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Abstract

With the advent of wireless networking and personal
digital devices, the population of mobile users will in-
crease significantly. Broadcasting is particularly suitable
for environments having a large number of clients. In
this paper, we study the query processing of some typ-
ical location-dependent queries, such as window queries
and kNN queries, in a broadcast system. To reduce
clients’ power consumption and provide efficient ser-
vices, a transformation of the objects is applied based
on Hilbert Curve. Furthermore, a linear index struc-
ture is constructed and several algorithms are devised
to answer spatial queries. Experiments are conducted to
evaluate the performance of the proposed transformation
and related algorithms. Results show that the proposed
schemes outperform existing algorithms significantly.
Keywords: location-dependent queries, wireless broad-
cast, index structure, Hilbert Curve

1 Introduction

It is predicted that computing will enter our lives and be-
come pervasive in the near future. A pervasive comput-
ing environment will serve a large population of mobile
users!. Broadcasting is an effective way for disseminat-
ing information to a large number of users.

Pervasive computing must be context-aware in order
to be intelligent and transparent to the user. Location
information is an important class of context information.
Since clients in a pervasive computing environment have
unrestricted mobility, their locations become dynamic
and affect the results of certain spatial queries. Con-
sequently, traditional spatial query processing methods
cannot guarantee the same performance that they can
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1A “user” could be a human user operating a PDA or an infor-
mation seeking device embedded in the environment.

achieve in a traditional database environment. In this
paper, queries whose answers are dependent on some lo-
cation information (in most cases, it is the query issuer’s
position) are called Location-dependent Queries (LDQs).

In a mobile environment, the number of clients is ex-
pected to be very large. Furthermore, LDQs are likely
to exhibit some temporal and spatial locality. In other
words, a user tends to ask the same query over a period
of time (e.g., finding hotels as he is driving), and dif-
ferent users tend to query the same objects (e.g., traffic
reports or local attractions in a city). Under this situa-
tion, it is desirable to disseminate location data on wire-
less broadcast channels and let users retrieve answers to
their LDQs by listening to the channels. Example ap-
plications include city guide, search for nearest services,
local traffic report and so on. In addition to the scal-
ability advantage, broadcast systems allow clients who
know their current positions to retrieve answers without
submitting the location information to the server, thus
reducing the high uplink cost.

As we illustrate in the later section, the specific charac-
teristics of LDQs and broadcast systems introduce many
new challenges that make it difficult for existing tech-
nologies to be applied to this new kind of environments.
Motivated by this fact, we performed research related
to the processing of LDQs in wireless broadcast environ-
ments, such as grid-partition index structure for nearest-
neighbor queries [19] and d-tree for general LDQs [18].
In this paper, we concentrate on some typical LDQs with
the objective to propose an indexing structure that can
serve several different kinds of queries. Although much
work on efficient index structures for different kinds of
queries has been done in the spatial database area, it is
the first time that this topic is addressed in a wireless
broadcast environment. In this paper, we study the dif-
ference between the traditional databases and wireless
broadcast systems. Based on the difference, a new index
structure based on Hilbert Curve is constructed in order
to satisfy the specific demands of broadcast systems.
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The rest of this paper is organized as follows. A brief
review is provided in Section 2. In Section 3, we explain
the particular requirements of the broadcast system in
detail and define the main objective of our work. Ac-
cording to the requirements, a new index structure based
on the Hilbert Curve, a space filling curve, is proposed
in Section 4, along with related algorithms for answer-
ing different kinds of queries. The simulation model is
constructed and the results are depicted in Section 5.
Finally, we conclude this paper in Section 6.

2 Related Work

Focusing on answering LDQs via broadcast channels, we
first briefly survey the existing work related to these two
different areas. To the best of our knowledge, this is
the first work combining the broadcast environment and
processing of spatial queries together.

2.1 Location-Dependent Queries

In this paper, we concentrate on two common classes
of LDQs, namely, window query and k-nearest-neighbor
(kNN) search. Window query is to find the objects that
are within a given window, which is a rectangle in a 2-
dimensional space. k-Nearest Neighbor (kNN) search is
to find k objects among the whole set that contains n
{(n >= k) objects according to a given query ¢, such
that the distance between query point ¢ and any object
in the answer set is no longer than the distance between
q and any other object in the whole set.

R-tree (7] index and its variants provide a good so-
lution to window query. Based on some heuristic opti-
mization, it groups the objects close to each other into
a node, and a window query only visits the nodes that
overlap with the query window.

kNN search originally is a very natural problem in
computational geometry and was first formulated by
Minsky and Papert in 1969. In the 1990’s, researchers
in spatial database began to become interested in this
problem [15, 17]. Currently, the problem is extended
to a high dimensional space, such as image similarity
comparison and content based retrieval in multimedia
applications [2, 8].

According to the number of times that an algorithm
scans the whole dataset, the existing algorithms can be
divided into two categories: single-step search and multi-
step search.

Single-Step Search This kind of algorithms
searches kNN based on the suitable index structure,
scanning the dataset only once. There are several ap-
proaches available from the literature. Branch-and-
bound algorithms use heuristic distance information to
choose the next node for visiting and prune some impos-
sible branches. Various algorithms differ in the search-

ing order and the metrics used to prune the branches
{15, 4, 10]. Incremental algorithms report the objects
one by one to allow the algorithm be employed in a
pipelined fashion, especially for complex queries involv-
ing proximity [9]. Some approaches directly use the
voronoi-diagrams, which provide solution-space for the
kNN queries for a fixed k [1].

Multi-Step Search The methods in this category
scan the dataset multiple times until the proper answers
are obtained. Korn, et. al. proposed an adapted al-
gorithm [12]. First, a set of k primary candidates was
selected based on stored statistics to obtain the upper
bound dp,,; which can guarantee that there are at least &
objects within the distance dpme, from the query point g.
Next, a range query was executed on dataset to retrieve
the final candidates. An extended version of this algo-
rithm was proposed in [17], in which dpe,; was adapted
every time a candidate object was checked.

2.2 Wireless Broadcasting

In mobile computing environments, there are two gen-
eral approaches to disseminating information to mobile
clients:

On-Demand Access: A mobile client submits a re-
quest to the server. The server locates the appropriate
data and returns it to the mobile client.

Broadcast: Data are broadcast on a wireless channel
open to the public. After a mobile client receives a query
from its user, it tunes into the broadcast channel and
filters out the data according to its real situation.

Compared to on-demand access, broadcast has the ad-
vantage of scaling up to service a huge number of clients
without any additional cost at the server site. Therefore,
it is a promising and desirable dissemination method for
the future pervasive computing environment whose client
population is expected to be huge.
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Figure 1: Data and Index Organization on the Broadcast
Channel Using the (1, m) Interleaving Technique

Index information can be interleaved with the data
to facilitate the search process and save clients’ limited
battery power [11). By looking up the index, the mobile
client is able to predict the arrival time of the desired
data and only needs to tune into the broadcast chan-
nel when the requested data arrives. Index organization
refers to the interleaving method of the index and the
data on the broadcast channel. A well-known organi-
zation is the (1,m) interleaving technique [11] (see Fig-
ure 1). That is, the whole index is broadcast preceding
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every 1 fraction of the broadcast cycle.

In wireless communications, a bit stream is normally
delivered in the unit of packet (or frame), for the pur-
poses such as error-detecting, error-correction, and syn-
chronization [11]. For example, in the GPRS network
a packet can contain the data of up to 1600 bytes [3].
As a result, data are accessed by clients also in the
unit of packet, similar to the page concept in traditional
databases. In the following description, we use page,
rather than packet (frame), for its generosity.

2.3 Discussion

There are some factors making information access in the
wireless broadcast environment different from that in the
traditional database environment. These differences in-
troduce new research challenges and motivate our work,
which can be summarized in three aspects: mobile de-
vices’ resource constraints, clients’ unlimited mobility,
and on-air index for wireless data broadcast.

Devices’ Resource Constraints The portability
of mobile devices results in various resource constraints,
such as small storage spaces, and limited battery power.
Among these, power supply is particularly important,
and algorithms designed to run on mobile devices should
take client’s resources into consideration.

Clients’ Mobility The unlimited mobility of clients
makes location-dependent information access a new and
challenging topic. Existing query processing strategies
in traditional database systems have not taken into con-
sideration this mobility and changing location issues.
Therefore, new information access and dissemination
schemes need to be devised.
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Figure 2: Linear Access on Wireless Broadcast Channel

On Air Index An important characteristics of wire-
less data broadcast is that the index information is on
air. It uses air as a dissemination medium. The in-
dex information is available to the clients only when it
is broadcast. Hence, when an algorithm traverses the
index nodes in an order different from their broadcast
sequence, it has to wait for the next time they are broad-
cast. In contrast, the index for traditional databases is
stored in the resident storage, such as memory and disk
space. Consequently, it’s available anytime. Since nearly
all the existing index structures and algorithms devised
for traditional databases do not consider the time-series
characteristics of the air index, they cannot be easily

deployed in wireless broadcast environments. An exam-
ple of the well known R-Tree index is given in Figure 2.
Assuming that the query processing algorithm first vis-
its the node R; and then R;, and that the server first
broadcasts node R; then R;, the access latency is signif-
icantly extended since the node R; is not available until
the next cycle.

As a conclusion, a good index structure and associated
algorithm serving spatial queries in a wireless broadcast
environment should incur small space cost, take linear
broadcast order into account, and perform the search
efficiently.

Regarding the performance metrics, common crite-
ria tuning time and access latency are employed in this
study. The former is the time spent by a client listen-
ing to the broadcast channels, logically representing the
client’s power consumption. The latter is the time dura-
tion from the point that the client requests some data to
the point that the desired data is received. Both the tun-
ing time and the access latency are measured in terms
of number of page accesses [11].

3 Hilbert-Curve Index Structure

In response to the linear characteristics of wireless broad-
cast, we propose an index structure to facilitate the pro-
cesging of LDQs by linear scanning of the dataset, rather
than random traversal of the index nodes based on some
heuristics. A space-filling curve, a continuous path vis-
iting every point in a k-dimensional grid exactly once
without crossing itself, can serve as an index for LDQs in
wireless data broadcast. Well-known space filling curves,
including z-curve, Gray-coded curve and Peano curve,
are different in the order that the points in the grid space
are visited. Hilbert Curve, due to its optimal locality [6],
is chosen in this paper to build an index for LDQs. In
this section, we first explain the basic idea about Hilbert
Curve. Then, related algorithms for answering LDQs are
illustrated.

Like many other space-filling curves, Hilbert Curve
maps points from a multi-dimensional space to a 1-
dimensional space. Locality is an important metric for
choosing space filling curves. A mapping from n dimen-
sions to m dimensions (where m < n) is considered to
have good locality if points that are close to each other
in an n-dimensional space are also close to each other
after being mapped into an m-dimensional space. Con-
sidering the nearest neighbors along the grid axes only,
each grid point has 2n nearest neighbors in the original
space. However, it will only have 2m nearest neighbors
after being mapped into an m-dimensional space. There-
fore, for a mapping from n dimensions to one dimension,
such as Hilbert Curve, the best that we can hope for is
to have two of the 2n nearest neighbors remain to be
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nearest neighbors in the 1-dimensional space. This sub-
jective criteria is met by Hilbert Curve, which guarantees
a good locality feature.

Figure 3(a) gives the basic Hilbert Curve of order 1.
To derive a curve of order i, each vertex of the basic
curve is replaced by the curve of order i — 1, which may
be strategically rotated and/or reflected to fit the new
curve. The Hilbert Curves of order 2 and 3 are depicted
in Figure 3(b) and 3(c), respectively, in which the num-
ber represents the index value of different points in the
Hilbert Curve. For example, point (1,1) has the index
value 2 in Hz.
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Figure 3: Hilbert Curves of order 1, 2 and 3

Considering the representative size, the Hilbert Curve
assigns enough number of bits to represent the index
value in order to guarantee that each point in the original
space has distinct value. Given ¢; the number of bits for
a coordinate in ith dimension, } |-, ¢; bits are allocated
to represent an index value for an m-dimensional space.
Therefore, the Hilbert Curve is sure to visit each point
in the space.

Given the mapping function of Hilbert Curve, it is
eagy for a client to perform conversion between coor-
dinates and Hilbert-Curve index values. Let n be the
number of bits assigned to represent a coordinate, the
expected time for the conversion is O(n?). Since n is a
preset system constant, the conversion can be done in
a constant time. The detailed conversion algorithm is
available in [14], so we skip the explanation here.

The Hilbert Curve realizes the linear scan of the ob-
jects, the problem left is that whether it can be em-
ployed to answer LDQs. In the rest of this section, our
algorithms based on Hilbert Curves for window queries
and kNN queries, two important classes of LDQs, will
be explained.

3.1 Window Queries

To process a window query based on Hilbert-Curve in-
dex, a basic idea is to decide a candidate set of points
along the Hilbert Curve which includes all the points
falling within the query window. These points are re-
trieved to filter out those falling outside the window.
For a query window, an existing algorithm can return
the Hilbert Curve values of the first and last points on
the bounding box of the query window with a time com-
plexity O(n?). In the following, we prove that the largest
and the smallest Hilbert Curve values on the query win-

dow’s bounding box provide a sufficient range to contain
all the points satisfying the query.

Claim 1: For a given window, the point p within the
query window that has the largest Hilbert-Curve index
value must be lying on the bounding box.

Proof: Assume there exists another point p’ inside
the query window which has a larger index value than
that of p. Since Hilbert Curve is a continuous path to
vigit every point in the search space, there must be a
point p” outside of the query window, with a larger in-
dex value than p’. Otherwise, p’ is the last point of
the Hilbert Curve and must be the vertex of the origi-
nal search space according to the definition of the Hilbert
Curve. If we draw a line to connect p’ and p”, there must
be an intersection point ¢ on the bounding box. Since
the index values of the points on the Hilbert Curve are
monotonously increasing, the index value of ¢ which is
between p’ and p” must be larger than that of p’. Hence,
the previous assumption fails. Thus, the point p has the
largest value and is on the bounding box. Therefore, our
claim is proven. O

Similarly, the point within the query window that
has the smallest index value is guaranteed to be on the
bounding box. In order to facilitate our discussion, a
2-dimension space is assumed and it i8 easy to be ex-
tended to a high-dimensional space. For a given window,
the client computes the first and last points on the box
which define the range of the index values. All the ob-
jects whose index values are within this range constitute
the candidates set. Finally, a filtering mechanism is em-
ployed to find out the objects that are really located in
the window.

3.2 kNN Queries

A general strategy employed by any kNN algorithm is
to determine a search space that is not too small to lose
any correct answer and not too big to perform any un-
necessary search. It is ideal to know the exact distance
between the query point ¢ and the k-th nearest neighbor
oy, which is difficult to be obtained. An alternative is to
estimate the distance values. As described in Section 2,
some optimistic algorithms use tight prediction to avoid
any unnecessary search and some pessimistic ones use
loose estimation to avoid any loss of the requested ob-
jects. In our algorithm, a range estimation algorithm is
proposed based on the locality property of the Hilbert
Curve. The pseudo-code is given in Algorithm 1.

As the first step, the kNN objects to the query point
along the Hilbert Curve are found and a minimal cir-
cle centered at query point is constructed to contain all
those k objects. The minimal-bounding rectangle of that
circle, containing at least k objects and definitely not
causing any loss, serves as the search range. The ques-
tion left is whether this range is too loose. Based on
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the fact that Hilbert Curve is close to optimal locality,
the kNN objects should lie near the query point along
the Hilbert Curve. Consequently, we assume that the
bounding rectangle only introduces limited extra search.
Later simulation results show the correctness of this as-
sumption.

Algorithm 1 kNN Search
Input: query point g, sorted objects’ indexes;
Output: k-nearest neighbors;
Procedure:
1: indexq = coor.toindez(g);
2: locate the ith object o; who has the nearest index value
(index;) to indexq;
: begin = MAX(0, 1-k/2);
: for j = begin, rad = 0; j =< (begin + k; j++ do
p=indez_to_coor(indez;); rad = max(rad, distance(p, 9));
: end for
: let r be the bounding square centered at g and having 2rad as
side length; .
8: result_set = window_query(r); answer_set = &; maz_dis = 0;
9: for cach object o; in the result_set do
10:  dis = distance(o;, 9);
11: if (answer_set is not full) then
12 answer_set = answer.set U {0;};
13: maz_dis = max(maz._dis, dis);
14
15
16

~oaew

else
if dis < maz_dis then
replace the farthest object in the answer_set with o;
and update maz_dis correspondingly;

17: end if
18: end if
19: end for

20: return answer_set;

3.3 Search Improvement

The locality of Hilbert Curve is a major factor that im-
pacts the performance of our algorithms. If the nearby
points in the original search space have big difference
among their index values, the window query will have to
check much more points than necessary. A motivating
example is depicted in Figure 4(a) in which the dashed
rectangle represents a query window. Employing our
original algorithm, all the points whose index values be-
tween 9 and 54 should be checked. Obviously, this range
actually contains many points outside the window.

It can be observed from Hilbert Curve that the order
i curve is derived from order (i — 1) curve. If a query
window crosses several order (i—1) curves, it has a higher
probability to contain many more points than necessary
due to the low locality of the points near the boundary of
the (i — 1) curves. Therefore, one solution is to partition
the whole space into several disjoint grids and the objects
in each grid have their own Hilbert Curve. For a 4-grid
partition, each grid only needs an order (i — 1) curve,
rather than a part of order i curve for the whole search
space. Figure 4(b) shows that, after partitioning, the
candidate set contains much fewer objects. We only need

to check the points whose index values are between 0 and
2 for the grid in quadrant 1, and points whose values are
between 14 and 15 for the grid in quadrant 2 and so on.
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Figure 4: Improvement Introduced by Search Space Parti-
tion

Besides this advantage, the partition can also reduce
the representation size. If the original space needs n bits
to represent the index value of an object, it only requires
(n — 2) bits for 4-grid partition in a two-dimensional
space. In order to make a full use of this kind of re-
duction, we partition the space into the number that is
powered by 2.

For a window query, the original query window should
be partitioned into several disjoint sub-rectangles. For
each grid, the overlapping between the query window
and the grid produces the sub-rectangle.

We can observe that the larger the number of parti-
tions, the fewer the number of objects checked, since the
partition itself preserves the objects’ locality. However,
as we mentioned before, objects in broadcast environ-
ments are accessed in the unit of page, rather than by
objects themselves. Hence, a smaller number of objects
searched does not necessary result in a smaller number
of page accessed, which depends on the paging strategy
employed to organize the index information. The other
cost is that the client has to perform multiple window
searches in the partitioned space for a query. The design
of good guiding rules for partitioning is our next work
objective.

4 Performance Evaluation

This section evaluates the performance of the proposed
Hilbert-Curve index by comparing it to the traditional
indexes for spatial queries. Two datasets are used in
the evaluation. In the first dataset (UNIFORM), 10,000
points are uniformly generated in a square Euclidean
space. The second dataset (REAL) contains 5848 cities
and villages of Greece, which is extracted from the point
dataset available from [5]. The discrete-time simulation
package CSIM [16} is used to implement the model.

For the existing index, we evaluate the search algo-
rithm based on R-tree and original search algorithm is
modified to meet the linear visiting request of broadcast
environments. No matter where the query is, the MBRs
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are accessed sequentially while impossible branches are
pruned according to well-defined heuristics (see [15] for
details). Since the objects are available a priori, the STR
packing scheme is employed to build the R-tree (denoted
as STR R-tree in the later presentation) in order to pro-
vide a fair performance comparison [13]. The R-tree is
broadcast in a depth-first order to facilitate rollback op-
erations. A packing algorithm using Hilbert-Curve for
R-tree is available. It is also implemented in our sim-
ulation in order to evaluate the impact introduced by
the Hilbert-Curve on R-tree which is denoted as Hilbert-
Curve R-tree.

As we explained previously, all the information trans-
ferred in the wireless channels should be in the unit of
page and the detailed paging scheme employed is ex-
plained as follows. Since Hilbert-Curve index belongs to
linear information, the well-known B-tree is used. The
fan-out of a node can be decided according to the page
capacity. At the leaf level, each object is represented
by its Hilbert Curve value and a pointer pointing to the
data page containing the real data.

The system model in the simulation consists of a base
station, lots of clients, and a public channel for broad-
cast. WinSideRatio defines the ratio of the query win-
dow’s side length to the side length of the whole search
space and has the default value of 0.1. The available
bandwidth is set to 1000 kbps, and page capacity changes
from 27 to 2!! bytes. Two floating-point numbers are
used to represent a two-dimensional coordinate, each one
assigned 4 bytes. The same amount of bits are for an in-
dex value of Hilbert Curve.

4.1 Partitioning Space

As mentioned above, the search performance is depen-
dent a lot on the locality of the Hilbert Curve. From the
observation, partitioning the search space into smaller
grids can reduce the probability that two nearby points
have a large difference between their index values. The
performance improvement obtained by partitioning on
the UNIFORM dataset is depicted in Figure 5. As we
mention before, one advantage of partition is to reduce
the representation size. Consequently, we partition the
space into p; sub-partitions along ith dimension, given
p; equals to 2%. Hence, the represent size for the in-
dex value of Hilbert Curve can be decreased by the sum
of gi, i.e., Y iz, i, for an m-dimensional space. The
number following the word Partition is ¢;. In current
implementation, all the dimensions are partitioned into
the same number of sub-partitions, therefore ¢; is same
for all different i. For instance, Partition:1 means that
the original two-dimensional space is divided into 2! x 2!
grids. Without explicit specification, Partition 2 services
for the default setting in later simulations.

From the result, we can observe that the performance
increases a lot due to the partition, in terms of both tun-
ing time and its variance. However, the computational
overhead on clients are increased since it has to deter-
mine the boundary index values for multiple sub-query
windows, rather than for a single query window in the
original situation.
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Figure 5: Tuning Time and its Variance (UNIFORM)
4.2 Window Query

As described before, window query is a common and im-
portant query type in spatial databases, which is fre-
quently used to evaluate the performance of spatial in-
dexing structures. In this subsection, the performance
of the newly proposed Hilbert-curve index, compared
with various traditional methods, is presented. Figure 6
shows the comparisons for UNIFORM dataset under
fixed window size with various page capacity and var-
ious window size with a fixed page capacity (256 bytes).
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Figure 6: Tuning Time of Window Query (UNIFORM)

The most obvious observation obtained is that Hilbert-
Curve index with Partition 2 has the best performance,
and it outperforms the other two significantly. For UNI-
FORM dataset, the improvement in terms of tuning time
is about 61.9% and 67.2% over STR R-tree and Hilbert-
Curve tree, respectively. For REAL dataset whose re-
sult is omitted due to space limitation, the advantage
of Hilbert-Curve index is also dramatic. Compared to
STR R-tree and Hilbert-Curve tree, the improvement is
53.4% and 55.6% in terms of the tuning time.

In order to provide a comprehensive evaluation, the
size of the query window is also changed. The value of
parameter WinSideRatio is changed from 0.05, to 0.1,
to 0.2, and finally to 0.5. As we expected, the Hilbert-
Curve index with Partition 2 has the best performance
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and its gain becomes more obvious as the size of the
query window increases.

4.3 kNN Queries

K-Nearest-Neighbor query is one of the most representa-
tive spatial queries. It returns k objects that are nearest
to the query point. When k is set to 1, it is the fa-
mous Nearest-Neighbor search. In this section, the per-
formance of different indexing structures for kNN search
is compared. First, we evaluate their performance for
traditional NN problem, then for fixed k, and finally for
various settings of k.
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Figure 7: Access Latency of Different Indexing Structures
for KNN Queries

The space cost is not a big issue in the traditional disk-
index environment, with the enlargement of the disk ca-
pacity and reduction of its price. However, in the broad-
cast environment, all the index information has to oc-
cupy some bandwidth for transformation and somehow
affects the access latency of the clients. Therefore, the in-
dex size is preferred to be small. Since our algorithm de-
vised to solve knn problem should scan the index twice,
with the first time to decide the necessary search bound-
ary and the second time to obtain the answer objects, its
index size will be larger than that of R-tree. Hence, the
expected access time of clients achieved by (1, m) index
organization algorithm [11] is compared first to guar-
antee that the new index does not introduce too long
latency and its performance is depicted in Figure 7. As-
suming the access latency of the scheme having no index
information as 1, R-tree introduces the access latency
about 1.23 and Hilbert-Curve based index incurs the la-
tency about 1.30 for the UNIFORM dataset. For the
REAL dataset, the result is nearly the same. Hence, we
can make the conclusion that the index overhead caused
by Hilbert-Curve index is acceptable and similar as it of
other existing ones.

4.3.1 Nearest-Neighbor Queries (k=1)

Nearest-Neighbor search is a special case of kNN queries.
It has been frequently used as a test case to evaluate
the performance of index structures proposed for kNN
problem. Figure 8 depicts its performance obtained.

Obviously, Hilbert-Curve index can provide a better
performance when partitioned into several sub-grids. It
outperforms STR R-tree and Hilbert-Curve R-tree for
about 66.4% and 64.5%, respectively, on UNIFORM
dataset. While the outperformance for REAL dataset
is not so significant, only 18.7% and 46.0% respectively.
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Figure 8: Tuning Time of Nearest Neighbor Query

4.3.2 K-Nearest Neighbor Queries

For the general kNN search, Figure 9 shows the perfor-
mance of various indexes for UNIFORM Dataset. For
various setting of k, the page capacity is set to 256 bytes.
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Figure 9: Tuning Time of kNN Query (UNIFORM)

Considering the kNN search problem, with a fixed
value of k or varying values of k, the Hilbert-Curve in-
dex with partition performs the best in nearly all the
cases. The first observation is that Hilbert-Curve index
with partition always achieves the best performance for
UNIFORM dataset, while it somehow performs a little
bit worse than STR R-tree in the REAL dataset whose
result is omitted due to the space limitation, especially
for the small page capacity or large number of the re-
quest k. The second observation is that for the compar-
ison between STR R-tree and Hilbert-Curve R-tree, the
former works better for the REAL dataset and the lat-
ter achieves some gain of the performance for the UNI-
FORM dataset. The reason causing these two behav-
iors is that Hilbert Curve has a better location locality
for the dataset that uniformly distributed, compared to
the skew distributed dataset. From the previous simu-
lation result, Hilbert-Curve based index always achieves
a much better performance for the window query for
both dataset. Therefore, the only reason that it works
worse than STR R-tree for kNN search is that the ap-
proximated range window is larger than necessary which
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results in a worse performance due to that superfluous
search.

5 Conclusion

With the advent of wireless networks and popularity of
portable digital devices, the pervasive computing era will
soon arrive. Wireless data broadcast, which allows si-
multaneous access by an arbitrary number of clients,
i8 a very efficient and scalable information dissemina-
tion method. This paper addresses the problem of an-
swering location-dependent spatial queries via broadcast
channels. We first discuss the specific characteristics of
broadcast environments and conclude that existing in-
dexing structures are not suitable for this new environ-
ment. Then a new index structure based on a space-
filling curve, Hilbert Curve, is proposed to enable lin-
ear broadcast of a multi-dimensional space, along with
several search algorithms for window queries and kNN
queries. A simulation model is implemented and the re-
sult shows that the proposed structure outperforms the
other methods significantly in nearly all situations, for
both the synthetical dataset and the real dataset.

Currently, the whole index information should be
scanned twice in order to answer kNN queries. As such,
the index overhead is increased. In our future research,
we are investigating algorithms that can achieve the
same exact answers using a single scan. Also, other kinds
of LDQs, such as continuous nearest-neighbor query, will
be studied.
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