomenon resulted from

the conflicting nature of precision and recall. The behavior

is due to the fact that overly merged clusters from initial

clustering are further merged in community merging (see

the dark-box graph in Fig. 9), thus further lowering the low

precision generated in initial clustering. Although commu-

nity merging at late stage generates low precision, it extends

the recall from 0.65 obtained by initial clustering to 1.0 (i.e.,

at precision ¼ 0:14 in Fig. 9).

Figs. 10 and 11 show the change of precision and recall

when performing P-QC method. In Fig. 10, we observe that

the precisions generated by community merging are slightly

lower than those generated by initial clustering because

some unrelated queries can be wrongly merged in commu-

nity merging. In Fig. 11, we observe that the recalls

generated by community merging are much higher than

those generated by initial clustering because community

merging can successfully merge conceptually related clus-

ters together. We can easily see from Figs. 10 and 11 that only

a small fraction of precision is used to trade for a much better

recall in community merging.

In order to further justify our choice of the parameters

used in P-QC, we show in Table 10 different terminating

values near the optimal point for initial clustering and

community merging in the second experiment. Two best

cutoff values listed in the fifth row of the table (approxi-

mately 0.29 and 0.39) are used for defining the terminating

conditions of initial clustering ði-clusteringÞ and commu-

nity merging ðc-mergingÞ in Algorithm 3 in order to obtain

the best results. (Recall the terminating conditions for

personalized agglomerative clustering given in Section 5.2.)

The best F -measure value obtained is shown in Table 9.
We observe that the best F -measure value for P-QC method
is better than those obtained using QU, QW, and QC
methods. Therefore, we conclude that query clusters
obtained from P-QC method are more accurate compared
to those obtained from QU, QW, and QC methods, and that
P-QC method can effectively group similar queries together
even when the queries are ambiguous.

Table 11 shows some of the query clusters generated by
Algorithm 3 on the collected data. In Table 11, User7,
User8, and User9 have submitted the query “apple” to our
middleware. User7 gets query suggestions about “macin-
tosh’s software” (Cluster12) because he/she is interested in
concepts on “macintosh’s software.” User8 gets query
suggestions about “macintosh hardware” (Cluster11), and
User9 gets query suggestions about “iPod” (Cluster10). By
using P-QC method, query suggestions according to
individual user’s conceptual preferences can be found
effectively. Moreover, the algorithm yields high precision
accuracy and better recall rate, clearly outperforming
BB’s algorithm.

6.4 Data Size

Clustering web pages by content requires manipulating a
staggeringly large amount of data. An advantage of BB’s
algorithm is that it is content-independent, which is
important for Web-scale data size. The sizes of the bipartite
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Fig. 10. Change of precision when performing P-QC method. The solid

line represents the results obtained from initial clustering of Algorithm 3,

and the dash lines represent the results obtained from community

merging of Algorithm 3.

Fig. 11. Change of recall when performing P-QC method. The solid line

represents the results obtained from initial clustering of Algorithm 3, and

the dash lines represent the results obtained from community merging of

Algorithm 3.

TABLE 9
Best F-Measure Values of QU, QW, QC, and P-QC Methods

for the Second Experiment

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on December 6, 2008 at 19:52 from IEEE Xplore.  Restrictions apply.



graphs in the two experiments are shown in Tables 12 and
13, where upper bound is the upper bound for the number of
operations required for agglomerative clustering, nb is the
number of black vertices in the bipartite graph G, nw is the
number of white vertices in the bipartite graph G (i.e.,
corresponding to the sets of queries and concepts, respec-
tively, in our setting), jNjmax is the maximum number of
neighbors of any vertex in the bipartite graphG, andm is the
number of iterations (i.e., merges) required for agglomera-
tive clustering.

The bipartite graphs constructed using QC and P-QC
methods are even smaller than that of the original BB’s
algorithm, because the number of concepts extracted from
the web-snippets is small and the number of concepts
resulting from web-snippets clicked by users is even
smaller. The bipartite graph containing all words from the
web-snippets (i.e., QW method) is the largest among the
four methods, resulting in low clustering performance.
From the experimental results, we can conclude that our
concept-based clustering method is efficient because of the
significant reduction of the size of the bipartite graph but at
the same time effective as evident from the high precision
and recall achieved.

7 CONCLUSIONS

As search queries are ambiguous, we have studied

effective methods for search engines to provide query

suggestions on semantically related queries in order to

help users formulate more effective queries to meet their

diversified needs. In this paper, we have proposed a new

personalized concept-based clustering technique that is

able to obtain personalized query suggestions for indivi-

dual users based on their conceptual profiles. The

technique makes use of clickthrough data and the concept

relationship graph mined from web-snippets, both of

which can be captured at the back end and as such do

not add extra burden to users. An adapted agglomerative

clustering algorithm is employed for finding queries that

are conceptually close to one another. Our experimental

results confirm that our approach can successfully gen-

erate personalized query suggestions according to indivi-

dual user conceptual needs. Moreover, it improves

prediction accuracy and computational cost compared to

BB’s algorithm, which is the state-of-the-art technique of
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TABLE 10
Cutoff Values for Initial Clustering and Community Merging in the Second Experiment

TABLE 11
Sample Query Clusters Generated by P-QC Method

TABLE 12
Parameter Values Obtained from QU, QW, and QC Methods

in the First Experiment

TABLE 13
Parameter Values Obtained from QU, QW, QC, and

PQ-C Methods in the Second Experiment
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query clustering using clickthroughs for the similar
objective.

There are several directions for extending the work in
the future. First, instead of considering only query-concept
pairs in the clickthrough data, we can consider the
relationships between users, queries, and concepts to
obtain more personalized and accurate query suggestions.
Second, clickthrough data and concept relationship graphs
can be directly integrated into the ranking algorithms of a
search engine so that it can rank results adapted to
individual users’ interests.
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