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Traditional recommendation systems (RSs) aim to recommend
items that are relevant to the user’s interest. Unfortunately, the rec-
ommended items will soon become too familiar to the user and
hence fail to arouse her interest. Discovery-oriented recommen-
dation systems (DORSs) complement accuracy with discover utili-
ties (DUs) such as novelty and diversity and optimize the tradeoff
between the DUs and accuracy of the recommendations. Unfor-
tunately, DORSs ignore an important fact that different users have
different appetites for DUs. That is, highly curious users can ac-
cept highly novel and diversified recommendations whereas con-
servative users would behave in the opposite manner. In this pa-
per, we propose a curiosity-based recommendation system (CBRS)
framework which generates recommendations with a personalized
amount of DUs to fit the user’s curiosity level. The major contribu-
tion of this paper is a computational model of user curiosity, called
Probabilistic Curiosity Model (PCM), which is based on the cu-
riosity arousal theory and Wundt curve in psychology research. In
PCM, we model a user’s curiosity with a curiosity distribution func-
tion learnt from the user’s access history and compute a curiousness
score for each item representing how curious the user is about the
item. CBRS then selects items which are both relevant and have
high curiousness score, bounded by the constraint that the amount
of DUs fits the user’s DU appetite. We use joint optimization and
co-factorization approaches to incorporate the curiosity signal into
the recommendations. Extensive experiments have been performed
to evaluate the performance of CBRS against the baselines using a
music dataset from last.fm. The results show that compared to the
baselines CBRS not only provides more personalized recommenda-
tions that adapt to the user’s curiosity level but also improves the
recommendation accuracy.
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1. INTRODUCTION
Traditional recommendation systems (RSs) based on content sim-

ilarity and collaborative filtering aim to achieve high accuracy by
recommending items that are relevant to the user’s interest. The
problem with this approach is that the recommended items are very
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similar to the user’s interest as well as between themselves. Thus,
the user will quickly find the recommended items too familiar and
uninteresting for exploration. We call this the “accuracy overload-
ing problem.” To prevent accuracy from domainating the recom-
mendations, Discovery-Oriented Recommendation Systems (DORSs)
introduce metrics called Discovery Utilities (DUs) as additional di-
mensions besides relevance for ranking the candidate items. The
ranking problem is often modeled as a multi-objective optimiza-
tion problem, which seeks an optimal tradeoff between the differ-
ent dimensions [16]. Many DUs, including novelty and diversity,
have been studied in the literature [3]. Although DORSs can help to
alleviate the accuracy overloading problem, they neglect an impor-
tant fact that different users have different curiosity levels, which
lead to different levels of desire to discover new things. Specifi-
cally, highly curious users would find recommendations with high
DUs interesting but those with low DUs boring. The reverse is
true for conservative users. We refer to this curiosity-driven, per-
sonal demand of DUs as DU appetite. Without considering the DU
appetite of each user, DORSs would favor items with high DUs
(balanced by relevance) for every user. Consequently, while highly
curious users are excited about high DU items, conservative users
would find them too overwhelming. We call this “curiosity mis-
match problem.”

In this paper, we present a framework for Curiosity-Based Rec-
ommendation Systems (CBRSs) to solve the curiosity mismatch
problem. It consists of the Probabilistic Curiosity Model (PCM),
which models a user’s curiosity with a curiosity distribution func-
tion learnt from the user’s access history. Thus, each user has her
own curiosity model estimated from her access behavior. It allows
us to compute a curiousness score for each item representing how
curious the user is about the item. CBRS then selects items which
have both high relevance and curiousness scores, bounded by the
constraint that the items’ DUs should fit the user’s DU appetite.
We note that the CBRS framework is general enough for incorpo-
rating different DUs. However, since novelty is by far the most
studied DU in RS research, this paper focuses on novelty, leaving
the details of modeling the other DUs as future research.

The Oxford dictionary defines curiosity as “a strong desire to
know or learn something.” According to psychology research [4],
a user’s appetite for novelty is influenced by her curiosity in that the
higher/lower a user’s curiosity, the bigger/smaller is her appetite for
novelty. For a user with a particular curiosity level, recommenda-
tions with too much novelty will cause anxiety while too little will
cause boredom.1 To exploit this psychological phenomenon, a RS

1This is an interesting finding in psychology. In most existing RS
research, novelty is assumed to be the higher the better. However,
we can learn from many real-life situations that this is not true. For
example, most people going to a theme park for roller coaster rides
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should select recommendations with novelty commensurate with
the user’s curiosity, instead of blindly maximize the novelty for ev-
erybody.2

In this paper, we address several challenges facing CBRS. First,
we adopt the famous Wundt curve in psychology to model human
curiosity [4]. The Wundt curve depicts the “inverse U-shape” re-
lationship between an item’s stimulation degree (sd) (i.e., stimula-
tion generated by, say, the novelty of an item upon a user) and the
user’s response to the item (see Fig. 2). Briefly, given a user, as the
novelty of an item increases, the user will become more and more
interested in it until the novelty reaches a turning point where the
interest is at a maximum; beyond this point the user will become
less and less interested and will ultimately become disinterested in
the item. This theory is adopted in CBRS. Unfortunately, Wundt
curve is only a qualitative description of the relationship. In CBRS,
we model the “inverse U-shape” with a Beta distribution and learn
the distribution’s parameters from the user’s accessed history. Sec-
ond, we use the curiosity model to compute for each candidate item
a curiousness score representing how curious the user is about the
item and select candidate items matching the user’s curiosity based
on their curiousness scores. The input to the model is the stimula-
tion degree of the item. In the context of this paper, it is the novelty
of the item. To measure an item’s novelty, we propose three fea-
tures, namely, the user’s access frequency to the item, the recency
of the accesses, and the user-specified tags of the item. These fea-
tures have been confirmed to be effective by psychology research
[4]. Finally, we need to integrate the curiosity and relevance as-
pects of the items to produce the final recommendations. We study
two strategies, namely, the joint optimization of relevance and cu-
riousness with the constraint that the novelty of the items should
match the user’s novelty appetite, and co-factorization of the rele-
vance and curiousness signals associated with the item.

Throughout this paper, we use music recommendation to illus-
trate the ideas of CBRS. This is because music recommendation has
been widely studied in recent years [8], and research has shown that
music listening behavior is highly discovery oriented, highly per-
sonal and heavily driven by curiosity [2]. The contributions of this
paper are summarized as follows.

• We propose a novel framework for Curiosity-Based Recom-
mendation Systems (CBRSs) to combine relevance and cu-
riosity in the recommendation process. Although we focus
on novelty in this paper, the framework is general enough to
embrace other DUs.

• We develop a computational model called Probabilistic Cu-
riosity Model (PCM) to model a user’s curiosity based on
Wundt curve developed in psychology. On the one hand,
Wundt curve forms the theoretical foundation of PCM. On
the other hand, our work provides large-scale experimental
evidence to validate the Wundt curve theory. In our opinion,
this is a major and interesting contribution of our work to the
psychology field.

• We propose two strategies to combine curiousness and rel-
evance in selecting recommendations, considering the con-
straints that the novelty of the recommended items should
match the user’s curiosity level.

• We use various performance metrics, including inter-user sim-
ilarity, novelty fitness and precision, to evaluate the effec-

would prefer rides that are not too exciting (too thrilling) or too
easy (too boring).
2Not explicitly mentioned here, the curiosity aspect must be bal-
anced with the relevance of the items.

tiveness of CBRS. Experimental results show that CBRS not
only provides personalized recommendations adapted to the
user’s unique curiosity but, surprisingly, also improves the
recommendation precision. Further, we study the impact of
including previously accessed items (i.e., non-novel items) in
the recommendations and show that CBRS can recommend
the right mix of non-novel and novel items to optimize the
performance. This is an important finding because in many
applications (e.g., music recommendation) users may repeat-
edly access some items (e.g., favorite songs).

The rest of this paper is organized as follows. We review re-
lated work in Section 2. Curiosity modeling will be introduced in
Section 3. Section 4 describes the recommendation strategies, and
Section 5 presents performance evaluation. Section 6 concludes
our findings.

2. RELATED WORK

2.1 Discovery-Oriented RSs (DORS)
Discovery-Oriented Recommendation Systems (DORSs) intro-

duce various DUs to complement accuracy in solving the accuracy
overloading problem. Common DUs include novelty [7, 15, 17],
diversity [18, 21] and serendipity [13, 19]. Although DORSs were
designed to produce recommendations that are more novel, diver-
sified, or surprising, they ignore the fact that different users would
accept different amount of DUs, which we call the DU appetite, be-
cause users have different curiosity levels, causing what we call the
curiosity mismatch problem described in Sec. 1. Recently, meth-
ods that personalize the DUs of the recommendations for individual
users, termed Personalized DORSs or PDORS, have been proposed
to resolve the curiosity mismatch problem.

2.2 Personalized DORSs (PDORS)
Personalization has been studied for a long time in information

retrieval [6]. However, to the best of our knowledge, the only works
on PDORS3 were reported in [17] and [7]. [17] assumes that each
user has a binary “novelty-seeking status” indicating whether the
user would seek completely novel (i.e., new) items or non-novel
items (previously accessed items). However, this binary assump-
tion is too strict in many situations, e.g., user may want to receive
both completely novel and non-novel items in the same recommen-
dation list, as in Youtube which recommends both new and old
items. To extend this binary assumption, [7] learns a real-value
novelty preference score for each user through logistic regression.
The score is then used as a parameter for balancing similarity and
novelty in the top-K ranking task. We call this method person-
alized parameter balancing RS or PPBRS. The personalized nov-
elty preference parameter of PPBRS linearly scales the novelty of
all items in the final ranking process. The implication is that if
a user is judged to accept novel items (large novelty preference
score), then all novel items benefit equally in the ranking task.
As discussed throughout this paper, linear scaling of novelty does
not work for human curiosity: even for users having large novelty
preference score, it does not mean that they can accept items with
extremely high novelty (see Sec. 1 and Sec. 3). In our proposed
CBRS, we model a user’s novelty preference as a probability distri-
bution rather than a single real value and verify that the distribution
resembles the non-linear “inverse U-shape” Wundt curve in psy-
chology research.
3Since we only consider novelty in this paper, from now on,
PDORSs refer to delivering personalized amount of “novelty” ac-
cording to the user’s novelty appetite.
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There are several differences between CBRS and existing DORSs
and PPBRS. Comparing to DORSs, (1) curiosity in CBRS is not a
new dimension of DUs; instead, it governs each user’s acceptance
level of DUs; (2) CBRS does not use DUs as ranking utility di-
rectly since a given amount of DUs might be attractive to one user
but may turn other users away. Instead, CBRS transforms DUs into
a curiousness score representing a user’s curiousness about an item
using the user’s curiosity model and the curiousness score is then
used in ranking; (3) curiosity is a human trait born with a person,
but DUs are based on an item’s property. Comparing to PPBRS, (1)
user’s novelty preference in CBRS is not modeled as a real value
but a curiosity distribution modeling the shape of Wundt curve as
a probability density function pdf ; (2) rather than assuming that
every item’s DUs is uniformly scaled by the user’s novelty pref-
erence score, CBRS influences the discovery ranking utility with a
curiousness score that is derived for each user and each item based
on the user’s curiosity model.

3. CURIOSITY MODEL

3.1 Preliminaries
Due to the interdisciplinary nature of our research, it is necessary

to introduce terminologies widely used in the psychological curios-
ity field. In psychology, curiosity is a human trait born with a per-
son, driving her cognitive development through life. Since different
people have different levels of curiosity, we introduce curiousness
(curiu), which is a real value, to quantify a user u’s curiosity to
explore an item i. CBRS adopts the Curiosity Arousing Model
(CAM) developed in psychology research [4]. In CAM, a user re-
ceives stimuli and would only respond to stimuli which can arouse
her curiosity. Since CAM describes how a user selectively responds
to the stimuli, it is also referred to as the Stimulus Selection Pro-
cess (SSP). For recommendation systems, each recommended item
presents a stimulus to the user. The strength of a stimulus is quan-
tified by the Stimulus Degree, which is a real value denoted as sd.
Note that the same item can produce different sds to different users.

The sd of a stimulus is defined by a number of factors called
Collative Variables (CVs). For this paper, CV s are the same as
features, which are extracted from some measurable properties of
a stimulus. The values of the CVs are called Collative Variable
Values. As discussed, different users have different responses even
if the stimulus is the same because of their difference in curiosity.
We propose the Probabilistic Curiosity Model (PCM), which is
a probabilistic view of CAM. It models a user’s selected sd’s as
a random variable, and curiosity as the probability distribution of
the random variable, called Curiosity Distribution (Cu). In this
way, a user’s stimulus selection process (SSP) can be interpreted as
drawing samples (stimuli) from the curiosity distribution under the
guidance of the user’s curiosity.

3.2 Curiosity Arousal Model
Berlyne interprets curiosity as the driving factor for SSP, that

is, “when several conspicuous stimulus are introduced at once, to
which stimulus will human respond” [4]. Following Berlyne’s in-
terpretation, we can take an interior view of curiosity, which is to
consider curiosity as an internal factor of a person influencing her
selection of stimulus. We can also take an exterior view of curiosity,
that is, a person’s SSP can reveal her curiosity inside. CAM points
out the possibility that the interior curiosity trait can be estimated
by the exterior SSP. To achieve this goal, we need to (1) quantify
the stimulus and (2) model the curiosity. Sections 3.2 and 3.3 will
discuss (1) and the remaining subsections will discuss (2).

Berlyne [4] discovered a principle set of features, named as Colla-

tive Variables (CVs), that can arouse curiosity. Four CVs were
identified: novelty, uncertainty, conflict and complexity. Since CVs
are dependent on user u, item i, time t, and user’s access history
Ht
u before time t, we use sdtu,i(H

t
u) to denote item i’s sd with re-

spect to u at time t given u’s access history Ht
u. Similarly, we use

cvvtu,i to denote the value of a CV associated with i at time t for
u. Then, a stimulus can be quantified by Equation 1, where ψ is
a scoring function. Since a stimulus is made up of CV s, it can be
modeled as a (weighted) sum of cvv’s of the CVs. In this paper,
we focus on novelty only, so sdtu,i in Equation 1 is simplified to
Novtu,i, which denotes item i’s novelty to user u at time t.

sdtu,i = ψ(u, i, t|Ht
u) =

∑
cv

cvvtu,i (1)

Our dataset is about the users’ music listening history, in which
an item corresponds to a music track. When u clicks an item i to
listen to it, we say “u accesses i,” “u accesses an artist” if u ac-
cesses at least one track performed by the artist, and u accesses a
tag if at least one accessed track has the tag. From the recommen-
dation point of view, the action that u accesses i is viewed as u’s
provision of a positive feedback on i.4 From the curiosity point of
view, u’s access to i can be viewed as u responding to the stimulus
generated by i. Thus, in this paper, we use “feedback”, “access”,
and “response” interchangeably depending on the context.

3.3 Modeling of Novelty
In the RS domain, the novelty of an item reflects how much the

item differs from the user’s previously accessed items. In the psy-
chology field, Berlyne suggested that novelty is inversely related to
three factors [4]: (1) how often the stimulus has been experienced
by the user, (2) how recent the stimulus has been experienced by
the user before, and (3) how dissimilar the stimulus is to the user’s
previous experience. Based on the three criteria, we formally define
the novelty in Equation 2,

Novtu,i =
1

3
· (SF tu,i + SRtu,i +Dissimt

u,i) (2)

where SF tu,i denotes the scaled frequency of the user’s accesses to
item i before t; high frequency indicates the user’s familiarity of
the item, making it less novel to the user. SRtu,i denotes the scaled
recency of the user’s access on item i w.r.t the current time t; the
more recent the user’s access to the item is, the less novel the item
is to the user. Dissimt

u,i denotes the dissimilarity between item i
and u’s historically accessed items; a large dissimilarity indicates i
is more novel to the user. Note that SFu,i, SRu,i and Dissimu,i

correspond, respectively, to Berlyne’s three criteria above. In music
recommendation, a user’s decision to listen to a track may depend
on the performing artist. For example, after picking her favorite
artist, the user may play all of the tracks sequentially in the album.
In this case, the reason for the user to play the tracks in the album
is not the novelty of the tracks but the performing artist. Thus, we
include the artist in computing a track’s stimulus.

We define SF tu,i formally in Equation 3:

SF tu,i =
e−ρa·|A

t
u,i| + e−ρi·|I

t
u,i|

2
(3)

where Atu,i is the set of u’s accesses to items in the user’s history
Ht
u (before time t) having the same artist as i’s artist, Itu,i is the set

of u’s accesses to items i in the user’s history Ht
u, |.| denotes the

4As with most web-based applications, we only consider implicit
feedback from users. A user’s listening to a track indicates her
preference on the track, which is a positive feedback; no negative
feedback is available.
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Figure 1: The global users novelty appetites distribution

cardinality of a set, and ρa and ρi are positive exponential scaling
coefficients. The reason to model SF tu,i based on both the frequen-
cies of the track itself (item i) and tracks having the same artist as
i’s artist is that both tracks and artists are stimuli. It is clear that
when |Itu,i| is high, the user has accessed item i many times so i’s
novelty is low, and when |Atu,i| is high, the user is familiar with
i’s artist, and so its contribution to novelty is low. Overall, a small
SF tu,i value means i has low novelty.
SRtu,i is defined in Equation 4:

SRtu,i =
eρt·(t−t(A

−1
u,i)) + eρt·(t−t(I

−1
u,i))

2
(4)

where t(I−1
u,i ) and t(A−1

u,i) denote, respectively, the timestamps of
u’s latest access in Itu,i and Atu,i. Here, we use “day” as the time
unit. ρt is the forgetting coefficient. Equation 3 and 4 both use
the decay function with exponential forgetting rate [10] to scale
frequency and recency to the 0-1 range. Note that small SR value
indicates less novelty.

To model Dissimt
u,i, for each track, we extract six tags5 la-

beling the genres of the music (e.g., “pop” and “jazz”) using the
LastFM API. The dissimilarity is calculated based on the number
of common tags between the track and the historically accessed
tags, and is formally defined in Equation 5, where Tags(i) denotes
the set of tags associated with track i, and Iu,tag denotes the set of
accessed items in Ht

u labeled with tag. ρtag is the coefficient for
tag frequency. Note that small Dissim value means low novelty.

Dissimt
u,i =

1

|2 · Tags(i)|

Tags(i)∑
tag

(e−ρtag·|Iu,tag|+eρt·(t−t(I
−1
u,tag)))

(5)
Several observations can be made from Equations 2 to 5. First,

items with small SF (i.e., frequently accessed), small SR (i.e., re-
cently accessed), and small Dissim (genre has been frequently and
recently accessed) have small Nov values and thus are less novel.
Second, if the user listens to a new track performed by an artist
whom she has never listened to before, SF tu,i and SRtu,i will be-
come 1. However, Dissimt

u,i may not necessarily be 1. Third,
we assume that the factors in each equation are equally weighted
(e.g. in Equation 2, SF , SR, Dissim contribute equally to Nov).
Due to space limitation, we cannot show the results for all weight-
ing combinations and the optimal balance is application dependent
anyway. Fourth, Novtu,i is defined on (u, i, t) triples and is a real
value representing item i’s novelty to u at time t. If we use NovTu
to denote the vector of Novtu,i, within the time period T , when
T →∞ and we omit the superscript T , then Novu can be viewed
as a random variable representing u’s inclination in accessing novel
items, and each user’s novelty appetite novu is defined as the ex-
pectation of the random variable Novu. Figure 1 illustrates the
distribution of all users’ novelty expectation. We can see that the
novelty appetites of different users vary a lot. Finally, although
SF tu,i, SR

t
u,i and Dissimt

u,i are defined based on the music rec-
ommendation dataset, it is not difficult to extend them to other do-
mains such as restaurant recommendation and movie recommenda-
5For tracks which have less than six tags, we extract all of the tags
available.

Stimulation	
Degrees	 (sd)

User	hates	items	with	
too	much	stimulation

Po
sit
iv
e	R

es
po

ns
e

Ne
ga
tiv

e	
Re
sp
on

se

Anxiety	
Turning	Point

User	does	not	prefer	items	with	
sd that	are	too	high	or	too	low	for	
her	curiousness

Comfort	zone:	items	
with	sd in	this	range	
are	most	welcomed

Figure 2: Illustration of Wundt curve

tion, since user behaviors in these applications can be formulated
as (u, i, t) triples.

3.4 Wundt Curve and Probabilistic Curiosity
Model

Curiosity modeling has been studied in psychology for a long
time. In 1870s, Wundt introduced the theory of “optimal level of
stimulation” and postulated an inverted “U-shape” relationship be-
tween stimulation level and hedonic response caused by the stimu-
lus, which is referred to as the “Wundt curve.” Figure 2 is an illus-
tration of Wundt curve, where the x-axis denotes stimulus degrees
sd, and the y-axis denotes the user’s hedonic response. Berlyne
formed the “intermediate arousal potential” (IAP) theory, which
states that too little stimulation results in boredom while too much
stimulation results in anxiety. From Fig. 2, we can see that the
user’s positive hedonic response increases first as sd increases. How-
ever, after reaching a certain threshold, the positive hedonic re-
sponse will drop with further increases of sd. We name the turning
point as user u’s anxiety turning point (ATPu). It means that be-
yond the threshold the user will become anxious due to overwhelm-
ing sd. An important note about applying Wundt curve to RS is that
since we assume each of the user’s interaction with an item reflects
her positive feedback on the item, there is no negative feedback
in our our music recommendation application, leading to a Wundt
curve that is entirely above the x-axis. Since a user’s curiosity can
be revealed from her SSP and generally behaves like Wundt curve,
the central task now is how to model Wundt curve.

From the probability point of view, we model each user’s se-
lected sd’s as a random variable and model the user’s curiosity as
a probability distribution of the random variable, which determines
the user’s SSP. The distribution is named Curiosity Distribution,
denoted by Cu. In this way, SSP is viewed as a sampling process
from the user’s personal curiosity distribution, with which curiosity
is able to guide SSP. Given a large amount of user-item interaction
data and u’s accessed sd’s, Cu can be estimated. We name our
model Probabilistic Curiosity Model (PCM), which can be consid-
ered the probabilistic view of CAM. There are two main reasons we
use PCM to model Wundt curve and curiosity. First, human’s SSP
behaves in a probabilistic manner. For example, a curious user may
also select small sd’s, although the chance is small compared with
a conservative user. Second, although web data lacks explicit user
preference data, abundant implicit feedback data are available. By
modeling curiosity probabilistically, we can utilize web-scale user
interaction data for the estimation of curiosity distribution.

Figure 3 illustrates a user’s SSP on five items with different sd
values. According to the interior view of CAM, the user’s SSP (ei-
ther acceptance or rejection of an item) is guided by her curiosity.
PCM views a user’s SSP as continuously drawing samples from
her curiosity distribution in such a way that stimuli whose sd’s best
meet the user’s curiosity have a high chance to be drawn. This en-
sures that the stimuli with sd’s that are too large or small, reflecting
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✓✕ ✓✓

i5 (sd5=0.68)
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Figure 3: Illustration of the probabilistic curiosity model

the fact that the items are too novel or boring for the user, have a
lower chance to be selected by the users. In the example, the user
selected four items and ignored one item and the average sd of the
selected items is about 0.65.

3.5 Estimation of Curiosity Distribution
Section 3.4 shows how curiosity guides a user’s SSP from the

psychology and probability points of view. In this section, we will
introduce how to estimate the curiosity distribution.

Since both CAM from psychology and our PCM try to model
a user’s curiosity, it is natural to expect that the probability den-
sity function (pdf ) of Cu exhibits the shape of Wundt curve. Fig-
ure 4 shows the histograms of 5 users’ accessed sd’s, simulating
the curiosity distribution. Several important findings can be ob-
tained. First, the distribution generally fulfills the “inverted-U”
shape of Wundt curve, which shows that PCM is suitable for mod-
eling Wundt curve. Second, the curiosity distributions of differ-
ent users are different. For example, the means for the five users
are about 0.2, 0.4, 0.5 and 0.6, 0.7, respectively, showing that the
users tend to show different levels of curiousness when they inter-
act with the recommendation system. u1 is relative more conserva-
tive compared with u4 and u5. Besides, the variance of the users’
distributions are different. u1 and u2 have relative small variance
while u3 to u5 have relative large variance. Small variance means
that curiosity is stable, which means that users’ curiosity tends not
to change with topic or time, while large variance shows that the
user’s curiosity may vary with topic and time. Third, generally,
there is an optimal sd for each curiosity distribution, indicating the
sd has large chance to be accessed.

According to the above findings, we propose to use the Beta dis-
tribution, which has a flexible pdf and well studied parameter esti-
mation techniques, to model the curiosity distribution Cu. Wundt
curve’s inverse U-shape can be estimated with Beta parameters α
and β larger than 1. We apply the method of moments for the esti-
mation of α and β. The red curves in Figure 4(a) to 4(e) illustrate
the estimated pdf ’s of five users’ Nov random variable.

Once the curiosity distribution is estimated, we can obtain the
likelihood that the user is curious about an item with sd, i.e., the
user’s curiousness on item i given its sd, denoted by curiu = pdfu(sd),
where pdf is the probability density function of Cu. curiu can be
viewed as a curiousness score mapped from an item’s stimulus on
the curiosity distribution. According to the psychology of interest
[14], the pleasant feeling obtained from the process of exploring
novel and surprising items is an important component of human
interest. Thus, in addition to relevancy, the fact that an item’s sd
satisfies the user’s curiosity is also a reason for the user to access
an item. In the following section, we will introduce how to incor-
porate a user’s curiousness about the items into the ranking utility
of an RS.

4. CURIOSITY BASED RECOMMENDATION
SYSTEM

4.1 Joint Optimization of Relevancy and Cu-
riousness

We model the recommendation problem as a top-K problem,

which selects the topK items to recommend based on the relevancy
of the items to the user and the user’s curiosity on the items. Let I
be the item set of size |I|, and U be the user set of size |U |. The
relevancy matrix R with dimension |U | × |I| is calculated using ex-
isting accuracy-based recommendation techniques. Each element
ru,i in R represents the relevancy of item i to user u. We use CR
with dimension |U | × |I| to represent the curiousness matrix, with
each element cu,i in CR recording u’s curiousness on i (see Section
3.5). We use SD with dimension |U | × |I| to represent the stim-
ulus degree matrix, where each element sdu,i denotes i’s stimulus
degree to u. The vectors Ru, CRu and SDu represent, respectively,
I’s relevancy to u, u’s curiousness over I and I’s stimulus degree to
u, and correspond to one row of R, CR and SD, respectively. It is
useful to represent the recommendation list Rec ⊆ I using an |I|
dimensional indicator vector y, such that y(i) = 1 if i ∈ Rec and
y(i) = 0 otherwise. yu represents u’s indicator vector, denoting
the items to be recommended to u. In the CBRS framework, we try
to recommend items which are highly relevant to the user and stim-
ulative to her curiosity. This is bounded by the constraint that the
items in the recommend list should not exceed her anxiety turning
point. With these expressions, it is possible to express the trade-
offs between relevancy and curiosity as constrained optimization
problems.

Given a fixed parameter θ ∈ [0,1], find the vector y∗ such that

maxy∗
(1− θ)αRTu · y + θβCRTu · y

s.t. SDTu · y ≤ ttol
1T · y = K

yi ∈ 0, 1∀i ∈ 1, ..., |I|

(6)

In this optimization problem, we seek to jointly optimize rele-
vancy and curiosity, controlled by the parameter θ. Optimal θ can
be tuned with a validation set. The final two constraints specify
that y is a binary vector with K non-zero values. Recall that the
anxiety turning point introduced in Section 3.4 is an item’s optimal
stimulation. If the item’s stimulus exceeds this optimal stimula-
tion, the user will feel anxious. In the constraints above, ttol is
the aggregate tolerance threshold of the K items. Here, we define
ttol = c · k · ATPu, where c is a coefficient within [0,1], K is
the number of items to be selected in the recommendation list. The
constraint SDTu · y ≤ ttol is referred to as the “ATP constraint”.
The ATP constraint tends to be more loose when c is close to 1 and
more strict when c is close to 0.

4.2 Curiosity in Matrix Factorization
Matrix-factorization-based collaborative filtering (MFCF) has be-

come popular in recent years due to its high accuracy [9]. From
the psychology of interest [14], we know that curious emotion is
an important component of interest. Thus, we believe a user’s cu-
riosity affects her choice of items and try to incorporate this ad-
ditional signal into MFCF. There are several approaches for the
incorporation, e.g. co-factorization, ensemble and regularization.
Due to the space limit, we only apply the co-factorization-based
method, which jointly predict the missing preferences and curious-
ness of the items. Other approaches will be left for future work.
Specifically, MFCF maps both users and items to a latent space,
denoted as R ≈ UTV , where U ∈ Rl×m and V ∈ Rl×n with
l < min(m,n), represent the users’ and items’ mapping to the
latent space, respectively. In order to incorporate the curiosity in-
formation, we create a user-item curiousness matrix C with the
same size as R, and each entry cu,i denotes u’s curiousness about
item i. Then, learning of latent factors is done by minimizing the
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(a) User 1 (b) User 2 (c) User 3 (d) User 4 (e) User 5
Figure 4: Illustration of 5 users’ stimulus degree distribution
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following sum-of-squared-errors objective functions with quadratic
regularization terms:

L =
1

2

m∑
i=1

n∑
j=1

IRij(Rij − UTi Vj)2 +
λC
2

m∑
i=1

n∑
k=1

ICik(Cik − UTi Zk)2

+
λU
2
||U ||2F+

λV
2
||V ||2F+

λZ
2
||Z||2F ,

(7)
where L denotes the joint loss function, IR is the preference in-
dicator matrix where IRi,j = 1 if Ui has an access on Vj in R

and 0 otherwise, IC∗ is defined in the same way as the curious-
ness matrix C, Z denotes an item’s mapping to the curiosity la-
tent space, and λC , λU , λV andλZ denote the preset coefficients.
Note that this minimization task is equivalent to maximizing the
log-posterior distribution over U , V , Z if Gaussian priors are as-
sumed [11]. Since we do not have users’ explicit ratings in our
dataset, we use u’s access frequency on i to approximate the rating
ri,j inR. This setting is commonly used in music recommendation
systems [5]. SinceCi,j is within the range [0,1], in order to normal-
ize R and C into the same [0,1] scale, we apply logistic function

1
1+e−x to each entry of R. A local minimum of the objective func-
tion given by Eq. 7 can be found by performing gradient descent in
Ui, Vj and Zk.

∂L
∂Ui

=

n∑
j=1

IRij(U
T
i Vj −Rij)Vj + λC

n∑
k=1

ICik(U
T
i Zk − Cik)Zk + λUUi

∂L
∂Vj

=

m∑
i=1

IRij(U
T
i Vj −Rij)Ui + λV Vj

∂L
∂Zk

= λC

m∑
i=1

ICik(U
T
i Zk − Cik)Ui + λZZk

(8)

4.3 Framework
The CBRS framework is illustrated in Figure 5. In the training

phase (Step 1), by recording a user’s access history on the recom-
mendation list, we can collect the user’s responses to the stimuli

User B

User A

Curiosity Distribution

ATPB
ATPA

Figure 6: Illustration of two users’ curiosity distribution

(i.e., the (u, i, t) triples). The stimulus degree (sd) associated with
a triple is computed as described in Section 3.3. The user’s cu-
riosity distribution is then estimated based on the selected sd’s. In
Steps 2 and 3, for each candidate item in the item repository, we
compute the DUs based on Equation 1.6 In Step 4, the user’s cu-
riousness on the item is obtained by mapping the item’s sd to the
pdf corresponding to the user’s curiosity distributionCu. In Step 5,
the recommender then integrates the user’s curiousness and the rel-
evancy (calculated by traditional accuracy-based recommendation
methods) of the item by solving the optimization problem depicted
in Equation 6, or formulating the co-factorization problem denoted
in Equation 7. The top K items which are both relevant and with
high curiousness are selected into the recommendation list.

Figure 6 shows the curiosity distributions of two users A and B to
illustrate how two users with different curiosity models respond dif-
ferently to the same item. According to their curiosity distributions,
A is more curious than B. Now, a candidate item is recommended
to both A and B, and its sd is high (at 0.6, denoted by ATPA in the
figure). According to the mapping, A will have a higher curiousness
score than B. If the item’s relevance is more or less the same to both
users, the the item’s high curiousness score for A would push the
item into A’s recommendation but its low curiousness score for B
may not be able to push itself into B’s recommendation. However,
if the item has small sd (at 0.3, denoted by ATPB in the figure),
the situation will be reversed. B’s curiousness score will be higher
than that of A, and the item will be recommended to B instead of A.

5. EXPERIMENTAL RESULTS
In this section, we first describe the dataset used in the experi-

ment. We then apply various metrics and vary the parameters to
evaluate the performances of CBRS and the baselines.

5.1 Dataset and Parameter Setting
We use the public dataset “Last.fm Dataset - 1K users” [1] in

the experiments. The whole dataset is 2.53GB in size. It con-
tains 19,150,868 chronologically ordered listening records of 992
6In this paper, only novelty is considered. Other DUs such as di-
versity and serendipity can be plugged into the framework by de-
veloping the corresponding formula to compute the sd of each DU.
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Table 1: Statistics of the Dataset used in the Experiments
No. of users 937
No. of artists 83,908
No. of tracks 960,415
No. of records 16,955,328
Avg history span 762 days

unique users over several years till May 5, 2009. Each record has
the format “user id, time stamp, artist id, artist name, track id, track
name”. The primary key is “(user id, track id, time stamp)”, and we
use (u, i, t) to denote the record of user u having accessed track i
at time t. We remove all records without track id or artist id (ev-
ery record in the dataset has a time stamp) and users with too few
records for learning their curiosity distributions. The statistics of
the cleaned dataset is given in Table 1.

To conduct an experiment, we need a training dataset, a histori-
cal dataset and a test dataset derived from the original dataset. The
training dataset is used to learn the curiosity function for each user.
The historical dataset is needed for computing the stimulation de-
gree sd for each record in the training dataset, because sd is deter-
mined by novelty and novelty in turn depends on a user’s histori-
cal accesses to the items (see below for further details). When a
method is evaluated, we use the historical and training datasets to
produce the recommendations and the test dataset as ground truth
to evaluate the performance metrics of the recommendations.

Since the original dataset contains a large number of records, we
divide it into 10 consecutive windows, w0, ..., w9, each of which
contains one-tenth of the records in the dataset (denoted as |w|).
We use three consecutive windowswi, wi+1, wi+2 to form, respec-
tively, the training, historical and test datasets for one experimental
run. That is, we use w0, w1 and w2 in the first run, w1, w2 and
w3 for the second, ..., and w7, w8 and w9 for the eighth run. Thus,
we can perform eight experimental runs and average the results to
obtain the value of a performance metric.

In the training phase, we need to compute the stimulation de-
gree sdtu,i for each (u, i, t) record in the training dataset. Given a
record r = (u, i, t) in the training dataset, we take the |w| records
preceding r as r’s historical window7 Ht

u,i, and compute r’s sdtu,i
using Equations 1 to 5. The procedure is repeated for all records
in the training dataset. At the end, each (u, i, t) record in the train-
ing dataset is associated with a sdtu,i value. For each user u, we
can obtain a series of sd values indicating u’s accessed sd’s in the
training dataset and estimate u’s curiosity distribution as described
in Sectionrefsubsec:est.

The parameter setting in the experiments is as follows: the fre-
quency scaling coefficients corresponding to ρa and ρi in Equation
3, and ρtag in Equation 5 are set to 0.1, the time scaling coeffi-
cient corresponding to ρt in Equations 4 and 5 is set to 0.01. The
goal of these settings is to ensure that different novelty compo-
nents (SF tu,i, SR

t
u,i, sim

t
u,i) are within the (0,1) scale. We set

λC , λU , λV andλZ in Equation 8 to 0.02. K denotes the number
of items in the recommendation list, which is set to 10 by default
and varied in Table 2 to study its impact on performance.

5.2 Performance Metrics
This subsection introduces the performance metrics used in the

experiments.

7The historical window for each record r contains the same number
of accessed items to avoid bias because sd depends on the number
of accessed items in the historical window Ht

u (see Equations 3 to
5).

5.2.1 Novelty Fitness
As discussed in Section 1, a major difference between DORSs

and CBRS is that CBRS delivers recommendations with the proper
amount of novelty to suit a user’s curiosity. We introduce novelty
fitness (NFu) to measure the fitness between the novelty of the
recommended items and the user’s novelty appetite novu (defined
in Section 3.3). As defined in Equation 9, NFu is the root-mean-
square error (RMSE), where K denotes the top K recommended
items and novu,i denotes the novelty of the recommended item i
to u. A smaller NF value means that the novelty of the top K
recommended items has a better fit to the user’s novelty appetite.

NFu =

√√√√ 1

K

K∑
i=1

(novu,i − novu)2 (9)

5.2.2 Recommendation Precision
We use precision to measure how accurate the recommendations

produced by a recommendation method predict the user’s future

accessed items. Formally, we define precision as 1
|U|

|U|∑
u=1

|Ru∩Tu|
|Ru| ,

where U denotes the user set, Ru denotes the recommendation list
for user u, Tu denotes the set of tracks that u has accessed in the
test dataset (i.e., the ground truth). Note that we do not use recall
as an evaluation metric, since the size of the recommendation list
in Top-K recommendation is fixed.

5.2.3 Inter User Similarity
Since CBRS makes recommendations adapted to a user’s per-

sonal curiosity, we expect its recommendations to have larger dif-
ferences across users comparing to traditional RSs. To test the va-
lidity of this expectation, we use inter-user similarity (IUS) pro-
posed in [20] to evaluate the system-wide personalization effect of
a recommender. Equation 10 defines IUSi,j as the proportion of
overlap between recommendation lists Li and Lj received by users
i and j,

IUSi,j =
|Li ∩ Lj |

K
(10)

The IUS of a RS is the average of IUSi,j over all pairs of users.
A large IUSi,j means a high similarity between recommendation
lists received by users i and j, and a large IUS indicates a weak
personalization effect of the RS.

5.3 Influence of Relevancy-Curiousness Bal-
ance Weight

According to Equations 6, the selection criteria of CBRS is to
pick the items which are both relevant and stimulative to the user’s
curiosity, bounded by the ATP constraint. The relative weight of an
item’s relevancy and the user’s curiousness on the item is controlled
by θ. A large θ promotes items with high curiousness, while a
small θ favors items with high relevance. In this subsection, we
investigate the effect of θ on the performance of a recommendation
system in terms of the three metrics introduced in the preceding
subsections. Since the optimization task for all items is very time
consuming, we take the top 50 items as candidate items for each
baseline recommender. Then, the top-K recommendation task is
to select K items from the candidates.

To facilitate comparison, we pick two sets of recommenders,
non-curiosity-aware (non-CBRS) and curiosity-aware (CBRS). For
non-CBRS, we pick three baseline recommenders, namely, Popu-
larity, Item-based collaborative filtering (Item-CF) and ranking ma-
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(a) Novelty Fitness, small better (b) Precision, large better (c) Inter User Similarity, small better

Figure 7: Variation of θ in joint optimization (Equation 6)

trix factorization (Ranking-MF).8 For CBRS, we incorporate cu-
riosity into the three baselines by solving the joint optimization
problem in Equation 6. The CBRS recommenders are denoted as
Cur-Popularity, Cur-Item-CF and Cur-Ranking-MF.

Figure 7 illustrates the influence of θ on the performance met-
rics. A general observation for all three metrics is that as θ becomes
larger (i.e., curiousness plays a more important role in recommen-
dation), the performance of the recommenders generally increases.
In Fig. 7(a), a small NF means a better fit between the novelty of the
recommendations and the users’ novelty appetite. We can observe
that CBRS has lower NF (i.e., better) than non-CBRS, because non-
CBRS does not consider curiosity at all and hence cannot optimize
the recommendations for novelty. This also explains why the NF
of non-CBRS is flat w.r.t θ. Further, the NF of CBRS improves as θ
increases, because as θ increases CBRS will bias towards curiosity,
thus producing recommendations with better novelty fitness. Fi-
nally, for both CBRS and non-CBRS, Ranking MF is better than
Item-CF, which in turn is better than Popularity in terms of NF. It
is interesting to note that even for non-CBRS, which does not con-
sider curiosity, Popularity has the worst NF, because popular items
have less novelty.

In Fig. 7(b), we can observe the same relative performance as in
Fig. 7(a), that is, Ranking-MF has higher precision than item-CF,
which in turn has higher precision than Popularity for both CBRS
and non-CBRS. It is interesting to note that although CBRS is de-
signed to balance relevance with curiousness, its precision not only
has not suffered but is better than non-CBRS. This can be attributed
to the fact that CBRS optimizes novelty according to each user’s cu-
riosity distribution. For example, if a user has low curiosity, CBRS
would favor items that are less novel (i.e., more familiar) to the user.
Since conservative users tend to listen to familiar tracks, precision
is improved. In Fig. 7(c), a small IUS indicates a large difference
and hence higher personalization effect between the recommenda-
tion lists received by the users. Again, Popularity (both CBRS and
non-CBRS) performs the worst because it favors hot items and thus
its recommendations to different users tend to be more similar. We
can also see that Item-CF has the lowest IUS among all recom-
menders because it does not recommend non-novel items. Further,
its IUS is also lower than Cur-Item-CF because the latter would
consider non-novel items (which could be hot items) if the user is
judged to be conservative.

From the previous experiments, we can see that optimal perfor-
mance is reached when θ = 1.0. This is equivalent to re-ranking
the 50 candidate items purely based on the user’s curiousness on the

8Popularity and Item-CF denote methods based on item popularity
and similarity, respectively. Ranking-MF denotes the factorization
machine approach [12]. An overview and implementation details
of the three recommenders can be obtained from Dato Graphlab
(https://dato.com/) API.

items (see Equation 6) with the ATP constraint. This is because the
candidate items produced by the recommenders already have very
high relevance so further optimizing the items’ relevance has much
smaller effect than re-ranking the items based on their curiousness
scores. Thus, in the remainder of this paper, when we perform
recommendation with the joint optimization method discussed in
Section 4.1, we use θ = 1.0. In summary, take the best performer
Ranking-MF as an example, CBRS produces 35.6%, 6.6%, 31.3%
improvement in NF, precision, and IUS, respectively, compared to
non-CBRS when θ = 1.0. It demonstrates the superior effective-
ness of CBRS.

5.4 Comparing to DORS
From Section 2, we know that existing DORSs have proposed

various DUs to complement accuracy. However, they suffer from
the curiosity mismatch problem. In contrast, CBRS believes a user’s
need of novelty is non-linear and depends on her curiosity. In this
section, we compare the performance of CBRS and DORSs. Figure
8 illustrates the result.

To setup the experiment, we pick the best performers Ranking-
MF and Cur-Ranking-MF in Section 5.3 as baselines. Our pro-
posed method is labeled as Pure and Rel-Cur-ATP in Figure 8, rep-
resenting, respectively, pure application of Ranking-MF and joint
optimization according to Equation 6, which considers an item’s
relevancy, curiousness and the ATP constraint. Rel-Nov performs
joint optimization between relevancy and novelty as specified in
Equation 6 without the ATP constraint, reflecting the implementa-
tion of traditional DORSs. Rel-Nov-ATP is the same as Rel-Nov
except the addition of the ATP constraint. From the comparison
between Pure and Rel-Nov, we can find that with novelty comple-
menting relevancy, IUS decreases, indicating the users’ recommen-
dation lists become less similar to each other. This is an advan-
tage of DORSs. However, recommendation precision is sacrificed
and the recommendations deviate more from the user’s real nov-
elty appetite (i.e., novelty fitness score increases). This trade-off
is a common phenomenon in many DORSs. From the comparison
between Rel-Nov and Rel-Nov-ATP, we can observe that with the
ATP constraint, Rel-Nov-ATP can retain the benefit of small IUS in
DORSs without suffering from decreased precision. The novelty
fitness is even better compared to Pure. This could be attributed to
the incorporation of the ATP constraint, which models individual
user’s personalized novelty appetite. From the comparison between
Rel-Nov-ATP and Rel-Cur-ATP, we can observe the importance of
modeling a user’s personalized non-linear novelty appetite, since
novelty fitness and precision are improved about 33% and 29%,
respectively at θ = 1.0, while retraining the improvement of IUS.

5.5 Incorporate Previously Accessed Items
Most existing RSs aim to recommend completely novel (new)
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Figure 8: Compare CBRS to DORS, proving the importance of modeling user’s personalized needs of novelty

items, because they assume that users will not be interested in items
they have accessed before. This assumption is reasonable in some
applications such as movie recommendation, but in some applica-
tions such as music listening users may repeatedly access previ-
ously accessed items. It is important to note that novelty in CBRS
is not binary. Instead, novelty is a continuous value affected by
many factors. For example, a music track that the user has listened
to can still have high novelty to the user if she listened to the track
or similar tracks only occasionally and a long time ago. In this sub-
section, we will study how the inclusion/exclusion of previously
accessed items in recommendations affects performance. We use
the same experiment setting as in Section 5.3, except that in addi-
tion to the 50 candidate items we randomly add N items that the
user has previously accessed (old items). Now the recommendation
problem is to pick the topK items for each user from theseN+50
candidates. We set K = 10, and vary N from 2 to 20.

The result is shown in Figure 9, from which several observations
can be made. First, with the additional N old items, both non-
CBRS and CBRS have improved performance in all of the three per-
formance metrics. This can be attributed to the users’ habit of lis-
tening to their favorite songs frequently, and adding old items in the
recommendations will capture this user behavior. Second, although
the performance of both non-CBRS and CBRS is improved, CBRS
produces much larger improvement than non-CBRS. For example,
compared with Ranking-MF, the best performer Cur-Ranking-MF
achieves 85.5%, 166.7%, and 77.9% improvement on NF, preci-
sion, and IUS, respectively, when N = 20. This is attributed to
CBRS’s ability to capture a user’s unique novelty appetite. That
is, if a user likes to listen to old songs, CBRS will model her as a
conservative listener and recommend old songs to her and the con-
trary is also true. Thus, CBRS can better utilize the N old items
to satisfy the user’s preference on old songs. This is a significant
contribution of this paper since very few works, if any, have dis-
cussed the importance of non-novel items to the users and how to
incorporate them into a recommendation list. Third, even when
N = 0, i.e., only new items are recommended, CBRS still out-
performs non-CBRS even though the improvement is not as much
as when old items are included. This can be attributed to the fact
that new items still have different degrees of novelty to the user be-
cause of their properties (e.g. a new track may have low novelty
to a user when the user is familiar with the genre or performer of
the track). Finally, with N becomes larger, the performance differ-
ence among the CBRS recommenders narrows down. As discussed,
users would listen to their favorite tracks repeatedly. Thus, asN in-
creases, CBRS recommenders would recommend more from the N
old items. This would greatly improve their performance and thus
narrow down their performance gap. This is indeed an advantage
of CBRS, since curiosity can be incorporated into any specific rec-
ommender to make it curiosity-aware and improve its performance.

5.6 Overall Performance Comparison
From Sections 5.3 to 5.5, all recommendations are based on

Equation 6, which performs joint optimization between relevancy
and curiousness. In this subsection, we will compare CBRS to other
state-of-the-art PDORS methods. As introduced in Section 2, the
only two works on PDORS are [17] and [7]. We choose the PP-
BRS method proposed in [7] as the baseline, because it is more re-
cent and closer to our work. PPBRS learns a personalized novelty
preference score for each user by logistic regression. For compar-
ison, we use Ranking-MF as the reference recommender, instead
of the Item-based collaborative filtering in [7]. We also choose the
standalone Ranking-MF as another baseline, because it performs
best among the traditional accuracy-based recommenders (shown
in Figure 7) and does not consider curiosity. As introduced in Sec-
tions 4.1 and 4.2, we propose two ways to incorporate curiosity
information into an RS. Thus, our proposed CBRS methods are Cur-
Ranking-MF and Cur-MFCF, corresponding to Equations 6 and 7,
respectively. The results are shown in Table 2.

Comparing the two baselines PPBRS and Ranking-MF, we can
see that although PPBRS can provide more personalized novelty
to the users (small NF score), it is limited in enhancing precision.
This is because although PPBRS learns a personalized “relevancy-
novelty” balance parameter, it applies the parameter to all items
in the same way. That is, if the parameter favors novelty, then all
items’ novelty scores will be emphasized in the same way. This
may result in some recommended items overly novel to the user
because they may already have high novelty scores and amplifying
them further will make them too novel for the user’s curiosity level.
For the same reason, some recommended items could become too
boring to the user. Comparing PPBRS and CBRS (Cur-Ranking-
MF and Cur-MFCF), we can see that CBRS performs better in
both novelty fitness and precision (e.g. Cur-Ranking-MF achieves
32.1%, 7.8%, 18.8% improvement over PPBRS on NF, precision,
IUS, respectively, when K = 10) because it is able to capture a
user’s non-linear novelty appetite. Between the two CBRS recom-
menders, Cur-Ranking-MF performs better than Cur-MFCF. This
might be attributed to the ability of explicit joint optimization to
combine an item’s relevancy and the user’s novelty appetite more
optimally. Detailed study on how to better incorporate the curios-
ity signal into the traditional recommendation framework is beyond
the scope of this paper and will be treated in future work.

6. CONCLUSION
Various Discovery-Oriented Recommendation Systems (DORSs)

have been proposed to address the accuracy overloading problem
of traditional recommendation systems. They introduce Discov-
ery Utilities (DUs) such as novelty, diversity and serendipity as
additional ranking dimensions to ensure that recommendations are
not dominated by accuracy. However, DORSs do not consider the
fact that different users have different appetite for DUs and suffer
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Figure 9: Performance when previously accessed items are included

Table 2: Performance comparison between CBRS and PPBRS

Model NF Precision IUS
k=5 k=10 k=20 k=5 k=10 k=20 k=5 k=10 k=20

Ranking-MF 0.455 0.503 0.463 0.105 0.0973 0.0857 0.0220 0.0281 0.0392
PPBRS 0.417 0.477 0.449 0.0995 0.0983 0.0961 0.0209 0.0238 0.0262
Cur-MFCF 0.324 0.368 0.361 0.112 0.106 0.101 0.0195 0.0208 0.0223
Cur-Ranking-MF 0.278 0.324 0.268 0.120 0.106 0.113 0.0170 0.0193 0.0244

from the curiosity mismatch problem. In this paper, we present
the Curiosity-based Recommendation System (CBRS) framework
for integrating the curiosity and relevance aspects of recommenda-
tions. The Probabilistic Curiosity Model (PCM) models a user’s
unique appetite for novelty. PCM is formulated based on the cu-
riosity arousal theory and Wundt curve in psychology [4]. It uses
the Beta Distribution to model Wundt curve representing a user’s
non-linear desire of novelty. With PCM, for each user we can ob-
tain a curiousness score for each candidate item. Joint optimization
and matrix factorization methods are used to incorporate the cu-
riosity signal into RSs. Experimental results show that CBRS sig-
nificantly outperforms the baselines in various performance met-
rics. An important finding is that CBRS can provide personalized
recommendations adapted to an individual user’s curiosity and at
the same time improve the recommendation accuracy. We also
study the impact of allowing previously access items (i.e., non-
novel items) in the recommendations and show that CBRS can rec-
ommend the right mix of non-novel and novel items to optimize the
performance. This is an important finding because in many appli-
cations (e.g., music recommendation) users may repeatedly access
some items (e.g., favorite songs).

For future work, we plan to study other DUs such as diversity
and surprisal and integrate curiosity and social relationship into the
CBRS framework. Finally, we recognize the mutual benefit be-
tween our work and psychology research and plan to apply web-
scale data in the study of human’s psychological curiosity behavior.
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