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ABSTRACT
GPS data tracked on mobile devices contains rich information about
human activities and preferences. In this paper, GPS data is used
in location-based services (LBSs) to provide collaborative location
recommendations. We observe that most existing LBSs provide
location recommendations by clustering the User-Location matrix.
Since the User-Location matrix created based on GPS data is huge,
there are two major problems with these methods. First, the num-
ber of similar locations that need to be considered in computing the
recommendations can be numerous. As a result, the identification
of truly relevant locations from numerous candidates is challeng-
ing. Second, the clustering process on large matrix is time con-
suming. Thus, when new GPS data arrives, complete re-clustering
of the whole matrix is infeasible. To tackle these two problems,
we propose the Collaborative Location Recommendation (CLR)
framework for location recommendation. By considering activi-
ties (i.e., temporal preferences) and different user classes (i.e., Pat-
tern Users, Normal Users, and Travelers) in the recommendation
process, CLR is capable of generating more precise and refined
recommendations to the users compared to the existing methods.
Moreover, CLR employs a dynamic clustering algorithm CADC to
cluster the trajectory data into groups of similar users, similar ac-
tivities and similar locations efficiently by supporting incremental
update of the groups when new GPS trajectory data arrives. We
evaluate CLR with a real-world GPS dataset, and confirm that the
CLR framework provides more accurate location recommendations
compared to the existing methods.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data Min-
ing; H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Clustering, Information Filtering

General Terms
Algorithms, Experimentation
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1. INTRODUCTION
One of the major functions of a location-based service (LBS)

is to recommend interesting locations to the users. Most existing
LBSs [2] recommend all points of interest (POIs) that are near the
users. However, the number of POIs that are close to the user’s
current position (called the active location in this paper) can be nu-
merous. Thus, it is difficult for a user to pick the most relevant
suggestions from the large number of recommendations. In or-
der to provide more accurate location suggestions according to the
users’ interests, many existing LBSs [1], [9], [10], [15] provide lo-
cation recommendations by first clustering the User-Location ma-
trix, which represents the locations visited by each user, and then
making location recommendations based on the user and location
clusters. However, a major problem with these methods is that the
User-Location matrix created based on GPS data is huge, so the
number of recommendations is still very large and the problem of
selecting the truly relevant locations remains challenging.

To tackle this problem, we propose the collaborative location
recommendation (CLR) framework for location recommendation.
CLR collects users’ GPS trajectory data to discover a set of points
of interest (POIs) as candidate locations. Instead of merely con-
sidering users and locations represented in a User-Location matrix,
we introduce the Community Location Model (CLM), which incor-
porates activities in addition to users and locations. CLM captures
the relations between the three important entities, namely, users, ac-
tivities and locations, in GPS trajectory data with a User-Activity-
Location tripartite data structure, which we call CLM graph for
simplicity. We argue that activities are important because most
users visit locations with the intention to perform some activities
(e.g., go to school to study, go to office to work, go to a cinema
to watch movie). A novelty of CLM is its ability to derive from
GPS trajectories users’ temporal preferences through their activi-
ties. CLM explores the unique properties among users, activities,
and locations to make effective location recommendations. We ob-
serve that (1) locations exhibit spatial properties as they contain ge-
ographical information; (2) activities exhibit temporal-spatial prop-
erties as they represent temporal sequences of visited locations; and
(3) users exhibit long-term spatial properties as different users tend
to visit different locations according to their long term habits and
geographical limits. We argue that, by capturing temporal-spatial
information in user activities, the proposed CLM is more effective
in discovering similar locations comparing to existing techniques
that are based on the User-Location matrix.

In CLR, a co-clustering algorithm CADC is employed to cluster
the CLM graph in order to obtain high-quality location recommen-
dations. There are a couple of advantages of applying CADC on
the CLM graph. First, by exploring the relations between users,
activities and locations modeled in CLM, CADC can iteratively
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Figure 1: The general process flow of CLR.

cluster different types of similar entities into coherent clusters of
similar users, similar activities, and similar locations. Entities in a
cluster can be used to discover refined subclusters for making pre-
cise recommendations. Moreover, when new GPS trajectory data
arrives, CADC can incrementally update the clusters using two sep-
arate phases, namely, the agglomerative phase and divisive phase,
without performing the clustering all over again.

While CADC can effectively cluster similar entities together, we
observe that the number of similar entities in the same cluster is
still too large for making precise recommendations. In order to ob-
tain more precise location recommendations, we introduce two ad-
ditional steps. First, we propose an in situ recommendation refine-
ment method to refine the recommendations for a particular activity
performed by a specific user. Second, we introduce behavioral re-
finement, which classifies users into three classes, namely, Pattern
Users, Normal Users, and Travelers, according to the sequences of
locations that they visited in their activities, and filter out recom-
mendations from different classes of users. Experimental results
confirm that recommendations from Travelers are the most accu-
rate among the three classes of users.

In addition to efficient clustering and recommendation refine-
ment, an important issue in CLR is to define an effective rank-
ing function to rank the recommendations according to their rel-
evance. In this paper, we propose a relevance ranking scheme,
called LF × IUF (i.e., Location Frequency × Inverse User Fre-
quency), to rank the location recommendations. The LF × IUF
ranking scheme is inspired by the well-known TF × IDF scheme
in information retrieval. Basically, the interestingness of a loca-
tion increases proportionally to the number of visits, but is offset
by the number of users who have visited the location. The idea is
motivated by the observation that a location visited by many users
(e.g., a train station or an airport) may not be always an interesting
location recommendation.

As discussed, the proposed CLR framework consists of several
components, including CADC, CLM, in situ and behavioral refine-
ment methods, and the LF×IUF ranking scheme. Figure 1 shows
the components and the general processing flow in the CLR frame-
work. We conduct an evaluation on the accuracy of the recom-
mendations using a real-world GPS dataset. Experimental results
confirm that our approach provides more accurate recommenda-
tions comparing to the existing methods based on clustering and
collaborative filtering.

The main contributions of this paper are summarized below:

• Unlike methods based on User-Location matrix, we propose the
Collaborative Location Model (CLM), which incorporates a new
entity type, namely, activity, to exploit the relations between
activities, users and locations. Activities bring rich temporal-

spatial information into CLM to facilitate effective co-clustering.
• To avoid clustering the large trajectory dataset all over again

when new GPS data arrives, we adopt a co-clustering method,
CADC, which not only discovers similar objects by exploring
their similarity ties, but also allows efficient incremental cluster-
ing in response to new incoming GPS trajectory data.

• We propose an in situ recommendation refinement method to re-
fine the recommendations corresponding to a location in a par-
ticular activity issued by a specific user. We also introduce be-
havioral refinement to identify three classes of users, namely,
Pattern Users, Normal Users and and Travelers, according to
the sequence of locations that users visited in their activities, and
study the recommendation effectiveness of these three classes of
users.

• We devise a new relevance ranking scheme, LF × IUF (Loca-
tion Frequency, Inverse User Frequency), for recommendation
ranking of the locations.

• We implement CLR on the Google Android platform and evalu-
ate the effectiveness of the recommendations using a real-world
GPS dataset. The experimental results confirm that CLR pro-
vides more accurate recommendations compared to the existing
methods.

2. RELATED WORK
Location recommendation is an important feature in location-

based services (LBSs). It aims to provide location suggestions
that a user may interest in. Different methods have been devel-
oped to discover similar locations for recommendation. They can
be classified as similarity-based and collaborative-filtering-based
(i.e., CF-based). Similarity-based recommendations are generated
based on the similarities of the candidate locations comparing to
the active location (i.e., the current position of a user or a specific
location specified by the user). The similarity metrics can be dif-
ferent among different systems. For example, Geodelic generates
location recommendations according to the distances of the can-
didate locations to the active location [3]. Similarly, [5] provides
information about the surrounding points of interests (POIs). On
Twitter [4], users can identify and provide textual descriptions on
their own POIs on a map. They can then search for interesting lo-
cations according to the supplied textual descriptions.

On the other hand, CF-based methods make use of the travel
histories of a group of similar users (i.e., user-based collaborative
filtering) or a set of similar locations (i.e., location-based collabo-
rative filtering) to generate location recommendations. The recom-
mendations are personalized because they are generated according
to users who are similar to the active user, or locations that are
frequently visited by the active user. In [11], a system was pro-
posed to recommend shops based on users’ location data histories.
It employs an item-based collaborative filtering algorithm to iden-
tify shops for recommendation according to users’ movements and
geographical conditions of the city. Similarly, in [14], a location-
based recommendation system was proposed to suggest locations
based on users’ current positions and their personal preferences.

More recently, Yu et. al. [16] proposed to mine interesting lo-
cations and classical travel sequences from multiple users’ GPS
trajectory data. They proposed a structure called Tree-Based Hi-
erarchical Graph (TBHG) to model users’ GPS trajectory data, and
a HIT-based [8] influence model to compute the interestingness
scores of locations and authority scores of users. The interesting-
ness scores measure the representativeness of locations, while the
authority scores measure the travel experience of users. The two
scores are employed to predict a set of interesting locations from
experienced users for the location recommendation.
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We observe that most of the existing CF-based methods rely
on a User-Location rating matrix. The predictions are obtained
based on ratings of the same location by similar users (User-based
CF), ratings of similar locations made by the same user (Location-
based CF), or ratings of similar locations made by similar users
(Fusion-based CF). The matrix involved in the CF process is usu-
ally huge. Thus, the number of possible candidates to be exam-
ined for recommendation can be numerous. Unlike the existing
methods, our CLR method introduces activity as an additional di-
mension to obtain more accurate location recommendations by ex-
ploiting the temporal-spatial properties in activities. Moreover, we
propose a refinement method to recommend locations for a specific
user, activity, and location (i.e., according to the current activity
performed at the current location by the active user). Therefore,
the active user can discover locations that match his/her activities
and preferences.

3. COMMUNITY LOCATION MODEL
GPS trajectory data is a sequence of unstructured time-stamped

latitude/longitude pairs. In order to organize the unstructured tra-
jectory data into a meaningful data structure to facilitate co-clustering
and location recommendation, we propose the Community Loca-
tion Model (CLM) to capture the relations between users, activities,
and locations. CLM graphs are input to a co-clustering algorithm
presented in Section 4 to discover refined subclusters for location
recommendation. In Sections 3.1 and 3.2, we present our method to
mine GPS routes and important locations from the GPS trajectory
data. CLM is presented in Section 3.3.

3.1 GPS Route

(a) Example GPS Points.

(b) Example GPS Route.
Figure 2: Example GPS Points and GPS Route.

A GPS log composes of latitudes, longitudes, speed and time,
recorded at a regular time interval. As shown in Figure 2(a), a set
of GPS points P = p1, p2, ..., pn for user u forms a GPS route ru.
Figure 2(b) shows the GPS route constructed using the GPS points
in Figure 2(a).

From the GPS log, stay points representing geographic regions
where activities happen can be discovered. We assume that if a user
stays in a particular region for a certain period of time, the region is
an important place, e.g., a restaurant that the user visited for break-
fast, a classroom where the user attended a lecture, a cinema where
the user watched a movie, etc. To detect a stay point from the GPS
route, two thresholds, spt and spd, are used in our study:

• spt: the time threshold spt dictates the duration the user stays
within a stay point s.

• spd: the distance threshold spd dictates the spatial region the
user stays within a stay point s.

Figure 2(b) shows two stay points detected from the GPS route.
Note that there could be many stay points in the middle of a route
as long as the above thresholds are met.

3.2 Location History
The set of stay points S = s1, s2, ..., sm visited by a user u over

a period of time forms the location history LHu of u. Formally,
we define LHu = s1 →∆t1 s2 →∆t2 ... →∆tm−1 sm, where
∆tk is the time between the leaving time at sk and the arriving
time at sk+1. The location histories of different users can be quite
different because of the wide variety of stay points that users can
possibly visit. To alleviate this stay point sparsity problem, we
employ the tree-based hierarchical graph (TBHG) [15] to model
the location histories from different users. TBHG is a hierarchical
graph containing different-sized location clusters at different levels.
The first level consists of all of the users’ stay points, which are
then hierarchically clustered into location clusters using a divisive
clustering algorithms with a distance threshold d. The deeper the
level in TBHG, the finer (more precise) the location clusters in that
level. Thus, stays points that are physically close to one another
will be assigned to the same location clusters at different levels in
TBHG. Figure 3 shows an example TBHG constructed in a divisive
manner. We observe that the locations in the top level of TBHG are
too general for location recommendation, since all of the stay points
are grouped into large general location clusters. On the other hand,
the locations in the deeper levels of TBHG are too fine-grained
for location recommendation, since the location clusters are small
resulting in only a few stay points.

Figure 3: Example TBHG constructed in a divisive manner.
A user’s GPS route ru can be generated using TBHG by finding

the locations clusters containing the stay points in ru and creating
edges between the location clusters according to the time sequence
of the locations clusters visited by u. Let us first consider that two
users are similar if they have visited similar locations. Since deeper
levels of the TBHG contain more precise location clusters, if we use
them to find similar users we will find fewer but more similar users.
On the other hand, the large clusters at the top levels may bring both
similar and dissimilar users into a few large clusters, yielding user
clusters with low precisions but high recalls.

3.3 Community Location Model
Since GPS trajectories are just sequences of unstructured time-

stamped coordinates, we propose the Community Location Model
(CLM) to organize trajectory data into a meaningful data structure
to facilitate co-clustering. A novelty of CLM is the incorporation of
activities into the model. Basically, an activity is a segment of GPS
trajectory within a certain time frame. Figure 2(b) shows an exam-
ple of daily activities (i.e., in 24 hours) of a student between her
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(a) User-Location Model.

(b) User-Activity and Activity-Location Model.

(c) Community Location Model.
Figure 4: Different models for co-clustering.

home (i.e., Ngau Chi Wan) and her university (i.e., HKUST). CLM
represents users, activities and locations as three entity types and
the relations between the three entity types as binary relations (see
Figure 4(c)). An instance of CLM is a User-Activity-Location tri-
partite graph (called CLM graph), rather than a User-Location ma-
trix, capturing the relations between users, activities and locations
in the model. A CLM graph consists of three disjoint node sets rep-
resenting the sets of users, activities and locations. As described in
Section 4, a CLM graph can be clustered with a co-cluster algo-
rithm to form clusters of similar users, similar activities and similar
locations. This allows refined clusters to be obtained for location
recommendations (also see Section 1).

Figure 5(a) shows an example GPS trajectory data from 5 users
with 12 activities on 10 different locations. The arrows in Figure
5(a) represent sequences of location visits in the GPS trajectory
data. Figure 5(b) shows the relations between users, activities, and
locations in the CLM graph.

We observe that a model that only involves User and Location, as
shown in Figure 4(a), is not accurate and effective for clustering rel-
evant locations together, because it does not exploit the temporal-
spatial information in Activity. Figure 4(b) shows an alternative
model that captures User, Activity, and Location in two separate bi-
partite graphs. However, it misses the opportunity to exploit long-
term spatial properties captured by the direct link between User
and Location. On the other hand, CLM exploits all of the spatial
properties, temporal-spatial properties, and long-term spatial prop-
erties in the co-clustering process. We observe that the three entity
types (i.e., User, Activity, and Location) in CLM exhibit different
properties that improve the effectiveness of clustering: 1) Location
exhibits spatial properties as it contains geographical information;
2) Activity exhibits temporal-spatial properties as it is a temporal
sequence of visited locations; and 3) User exhibits long-term spa-
tial properties as different users would visit different locations due
to their long term habits or geographical limits.

3.4 Similarity Fusion in CLM
After constructing a CLM graph, we propose to model the simi-

larity between different objects in the CLM graph as follows.
1. Two users are similar if they have similar activity patterns

and have visited similar locations.
2. Two activities are similar if they take place in similar se-

quence of locations and performed by similar users.
3. Two locations are similar if they are visited by similar user

and occurred in similar activities.

Formally, we propose the following similarity functions to com-
pute the similarity between pair of users, pair of activities, and pair
of locations:

(a) Example location histories from 5 users with
12 activities on 10 locations.

(b) An example tripartite CLM graph G3.

Figure 5: An Example CLM graph.

sim(ui, uj) =

∑n
k=1

LCS(a(k,ui)
,a(k,uj))

max(|a(k,ui)|,|a(k,uj)|)

n
α1+

Lui · Luj

‖ Lui ‖‖ Luj ‖
(1−α1)

(1)

sim(ai, aj) =
LCS(ai, aj)

max(|ai|, |aj |)
α2 +

Uai · Uaj

‖ Uai ‖‖ Uaj ‖
(1− α2) (2)

sim(li, lj) =
Uli · Ulj

‖ Uli ‖‖ Ulj ‖
α3 +

Ali ·Alj

‖ Ali ‖‖ Alj ‖
(1− α3) (3)

where LCS(ai, aj) is the longest common subsequence of ai and
aj , a(k,ui) is the activity performed by ui on day k, |ai| is the
number of locations visited by ai, Lui is a weight vector for the
set of neighbor location nodes of the user node ui, and the weight
of a location neighbor node l(k,ui) in Lui is the weight of the link
connecting ui and l(k,ui) in the CLM. Similarly, Uli is a weight
vector for the set of neighbor user nodes of the location node li,
Ali is a weight vector for the set of neighbor activity nodes of the
location node li, and Ali is a weight vector for the set of neighbor
activity nodes of the location node li, and the weight of an activ-
ity neighbor node a(k,li) in the weight vector Ali is the weight of
the link connecting li and a(k,li) in the CLM. Since LCS and co-
sine similarities lie between [0,1], it is easy to see that the resulting
similarities in Equations (1), (2), and (3) also lie between [0,1].

4. DISCOVERING USER COMMUNITIES
In this section, we describe the co-clustering process on GPS

trajectory data based on CLM to form clusters of similar users, lo-
cations and activities. Traditional agglomerative-only co-clustering
algorithms require the tripartite graph to be clustered all over again
when new data are inserted into the graph. Thus, it is not suitable
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for dynamic environments. To alleviate this problem, we adopt
the Community-based Agglomerative-Divisive Clustering (CADC)
algorithm to iteratively cluster different types of entities simultane-
ously based on CLM.

To begin with, the location histories from all users are used to
construct the tripartite CLM graph G3 (see Figure 5(b)). CADC
then clusters G3 into a new tripartite graph GC

3 , in which the Users
set is clustered into groups of similar users, and likewise the Ac-
tivities and Locations sets are clustered, respectively, into groups
of similar activities and similar locations. When new GPS trajec-
tory data arrives, GC

3 is updated with the new data and then incre-
mentally re-clustered using two separate phases, namely, the ag-
glomerative phase and divisive phase, without re-clustering the
whole CLM graph all over again. The agglomerative phase itera-
tively merges similar clusters, while the divisive phase splits large
clusters into small ones to prevent clusters from growing without
bound when new data arrives. Figure 6 shows an example of split-
ting one large user cluster into two smaller, more meaningful ones,
when new incoming users arrive. CADC produces clusters of sim-
ilar users, clusters of similar activities, and clusters of similar loca-
tions at the same time. These three types of similar entities will be
used in the refinement phase (see Section 5) to obtain more precise
subclusters for making recommendation.

Figure 6: Split of a large cluster into two smaller clusters.

4.1 Agglomerative Phase
The agglomerative phase merges similar entities into clusters.

Since we are dealing with tripartite CLM, we extend an agglom-
erative hierarchical clustering approach for bipartite data structure
[6] for the tripartite CLM. Basically, an agglomerative algorithm
starts with single entities, and successively merges entities/clusters
together. The agglomerative phase of CADC iteratively merges the
two most similar users, then the two most similar activities, and
then the two most similar locations using the similarity definitions
in Equations (1), (2), and (3), respectively. The procedure repeats
until no new user, activity or location clusters can be formed by
merging.

4.2 Divisive Phase
The divisive phase of CADC splits large clusters into smaller,

but tighter ones. It is needed to maintain the coherence of the clus-
ters and to restructure the existing clusters to facilitate incremental
update of the affected clusters as new GPS trajectory data arrives.
Basically, a divisive algorithm starts with large clusters, and recur-
sively splits the clusters into smaller ones until no new clusters can
be formed by splitting. One major problem in the divisive phase is
to determine the minimum number of observations (i.e., evidence
to perform a split) necessary for the phase to converge. To resolve
the problem, the Hoeffding bound [7] is employed to ensure that af-
ter n independent observations of a real-valued random variable r
with range R, and with confidence 1−δ (where δ is the split thresh-

old), the true mean of r is at least r − ε, where r is the observed

mean of the samples and ε =

√
R2 ln(1/δ)

2n
.

In the divisive phase, each cluster is assigned with a different ε,
namely, εk. The distances between pair of users, pair of activities,
and pair of locations are defined, respectively, as the inverse of the
similarities defined in Equations (1), (2), and (3).

d(ui, uj) = (1−

∑n
k=1

LCS(a(k,ui)
,a(k,uj))

max(|a(k,ui)|,|a(k,uj)|)

n
)β1+

√√√√
m∑

k=1

(l(k,ui)
− l(k,uj))

2(1− β1)

(4)

d(ai, aj) =
LCS(ai, aj)

max(|ai|, |aj |)
β2 +

√√√√
m∑

k=1

(u(k,ai)
− u(k,aj))

2(1− β2)

(5)

d(li, lj) =

√√√√
n∑

k=1

(u(k,li) − u(k,lj))
2β3+

√√√√
m∑

k=1

(a(k,li) − a(k,lj))
2(1−β3)

(6)
where LCS(ai, aj) is the longest common subsequence of ai and
aj , a(k,ui) is the activity performed by ui on day k, |ai| is the
number of locations visited by ai, l(k,ui) ∈ Lui is the weight of
the link connecting ui and l(k,ui). Similarly, u(k,li) ∈ Uli and
a(k,li) ∈ Ali .

Assume that two pairs of nodes d1n = d(ni, nj) and d2n =
d(nk, nl) are the top-most and second top-most dissimilar nodes
in a cluster (based on the distance Equation 4), (5), or (6). Further
assume that 4d = d(ni, nj)− d(nk, nl), if 4d > εk, with prob-
ability 1 − δ, the differences between d(ni, nj) and d(nk, nl) is
larger than zero, and pick (ni, nj) as the boundary of the cluster
when applying Hoeffding bound with4d. In the divisive phase, ni

and nj are selected as the pivots for the splitting, and the clusters
are split according to the statistical confidence given by Hoeffding
bound. Figure 7 shows an example of splitting a large cluster into
two smaller ones.

Figure 7: Split Clusterold into Clusternew1 and Clusternew2.

4.3 The Clustering Algorithm
The clustering algorithm iteratively merges and splits nodes in

G3 until the termination condition is reached. Then the clusters
in the final CLM graph GC

3 are output. When new location his-
tories arrive, the new users, activities, and locations are added as
singleton nodes to GC

3 and the links between the new nodes are
also added to GC

3 . The new graph G′3 is then served as input to
the clustering algorithm again. The new nodes are grouped to the
correct clusters by the agglomerative phase. If a particular cluster
becomes too large because too many new nodes are added to the
cluster, the divisive phase will divide the cluster into smaller ones
according to the statistical confidence given by Hoeffding bound.
These steps are repeated until the termination condition is reached,
and the algorithm outputs the final CLM graph.
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5. COMMUNITY REFINEMENT
In order to provide high-quality location recommendations to the

users, we further refine clusters of users, activities, and locations
generated by our CADC co-clustering algorithm. The community
refinement component of CLR generates a number of subclusters
by intersecting the user, activity, and location clusters in the clus-
tered tripartite graph. Assume that the active user ua is visiting
location lc when she is performing activity ab, then we can obtain
from the clustered tripartite graph a set of users Uua similar to ua,
a set of activities Aab similar to ab, and a set of locations Llc simi-
lar to lc. By using the clusters Uua , Aab , and Llc in three different
dimensions, we can obtain the following subclusters for location
recommendations.
In Situ Refined Subclusters:
• CADC(L): Set of locations similar to location lc.
• CADC(U): Set of locations visited by users similar to ua.
• CADC(A): Set of locations where activities similar to ab are

performed.
• CADC(U, L): Set of locations similar to lc, and visited by users

similar to ua.
• CADC(U, A): Set of locations where activities similar to ab are

performed, and visited by users similar to ua.
• CADC(A, L): Set of locations similar to lc where activities

similar to ab are performed.
• CADC(U, A, L): Set of locations similar to lc, activities similar

to ab are performed, and visited by users similar to ua.

Figure 8: Intersection of CADC(U) and CADC(L) to obtain
CADC(U, L).

Figure 8 shows an example of intersecting CADC(U) and
CADC(L) to obtain CADC(U, L). CADC(L) can be easily
obtained by getting the locations in the clustered CLM graph that
are in the same cluster as the active location lc. However, for
CADC(U), we need to get the locations visited by users that are
similar to the active user ua. Thus, we need to first obtain the
set of users, U(ua) and then retrieve locations that have been vis-
ited by users in U(ua), which can be easily obtained by finding
the locations nodes that are connected to U(ua) in the clustered
CLM graph. After CADC(U) and CADC(L) are obtained, the
locations resulted from CADC(U) are intersected with the loca-
tions resulted from CADC(L) to obtain CADC(U, L) as shown
in Figure 8.

After determining the subclusters by intersecting CADC(U),
CADC(A), and CADC(L), the top k most visited locations in a
subclusters will be recommended to the user. The top k locations
are picked according to the Location Frequency (LF) and Inverse
User Frequency (IUF). IUF is taken into account because we find
that a location visited by most users may be a general well-known
location which is not interesting to the users, and thus its score is
penalized by IUF . The following equation is adopted from the
well-known TF × IDF term weighting scheme in information
retrieval with LF and IUF replacing, respectively, TF and IDF :

score(l) = LF (l)× IUF (l) (7)
where IUF (l) = log2

total number of users in a subcluster
number of users visitedl

. After comput-
ing the scores for all of the locations in a subclusters using Equation
(7), the top k locations in a subcluster are recommended to the user.

The in situ subclusters can help filtering out useful important lo-
cations for collaborative location recommendations. However, the
size of a refined subcluster can still be large, thus resulting in many
locations for recommendations. Therefore, we further classify the
users into three classes, namely Pattern Users, Normal Users, and
Travelers, according to the sequence of locations that they visited
in their daily activities, in order to filter out location recommenda-
tions from different classes of users. We use the location entropy
SL(u) to measure the randomness of the locations being visited by
a user u.

SL(u) = −
k∑

i=1

p(li) log p(li) (8)

where k is the total number of locations L = l1, l2, ..., lk that u has
visited, |li| is the number of daily activities containing the location
li, |L| = |l1|+ |l2|+ ... + |lk|, and p(li) = |li|

L
.

After computing SL(u) for each user, we can then employ K-
Means to classify users into the three classes as follows.
• Pattern Users: Users with low location entropies, i.e., they re-

peat what they do daily, thus having small randomness in the
locations they visited.

• Normal Users: Users with higher location entropies. They visit
more different locations comparing to the pattern users.

• Travelers: Users with high location entropies, meaning that they
visit many different locations everyday. They can be considered
knowledgeable users, since they have good knowledge about dif-
ferent locations.

(a) A pattern user

(b) A traveler

Figure 9: Example activities from pattern user and traveler.

Figures 9(a) and 9(b) show example activities from a pattern user
and a traveler, respectively, where different colors represent differ-
ent locations that the users have visited. After classifying the users
into Pattern Users, Normal Users, and Travelers, we can then em-
ploy them to refine the in situ subclusters into the following behav-
ioral subclusters, each of which only contain one type of users.
Behaviorally Refined Subclusters:
• PTN(U): Set of locations visited by Pattern users similar to

ua.
• PTN(U, L): Set of locations similar to lc and visited by Pat-

tern users similar to ua.
• PTN(U, A): Set of locations performed in activities similar to

ab and visited by Pattern users similar to ua.
• PTN(U, A, L): Set of locations similar to lc and performed in

activities similar to ab and visited by Pattern users similar to ua.
• TRL(U): Set of locations visited by Travelers similar to ua.
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Figure 10: Recommendations from different user classes.

Figure 11: GPS devices used for GPS trajectory data collection.

• TRL(U, L): Set of locations similar to lc and visited by Trav-
elers similar to ua.

• TRL(U, A): Set of locations performed in activities similar to
ab and visited by Travelers similar to ua.

• TRL(U, A, L): Set of locations similar to lc and performed in
activities similar to ab and visited by Travelers similar to ua.

After obtaining the refined subclusters according to ua, ab, and
lc, the top k locations with the highest LF × IUF scores in the
refined subclusters will be recommended to the active user ua. In
the experiments, we will evaluate and compare the effectiveness of
the location recommendations obtained from different in situ and
behaviorally refined communities. Figure 10 shows some of the top
k location recommendations Lk from different user communities.

6. EXPERIMENTAL RESULTS
In this section, we first present the experimental setup for collect-

ing the GPS trajectory data used in the evaluation of CLR. We then
present the methodology used in the evaluation. Then, we evalu-
ate the clustering effectiveness of CADC, the performance of the
stay point and location clustering, and the effectiveness of location
suggestions.

6.1 Experimental Setup
The GPS trajectory data was collected from 50 different users

using the GPS loggers as shown in Figure 11. The users’ outdoor
trajectories were recorded from September 2009 to May 2010. The
GPS loggers were set to record GPS coordinates every second. GPS
trajectory data was mainly collected in Hong Kong and China. Fig-
ure 12 shows some of the trajectory data collected for the experi-
ments.

6.2 Evaluation Metric
In the experiments, users are asked to evaluate the location rec-

ommendations generated by CLR. The top 10 location recommen-
dations generated by CLR are displayed to the users, who are then
required to provide ratings to the recommendations according to
the criteria as shown in Table 1. Since our top 10 location recom-
mendations are displayed in a ranked list, we employ normalized
discounted cumulative gain (nDCG) to measure the accuracy of
the recommendations. The ratings obtained from a user are used to
generate the user’s ideal ranking, which are compared against the
top 10 location recommendations generated by CLR to obtain the
nDCG value of the CLR recommendations. The nDCG of a top
10 recommendation list is computed using the following equations.

Figure 12: Sample GPS trajectory data collected for the exper-
iments.

Table 1: The rating on the location representativeness
Ratings Meaning
3 I intended to visit the location
2 I would visit the location if I pass by
1 I have a little chance to visit the location
0 This location is obviously not of my interest

DCG = rel1 +

10∑
i=2

reli
log2i

(9) nDCG =
DCG

IDCG
(10)

In CLR, we only consider the top 10 recommendations. Thus, the
DCG value of a recommendation list can be computed using Equa-
tion (9), where reli is the relevance rating of the i-th location in the
recommendation list. Then, we normalize the DCG value of the
recommendation list with respect to the ideal ranking using Equa-
tion (10), where DCG is the DCG value computed from a rec-
ommendation list, and IDCG is the DCG value computed from
the user’s ideal ranking. For example, if the ratings on the top 10
recommendations are [3,2,1,3,2,2,1,0,0,1], then the corresponding
nDCG is computed as follow.

nDCG =
3 + 2/log2 + 1/log3 + 3/log4 + 2/log5 + 2/log6 + 1/log7 + 1/log10

3 + 3/log2 + 2/log3 + 2/log4 + 2/log5 + 1/log6 + 1/log7 + 1/log8
= 0.92

(11)

nDCG measures the accuracy of a ranked recommendation list
generated by CLR. Thus, the higher the nDCG is, the more ac-
curate the recommendations are (i.e., relevant locations are ranked
higher in the recommendation list).

6.3 CADC Location Recommendations
We compare CADC against a few state-of-the-art methods, in-

cluding Distance, SimUser, Memory-Based Collaborative Filtering
(MemCF), Model-Based Collaborative Filtering (ModelCF), and
HITS.1 The Distance method returns the top 10 locations that are
closest to the active location as the location recommendations. The
SimUser method represents each location with a user vector based
on the users who visited the location. It recommends the top 10 lo-
cations which have user vectors most similar to the active location’s
user vector. The Memory-Based Collaborative Filtering (MemCF)
method is based on the method presented in [13]. We first create a
User-Activity-Location matrix to model the relationships between
users, activities, and locations. For each missing entry in the ma-
trix, we extract a set of top N similar users, top N similar activities,
and top N similar locations, and then use the ratings from the top
N entities to predict the value of the missing entry probabilistically.
After predicting all of the missing entries, it then recommends the

1Hereafter, CADC refers to CADC(U, A, L) as discussed in Sec-
tion 5 unless stated otherwise.
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Figure 13: nDCG for Distance, HITS, SimUser, MemCF, Mod-
elCF, and CADC.

top 10 locations that are visited by similar users and where similar
activities are performed. In the Model-Based Collaborative Filter-
ing (ModelCF) method, we also create a User-Activity-Location
matrix but employ a Higher-Order Singular Value Decomposition
(HOSVD) [12] to predict the missing entries in the matrix. We
then return as recommendation the top 10 locations that are visited
by similar users and where similar activities are performed. Fi-
nally, we also include in the evaluation the HITS method proposed
in [16]. The HITS method determines a user’s authority value using
the authority proposition in the hyperlink environment in [8]. The
top N users with the highest authority values are picked, and the
top 10 locations visited by the top N authority users are returned
as location recommendations.

Figure 13 shows the nDCG of CADC and the baseline meth-
ods. We observe that the Distance method performs the worst
(nDCG = 0.41), because the locations that are closest to the ac-
tive location may not always match the user’s spatial interests (i.e.,
preferences according to the user dimension) and the temporal-
spatial spatial interests (i.e. preferences according to the activity
dimension). The HITS method relies only on the recommendations
from users with high authority scores. It does not take the user’s
spatial interests into account. Thus, it performs only slightly better
(nDCG = 0.61) than the Distance method. The SimUser method
considers the user’s long term spatial interests. As a result, it yields
nDCG = 0.62, which is better comparing to the Distance and
HITS methods. Both the MemCF and ModelCF methods employ
the User-Activity-Location matrix in the collaborative filtering pro-
cess, thus capturing both the user’s long term spatial interests and
the temporal-spatial spatial interests. MemCF (nDCG = 0.79)
performs better than ModelCF (nDCG = 0.65), because it per-
forms predictions based on only the truly similar entities (i.e., the
top N similar users, top N similar activities, and top N simi-
lar locations). Finally, we observe that CADC (nDCG = 0.82)
performs the best comparing to the other five baseline methods,
because the co-clustering method can effectively explore the ties
modeled in CLM to iteratively group different types of similar enti-
ties simultaneously. The similarity scores are optimized by exploit-
ing similarity fusion to strike a good balance between the similar-
ity scores from different dimensions, thus producing more coherent
clusters of similar locations.

6.3.1 CADC Merge Fusion Thresholds α1, α2, α3

We then study the impact of the merge thresholds on CADC’s
performance by varying the α1, α2, and α3 merge thresholds in
Equations (1), (2), and (3), respectively, from 0 to 1 (with 0.1 in-
crements). We obtain the nDCG values under different settings of
merge thresholds. When we vary one of the merge thresholds, the
other two thresholds are fixed at the optimal values so that only one
of the merge thresholds would influence the results. Figure 14(d)
shows the nDCG values obtained at different user merge thresh-

olds α1 from 0 to 1, with α2 and α3 fixed at their optimal values
(0.4 and 0.6, respectively). We observe that the best nDCG is ob-
tained when α1 = 0.5. This shows that the activity dimension and
the location dimension are equally important for identifying sim-
ilar users. We repeat the experiment on the activity and location
merge thresholds (i.e., α2 and α3). Similarly, we vary α2 from 0
to 1, with α1 and α3 fixed at their optimal values 0.5 and 0.6, re-
spectively. We observe that the optimal nDCG is obtained when
α2 = 0.4. This shows that the sequence of visited locations is more
important than the user dimension for identifying similar activities,
meaning that two activities performed by two similar users may not
always have high similarity to one another (e.g., users u1 and u2

are similar because they both live in Clear Water Bay, Hong Kong).
However, u1 can be a housewife, while u2 can be a student, and
they will perform different activities). Finally, we repeat the ex-
periment on α3 by fixing α1 and α2 at 0.5 and 0.4, respectively.
The optimal nDCG is achieved when α3 is at 0.6. This shows that
the activity dimension (i.e., the most updated temporal-spatial pref-
erences) is more important than the user dimension (i.e., the long
term spatial preferences).

(a) Impact of α1 (b) Impact of α2

(c) Impact of α3 (d) Impact of β1

(e) Impact of β2 (f) Impact of β3

Figure 14: Impact of the merge fusion thresholds α1, α2, α3,
and the split fusion thresholds β1, β2, and β3 on CADC.

6.3.2 CADC Split Fusion Thresholds β1, β2, β3

We also study the impact of the split thresholds in CADC by
varying the three split thresholds (β1, β2, and β3 in Equations (4),
(5), and (6), respectively), from 0 to 1 (with 0.1 increments). As
before, when we vary one of the split thresholds, the other two split
thresholds are fixed at their optimal values. Figure 14 shows the
nDCG values at different split thresholds from 0 to 1. We ob-
serve that the nDCG values do not vary much when split thresh-
olds change. This is because we start the CADC algorithm with

312



Figure 15: nDCG for the in situ refined communities.

the agglomerative phase to group individual objects together, and
we require two objects to be highly similar before they are merged
into the same node. Thus, in the divisive phase, only a few splits
are required to split the oversize clusters into smaller clusters. We
observe that the best nDCG value is obtained when β1 = 0.5,
β2 = 0.5, and β3 = 0.6.

6.4 Refined Location Recommendations
6.4.1 In Situ Refined Recommendations

We also compare the quality of the location recommendations
generated from the refined communities. We first evaluate the in
situ refined communities, CADC(U), CADC(A), CADC(L),
CADC(U, A), CADC(U, L), CADC(A, L), and CADC(U, A, L),
described in Section 5. Figure 15 shows the nDCG values ob-
tained for the in situ refined communities. We observe that the loca-
tion recommendations generated using only one of the dimensions
(i.e., CADC(U) based on only the user dimension, CADC(A)
based on only the activity dimension, and CADC(L) based on
only the location dimension) are the worst. The nDCG for
CADC(U), CADC(A), and CADC(L) are only 0.76, 0.72, and
0.75, respectively. The location recommendations generated using
two dimensions (i.e., CADC(U, A) based on the user and activ-
ity dimensions, CADC(U, L) based on only the user and loca-
tion dimensions, and CADC(A, L) based on only the activity and
location dimensions) are better than those obtained using one di-
mension only. CADC(U, A), CADC(U, L), and CADC(A, L)
yield nDCG of 0.78, 0.80, and 0.78, respectively. Finally, the lo-
cation recommendations generated using all the three dimensions
(i.e., CADC(U, A, L)) are the best. CADC(U, A, L) yields
nDCG = 0.82, which is the highest value among all of the in
situ refined user communities.
6.4.2 Behaviorally Refined Recommendations

We also evaluate the quality of the location recommendations
generated from using the behaviorally refined communities, PTN(U),
PTN(U, A), PTN(U, L), PTN(U, A, L), TRL(U), TRL(U, A),
TRL(U, L), and TRL(U, A, L), described in Section 5. Figure 16
shows the nDCG values obtained from the behaviorally refined
communities. We observe that the location recommendations ob-
tained from Travelers are better than those obtained from Pattern
Users. Consistent with the results obtained for the in situ refined
communities, location recommendations generated using only one
dimension (i.e., PTN(U) and TRL(U)) are not as good as those
generated using two dimensions (i.e., PTN(U, A), TRL(U, A),
PTN(U, L), and TRL(U, L)), and the recommendations gener-
ated using all three dimensions (i.e., PTN(U, A, L) and
TRL(U, A, L)) yield the best nDCG (0.89 and 0.91, respectively).

Figure 16: nDCG for the behaviorally refined communities.

Figure 17: nDCG of CADC with different activity time frames.

Table 2 shows the top 3, 5, and 10 average ratings obtained from
the behaviorally refined communities. We observe that the top 5
and 10 average ratings obtained from Travelers are better than those
obtained from Pattern Users. This is because Pattern Users usually
only visit a few locations in regular patterns. Thus, only a few loca-
tions recommended by Pattern Users are useful to other users. On
the other hand, Travelers usually travel many different locations.
Thus, many of their recommendations are useful to other users, be-
cause they are knowledgeable users with experiences in different
locations.

6.5 Impact of Activity Length on CLR
As discussed in Section 3.3, an activity is a segment of GPS tra-

jectory within a certain time frame. The length of the time frame
can be adjusted to include different numbers of locations associ-
ated with an activity (i.e., the longer the time frame, the more lo-
cations are associated with an activity). To evaluate the impact of
the activity time frame on the accuracy of location recommenda-
tions, we repeat the nDCG evaluation on the CADC(U, A, L)
method with different time frames. Figure 17 shows the nDCG
values of CADC with different activity time frames. We observe
that if the time frame is too short (e.g. 3 or 6 hours), the resulting
activities will only be associated with a small number of locations.
Hence, similar activities cannot be discovered effectively because
of the low location overlaps between activities, thus yielding lower
nDCG comparing to the optimal value obtained at a 24-hour time
frame. On the other hand, if the time frame is too long (e.g. 30
hours), the resulting activities will become too general because of
their associations with many different locations. The general activi-
ties may bring dissimilar locations together, thus worsening the per-
formance. Finally, we observe that the activity time frame should
be either 12 or 24 hours (half-a-day or daily activity), in order to
achieve the best performance.
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Table 2: The top 3, 5, 10 average ratings for the behaviorally refined communities
PTN(U) PTN(U, A) PTN(U, L) PTN(U, A, L) TRL(U) TRL(U, A) TRL(U, L) TRL(U, A, L)

Top 3 2.34 2.36 2.40 2.43 2.46 2.48 2.48 2.54
Top 5 1.94 1.98 1.96 1.98 2.23 2.25 2.25 2.28
Top 10 1.72 1.72 1.73 1.80 2.08 2.12 2.13 2.18

Table 3: Impact of spt on Stay Point Detection
spt # Points CADC MemCF ModelCF HITS
5mins 2214 0.79 0.75 0.61 0.57
15mins 1297 0.78 0.76 0.62 0.58
30mins 762 0.82 0.79 0.65 0.61
45mins 497 0.76 0.73 0.64 0.61
60mins 245 0.72 0.71 0.57 0.55

Table 4: Impact of spd on Stay Point Detection
spt # Points CADC MemCF ModelCF HITS
300meters 1863 0.78 0.75 0.63 0.56
500 meters 762 0.82 0.79 0.65 0.61
800meters 467 0.73 0.71 0.64 0.61

6.6 Impact of spt and spd on CLR
We also study the influence of the time and distance thresholds

(i.e., spt and spd) on location recommendations. If spt and spd are
too small, we may get locations that lack representativeness (e.g.,
bus stop, car park, and train station). On the other hand, if spt and
spd are too large, the locations may be too large and too general,
leading to difficulty in determining points of interests. To find the
optimal time threshold spt, we vary spt from 5 mins to 60 mins.
When we vary spt, spd is fixed at its optimal value (i.e., spd = 500
meters). Table 3 shows the nDCG values at different spt. We
observe that the larger the spt, the fewer the number of stay points
detected from the users’ GPS data. Moreover, CADC yields the
best nDCG when spt = 30 mins by avoiding locations that are
too general or too precise.

We repeat the experiment by varying spd from 300 meters to 800
meters. When we vary spd, spt is fixed at its optimal value (i.e.,
spt = 30 mins). Table 4 shows the nDCG values at different spd.
Again, to avoid locations that are too general or too limited, we
need to set spd = 500 meters in order to achieve the best nDCG.
We observe that the larger the spd, the fewer the number of stay
points detected from the users’ GPS data. Moreover, CADC yields
the best nDCG when spt = 500 meters by avoiding locations that
are too general or too precise.

7. CONCLUSIONS
In this paper, we propose the Collaborative Location Recommen-

dation (CLR) framework, which makes location recommendations
based on users’ GPS trajectory data. We introduce the community
location model (CLM), which represents a User-Activity-Location
tripartite graph, and employ the CADC co-clustering algorithm to
exploit the rich activity information embedded in GPS trajectory
data. The idea of online recommendation refinement is also in-
troduced to refine the clusters of similar locations resulted from
CADC for a particular activity issued by a specific user in order
to obtain high quality location recommendations. Experimental re-
sults confirm that our approach can provide more accurate and re-
fined recommendations comparing to the existing methods based
on clustering or collaborative filtering.

As for the future work, we plan to incorporate more semantic in-
formation in the clustering process to further improve the quality of
location recommendations. For example, on Twitter [4], users may
provide textual descriptions on their own POIs on a map. Apart

from the GPS coordinates, the textual descriptions can also serve
as additional information describing the POIs for clustering.
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