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Abstract

Based on the probabilistic reformulation of principal
component analysis (PCA), we consider the problem
of determining the number of principal components
as a model selection problem. We present a hier-
archical model for probabilistic PCA and construct a
Bayesian inference method for this model using re-
versible jump Markov chain Monte Carlo (MCMC).
By regarding each principal component as a point in
a one-dimensional space and employing only birth-
death moves in our reversible jump methodology, our
proposed method is simple and capable of automati-
cally determining the number of principal components
and estimating the parameters simultaneously under the
same disciplined framework. Simulation experiments
are performed to demonstrate the effectiveness of our
MCMC method.

Introduction
Principal component analysis (PCA) is a powerful tool for
data analysis. It has been widely used for such tasks as
dimensionality reduction, data compression and visualiza-
tion. The original derivation of PCA is based on a stan-
dardized linear projection that maximizes the variance in
the projected space. Recently, Tipping & Bishop (1999)
proposed the probabilistic PCA which explores the relation-
ship between PCA and factor analysis of generative latent
variable models. This opens the door to various Bayesian
treatments of PCA. In particular, Bayesian inference can
now be employed to solve the central problem of deter-
mining the number of principal components that should be
retained. Bishop (1999a; 1999b) addressed this by using
automatic relevance determination (ARD) (Neal 1996) and
Bayesian variational methods. Minka (2001), on the other
hand, adopted a Bayesian method which is based on the
Laplace approximation. In this paper, we propose a hierar-
chical model for Bayesian inference on PCA using the novel
reversible jump Markov chain Monte Carlo (MCMC) algo-
rithm of Green (1995).

In brief, reversible jump MCMC is a random-sweep
Metropolis-Hastings method for varying-dimension prob-
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lems. It constructs a dimension matching transform using
the reversible jump methodology and estimates the param-
eters using Gibbs sampling. Richardson & Green (1997),
by developing the split-merge and birth-death moves for the
reversible jump methodology, performed a fully Bayesian
analysis on univariate data generated from a finite Gaus-
sian mixture (GM) with an unknown number of components.
This was then further extended to univariate hidden Markov
models (HMM) by Robert, Rydén, & Titterington (2000).
In general, reversible jump MCMC is attractive in that it can
perform parameter estimation and model selection simulta-
neously within the same framework. In contrast, the other
methods mentioned above can only perform model selec-
tion separately. In recent years, reversible jump MCMC has
also been successfully applied to neural networks (Holmes
& Mallick 1998; Andrieu, Djurié, & Doucet 2001) and pat-
tern recognition (Roberts, Holmes, & Denison 2001).

Motivated by these successes, in this paper, we introduce
reversible jump MCMC into the probabilistic PCA frame-
work. This provides a disciplined method to perform param-
eter estimation simultaneously with choosing the number of
principal components. In particular, we propose a hierarchi-
cal model for probabilistic PCA, together with a Bayesian
inference procedure for this model using reversible jump
MCMC. Note that PCA is considerably simpler than GMs
and HMMs in the following ways. First, PCA has much
fewer free parameters than GMs and HMMs. Second, un-
like GMs and HMMs, no component in PCA can be empty.
Third, using reversible jump MCMC in GMs and HMMs
for high-dimensional data is still an open problem, while re-
versible jump MCMC for PCA is more manageable because,
as to be discussed in more detail in later sections, each prin-
cipal component can be regarded as a point in some one-
dimensional space. Because of these, we will only employ
birth-death moves for the dimension matching transform in
our reversible jump methodology.

The rest of this paper is organized as follows. In the next
section, we give a brief overview of probabilistic PCA and
the corresponding maximum likelihood estimation problem.
A hierarchical Bayesian model and the corresponding re-
versible jump MCMC procedure are then presented, fol-
lowed by some experimental results on different data sets.
The last section gives some concluding remarks.



Probabilistic PCA
Probabilistic PCA was proposed by Tipping & Bishop
(1999). In this model, a high-dimensional random vector x
is expressed as a linear combination of basis vectors (hj’s)
plus noise (ε):

x =

q∑

j=1

hjwj + m + ε

= Hw + m + ε, (1)

ε ∼ N (0,V), (2)

where x ∈ R
d, w = (w1, . . . , wq)

T ∈ R
q , q < d, and

H = [h1, . . . ,hq] is a d × q matrix that relates the two sets
of variables x and w. The vector m allows the model to
have non-zero mean. In PCA, the noise variance matrix V
is hyperspherical, i.e.,

V = σ2Id, (3)

and the latent variables w1, . . . , wq are independent Gaus-
sians with zero mean and unit variance, i.e.,

w ∼ N (0, Iq).

Note that the probabilistic PCA is closely related to factor
analysis, with the only difference being that the noise vari-
ance matrix V in factor analysis is a general diagonal matrix.

Given an observed data set D = {x1, . . . ,xN}, the goal
of PCA is to estimate the matrix H in (1) and the noise vari-
ance σ2 in (3). From (1) and (2), we can obtain the condi-
tional probability of the observation vector x as

x|w,H,m, σ2 ∼ N (Hw + m, σ2I),

and so, by integrating out w, we have

p(x|H,m, σ2) =

∫
p(x|w,H,m, σ2)p(w)dw.

Note that (Tipping & Bishop 1999)

x|H,m, σ2 ∼ N (m,C),

with C = HHT + σ2I. The corresponding likelihood is
therefore

p(D|H,m, σ2) =

N∏

i=1

p(xi|H,m, σ2)

= (2π)−Nd/2|HHT + σ2I|−N/2

×e−
N
2

tr((HH
T +σ2

I)−1
S), (4)

where

S =
1

N

N∑

i=1

(xi −m)(xi −m)T . (5)

From (Tipping & Bishop 1999), the maximum likelihood
estimates of m and H are

m̂ =
1

N

N∑

i=1

xi, (6)

Ĥ = Uq(Λq − σ2Iq)
1/2R,

respectively, where Uq is a d×q orthogonal matrix in which
the q column vectors are the principal eigenvectors of S,
Λq is a q × q diagonal matrix containing the corresponding
eigenvalues λ1, . . . , λq , and R is an arbitrary q × q orthog-
onal matrix. For H = Ĥ, the maximum likelihood estimate
of σ2 is given by

σ̂2 =
1

d − q

d∑

j=q+1

λj ,

which implies that the maximum likelihood noise variance
is equal to the average of the left-out eigenvalues.

Bayesian Formalism for PCA
Hierarchical Model and Priors

In a fully Bayesian framework, both the number of prin-
cipal components (q) and the model parameters (θ =
{H,m, σ2}) are considered to be drawn from appropriate
prior distributions. We assume that the joint density of all
these variables takes the form

p(q, θ,D) = p(q)p(θ |q) p(D |θ, q) . (7)

Following (Minka 2001), we decompose the matrix H as

H = Uq(Lq − σ2Iq)
1/2R,

where UT
q Uq = Iq ,R

T R = Iq , and Lq = diag(l1, . . . , lq).
It is easy to extend the d×q matrix Uq to a d×d orthogonal
matrix U such that U = (Uq ,Ud−q) and UT

d−qUd−q =
Id−q. Letting

L =

( q d − q

q Lq − σ2Iq 0
d − q 0 0

)
,

we have

ULUT = (Uq ,Ud−q)

(
Lq − σ2Iq 0

0 0

) (
UT

q

UT
d−q

)

= Uq(Lq − σ2I)UT
q

= HHT .

Hence,

HHT + σ2Id = ULUT + σ2Id

= U

(
Lq 0

0 σ2Id−q

)
UT . (8)

Since the matrix S in (5) is symmetric and positive definite,
we can decompose it as S = AGAT , where A is an or-
thogonal matrix consisting of the eigenvectors of S, and G
is diagonal with diagonal elements gi’s being the eigenval-
ues of S.

For simplicity, we set R = Iq and use the maximum like-
lihood estimators for m and U. In other words, we obtain
m from (6) and set U to be the eigenvector matrix A of S.



Combining with (4) and (8), we can rewrite the likelihood
as:

p(D|l−1
1 , . . . , l−1

q , σ−2)

=

N∏

i=1

p(xi|l
−1
1 , . . . , l−1

q , σ−2)

= (2π)−
Nd
2

q∏

j=1

l
−N/2
j σ−N(d−q) × e−

N
2

Pq

j=1
l−1

j
gj

×e−
Nσ−2

2

Pd
j=q+1

gj .

Now, our goal is to estimate the parameters (lj’s and σ2)
and the number of principal components (q) via reversible
jump MCMC. First of all, we have to choose a proper prior
distribution for each parameter. A common choice for q is
the Poisson distribution with hyperparameter λ. Here, for
convenience of presentation and interpretation, we assume
that q follows a uniform prior on {1, 2, · · · , d − 1}.

To ensure identifiability, we impose the following order-
ing constraint on lj’s and σ2:

l1 > l2 > · · · > lq > σ2.

The prior joint density for these parameters is then given by:

p(l1, . . . , lq, σ
2|q) = (q + 1)! p(l1, . . . , lq, σ

2)

×Il1>l2>···>lq>σ2(l, σ2),

where I denotes the indicator function, and the (q +1)! term
arises from the ordering constraint.

We assume that l1, . . . , lq and σ2 are distributed a priori
as independent variables conditioned on some hyperparam-
eter. In this case, we consider the prior distributions for the
parameters l1, . . . , lq and σ2 as conjugate priors:

l−1
j ∼ Γ(r, τ), j = 1, 2, . . . , q,

σ−2 ∼ Γ(r, τ),

where Γ(·, ·) denotes the Gamma distribution.1 Since the
hyperparameter r > 0 represents the shape of the Gamma
distribution, it is appropriate to pre-specify it. In this paper,
r is held fixed while τ > 0 is also given a Gamma prior:

τ ∼ Γ(α, η),

where α > 0 and η > 0. We have thus obtained a com-
plete hierarchical model (Figure 1), which can be repre-
sented graphically in the form of a directed acyclic graph
(DAG).

Reversible Jump MCMC Methodology
For the hierarchical model proposed above, the goal of
Bayesian inference is to generate realizations from the con-
ditional joint density p (q, θ|D) derived from (7). The re-
versible jump MCMC algorithm in (Green 1995) allows

1The Gamma density of a random variable x ∼ Γ(α, λ) is de-
fined as:

p(x;α, λ) =
λα

Γ(α)
x

α−1
e
−λx

,

where α > 0, λ > 0 are the shape and scaling parameters, respec-
tively.
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Figure 1: DAG for the proposed probabilistic PCA model.

us to handle this problem even when the number of prin-
cipal components is unknown. The algorithm proceeds
by augmenting the usual proposal step of a random-sweep
Metropolis-Hastings method with variable dimensions. It
constructs the dimension matching transform with the split-
merge or birth-death moves by adding or removing a latent
variable. As discussed in the introduction section, we only
use the birth-death moves in this paper. Consequently, each
sweep of our reversible jump MCMC procedure consists of
three types of moves:

(a) update the parameters lj’s and σ;
(b) update the hyperparameter τ ;
(c) the birth or death of a component.

Move types (a) and (b) are used for parameter estima-
tion via Gibbs sampling. Since move type (c) involves
changing the number of components q by 1, it constitutes
the reversible jump and is used for model selection via the
Metropolis-Hastings algorithm. Assume that a move of type
m, which moves from the current state s to a new state s′

in a higher-dimensional space, is proposed. This is often
implemented by drawing a vector v of continuous random
variables, independent of s, and denoting s′ by using an in-
vertible deterministic function f(s,v). Then, the acceptance
probabilities from s to s′ and from s′ to s are min(1, R) and
min(1, R−1), respectively, where

R =
p (s′|x) rm(s′)

p (s|x) rm(s)p(v)

∣∣∣∣
∂s′

∂(s,v)

∣∣∣∣ , (9)

rm(s) is the probability of choosing move type m in state

s, p(v) is the density function of v, and
∣∣∣ ∂s

′

∂(s,v)

∣∣∣ is the Ja-

cobian arising from the change of variables from (s,v) to
s′. Using (9) for our probabilistic PCA model, the accep-
tance probability for the birth move from {q, l−1

1 , . . . , l−1
q }



to {q + 1, l−1
1 , . . . , l−1

q , l−1
q+1} is min(1, R), where

R = (likelihood ratio)
p(q + 1)

p(q)
(q + 2)

×
p(l−1

1 , . . . , l−1
q+1, σ

−2)

p(l−1
1 , . . . , l−1

q , σ−2)

dq+1

bq

1

p(l−1
q+1)

. (10)

Here, dk and bk are the probabilities of attempting death and
birth moves, respectively, when the current state has k latent
variables. Usually, bj = dj = 0.5 when j = 2, . . . , d − 2,
d1 = bd−1 = 0 and b1 = dd−1 = 1. Our death proposal
proceeds by choosing the latent variable with the smallest
eigenvalue.

The correspondence between (9) and (10) is fairly
straightforward. The first two terms of (10) form the ratio
p(s′|x)
p(s|x) , the (q + 2)-factor is the ratio (q+2)!

(q+1)! from the order

statistics densities for the parameters lj’s and σ2, and the last

term is the proposal ratio rm(s′)
rm(s)p(v) . The Jacobian is equal

to unity because we are drawing new principal components
independent of the current parameters.

Reversible Jump MCMC Algorithm for
Probabilistic PCA
We use Gibbs sampling (Gilks, Richardson, & Spiegelhal-
ter 1996) to simulate the parameters and hyperparameters in
our model. The reversible jump MCMC algorithm for the
proposed probabilistic PCA method is described as follows:

Reversible Jump MCMC Algorithm

1. Initialization: Sample (q, σ−2, l−1
1 , . . . , l−1

q , τ) from their
priors.

2. Iteration t:

• Update the parameters and hyperparameters using
Gibbs sampling.

• Draw a uniform random variable u ∼ U(0, 1);
• If u ≤ bq , then perform the Birth move.
• Else if u ≤ bq + dq , then perform the Death move.
• End if

3. Set t = t + 1 and go back to Step 2 until convergence.

Gibbs Sampler

1. For j = 1, · · · , q, simulate from the full conditionals

l−1
j | · · · ∼ Γ

(N

2
+ r,

Ngj

2
+ τ

)
I[

lj−1 ,lj+1

](lj),

σ−2| · · · ∼ Γ
(N(d − q)

2
+ r,

N
∑d

j=q+1 gj

2
+ τ

)

×I(
0,lq

](σ2).

2. Simulate the hyperparameter τ from its full conditional:

τ | · · · ∼ Γ
(
(q + 1)r + α,

q∑

j=1

l−1
j + σ−2 + η

)
.

Birth move

1. Draw l−1
q+1 from its prior Γ(r, τ)I[lq ,σ2](lq+1).

2. Calculate the acceptance probability α = min(1, R) of
the birth move using (10).

3. Draw a uniform random variable v ∼ U(0, 1).

4. If v < α, then accept the proposed state; otherwise, set
the next state to be the current state.

Death move

1. Remove the qth principal component.

2. Calculate the acceptance probability α = min(1, R−1) of
the death move using (10).

3. Draw a uniform random variable v ∼ U(0, 1).

4. If v < α, then accept the proposed state; otherwise, set
the next state to be the current state.

Experiments
In this section, we perform experiments on several data sets
to demonstrate the efficacy of the reversible jump MCMC
algorithm for probabilistic PCA. We adopt the recommen-
dation of Richardson & Green (1997) on the choice of hy-
perparameters and set r > 1 > α. Also, we set r = 3.0,
α = 0.5, and η = 1.2/V , where V is the standard deviation
of the data. We run our algorithm for 20,000 sweeps in the
following two experiments. The first 10,000 sweeps are dis-
carded as burn-in. All our inferences are based on the last
10,000 sweeps.

Experiment 1
In the first experiment, we generate a data set (Set 1) of
1,000 points from a 6-dimensional Gaussian distribution,
with variances in the 6 dimensions equal to 10, 7, 5, 3, 1
and 1, respectively. The eigenvalues of the observed covari-
ance matrix on the data so generated are 8.9580, 7.2862,
5.3011, 2.8964, 1.1012 and 0.9876, respectively. Table 1
shows the posterior probabilities for different numbers of
principal components (q) and the corresponding estimated
values of the parameters (lj’s and σ2). As we can see, the
posterior probability of q is tightly concentrated at q = 4,
which agrees with our intuition that there are 4 dominant di-
mensions in this data set. Moreover, the estimated values of
the parameters are very close to the true ones. Figure 2 de-
picts the jumping in the number of principal components on
the last 10,000 sweeps.

Table 1: Posterior probabilities for different numbers of
principal components (q’s) and the estimated values of lj’s
and σ2.

q p(q|D) σ2 lj’s

4 0.8666 1.0573
9.0342, 7.3198
5.2214, 2.9420

5 0.1334 1.0263
9.0322, 7.3187

5.2201, 2.9403, 1.0930



Like the variational method in (Bishop 1999b), our pro-
posed MCMC method does not provide one specific value
on the number of principal components that should be re-
tained. Instead, it provides posterior probability estimate for
each possible dimensionality over the complete range. This
leaves room for us to make an appropriate decision. In many
applications, however, these probabilities are tightly concen-
trated at a specific dimensionality or only a few dimension-
alities that are close to each other. Notice that the number
of principal components q only jumps between 4 and 5 af-
ter the burn-in period. Since the noise variance σ2 is very
close to the variance of either of the last two principal com-
ponents (Table 1), either one may be treated as a noise term
and hence q is sometimes estimated to be equal to 5.

Experiment 2
In the second experiment, we use three data sets similar
to those used by Minka (2001). The first data set (Set 2
in Table 2) consists of 100 points generated from a 10-
dimensional Gaussian distribution, with variances in the first
5 dimensions equal to 10, 8, 6, 4 and 2 respectively, and with
variance equal to 1 in the last 5 dimensions. The second data
set (Set 3 in Table 2) consists of 100 points generated from a
10-dimensional Gaussian distribution, with variances in the
first 5 dimensions equal to 10, 8, 6, 4 and 2 respectively,
and with variance 0.1 in the last 5 dimensions. The third
data sets (Set 4 in Table 2), consisting of 10,000 points, is
generated from a 15-dimensional Gaussian distribution, with
variances in the first 5 dimensions equal to 10, 8, 6, 4 and
2 respectively, and with variance equal to 0.1 in the last 10
dimensions.

Table 2 shows the posterior probabilities for different
numbers of principal components (q) and Figure 2 depicts
the jumping in the number of principal components during
the last 10,000 sweeps. As we can see, the posterior prob-
abilities are all tightly concentrated at q = 5, which agrees
with our intuition that there are 5 dominant dimensions in
these data sets.

Concluding Remarks
In this paper, we have proposed a Bayesian inference
method for PCA using reversible jump MCMC. This al-
lows simultaneous determination of the number of principal
components and estimation of the corresponding parame-
ters. Moreover, since each principal component in this PCA
framework is considered as a point in a one-dimensional
space, the use of reversible jump MCMC becomes feasible.
Also, as the proposed probabilistic PCA framework is only
one of the possible generative latent variable models, in the
future, it is worthy to explore the reversible jump MCMC
methodology for other generative models, such as the mix-
ture of probabilistic PCA, factor analysis and its mixture,
and independent component analysis.

In our reversible jump method, the dimension matching
transform only employs birth-death moves, but not both
split-merge and birth-death moves as in the reversible jump
method for Gaussian mixtures (Richardson & Green 1997).
Note that the birth-death moves of (Richardson & Green

1997) are developed for the empty components, which is
only a supplement of the split-merge moves in order to en-
hance the robustness of the reversible jump method. Appar-
ently, it is possible to use split-merge moves instead of birth-
death moves to develop a reversible jump method for PCA.
Recently, Stephens (2000) used the birth-death process in-
stead of the reversible jump methodology and described an
alternative of the reversible jump MCMC, called the birth-
death MCMC. This birth-death MCMC differs from our
method in that ours still follows the setting of standard re-
versible jump MCMC. Moreover, the computational cost of
the birth-death MCMC is far higher than that of reversible
jump MCMC. The relationship between these two has also
been recently studied in (Cappé, Robert, & Rydén 2003).

Appendix
We assume independence between D = {x1, . . . ,xN}
given all model parameters, and between l−1

1 , . . . , l−1
q and

σ−2 given the hyperparameter τ . For convenience, we de-
note l−1 = {l−1

1 , . . . , l−1
q } and θ ={l−1, τ , σ−2}. The joint

distribution of the data and parameters is:

p(D, θ) =
{ N∏

i=1

p(xi|l
−1, σ−2)

}

×
{ q∏

j=1

p(l−1
j |τ)

}
× p(σ−2|τ)p(τ)

= (2π)−
Nd
2

q∏

j=1

l
−N

2

j σ−N(d−q)

×e−
N
2

(
Pq

j=1
l−1

j
gj+σ−2

P

d
j=q+1

gj

)

×
{ q∏

j=1

p(l−1
j |τ)

}
× p(σ−2|τ)p(τ).

Then, the full conditionals for l−1
j , σ−2 and τ are

l−1
j | · · · ∼ l

−N
2

j e−
N
2

l−1

j
gj p(l−1

j |τ)

∼ Γ
(N

2
+ r,

Ngj

2
+ τ

)
,

σ−2| · · · ∼ σ−N(d−q)e−
Nσ−2

2

Pd
j=q+1

gj p(σ−2|τ)

∼ Γ
(N(d − q)

2
+ r,

N
∑d

j=q+1 gj

2
+ τ

)
,

τ | · · · ∼
{ q∏

j=1

p(l−1
j |τ)

}
× p(σ−2|τ)p(τ)

∼ Γ
(
(q + 1)r + α,

q∑

j=1

l−1
j + σ−2 + η

)
,

respectively.
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