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Abstract

The ability to accurately detect the location of a mo-
bile node in a sensor network is important for many
artificial intelligence (AI) tasks that range from robot-
ics to context-aware computing. Many previous ap-
proaches to the location-estimation problem assume the
availability of calibrated data. However, to obtain such
data requires great effort. In this paper, we present a
manifold regularization approach known asLeMan to
calibration-effort reduction for tracking a mobile node
in a wireless sensor network. We compute a subspace
mapping function between the signal space and the
physical space by using a small amount of labeled data
and a large amount of unlabeled data. This mapping
function can be used online to determine the location of
mobile nodes in a sensor network based on the signals
received. We use Crossbow MICA2 to setup the net-
work and USB camera array to obtain the ground truth.
Experimental results show that we can achieve a higher
accuracy with much less calibration effort as compared
to several previous systems.

Introduction
Wireless sensor networks have recently attracted great inter-
ests in AI communities. Many tasks ranging from robotics
(Batalin, Sukhatme, & Hattig 2004; Biswas & Thrun 2005)
to context-aware computing (Liao, Fox, & Kautz 2004;
Lesteret al. 2005) can now be realized with the help of
distributed wireless sensor networks. Researchers have suc-
cessfully applied learning techniques in a sensor network
from localization (Nguyen, Jordan, & Sinopoli 2005) to ac-
tivity recognition (Liao, Fox, & Kautz 2004). Many of these
applications depend on the ability for a sensor node to be
aware of its location.

Accurately trackingmobilenodes in wireless sensor net-
works using radio-signal-strength (RSS) values is a complex
and difficult task. Radio signal usually attenuates in a way
that is highly nonlinear and uncertain in a complex environ-
ment, which may be further corrupted when introducing the
mobility of sensor nodes. In the past, many researchers have
developed ranging-based algorithms for localizing mobile
nodes in a wireless sensor network. These methods (Sav-
vides, Han, & Strivastava 2001; Priyanthaet al. 2001) usu-
ally consist of two main steps, by first transforming sen-
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sor reading into a distance measure and then recovering
the most probable coordinates of sensor nodes. These ap-
proaches usually rely on a sophisticated signal propagation
model and extensive hardware support. Learning-based ap-
proaches (Nguyen, Jordan, & Sinopoli 2005; Bahl & Pad-
manabhan 2000; Lorincz & Welsh 2006) can bypass the
ranging process but need relatively more calibration data.
However, few of them consider the mobility of sensor nodes.
Even though (Mooreet al. 2004) can accurately trackmobile
nodes, it needs special hardware such as ultrasonic trans-
ceivers. Adding the required hardware increases the cost and
size of sensor nodes. How to estimate the location of mobile
nodes when the signal environment is noisy, and when we
have much less calibrated (labeled) data and hardware sup-
port, is still an open problem.

In this paper, we address the calibration-effort reduction
problem in sensor-network based tracking by proposing a
semi-supervised learning (Blum & Mitchell 1998) approach
for learning a mapping between the signal space and the
physical space, which is essentially a regression problem.
Our approach, calledLeMan, is based onmanifold regular-
ization(Belkin, Niyogi, & Sindhwani 2005), which exploits
the manifold structure of data to avoid poor generalization
due to limited labeled data. We first use a mobile robot to
collect a small quantity of labeled data at various locations.
Then, we apply manifold regularization to solve the regres-
sion problem, in a semi-supervised manner, using a small
amount of labeled data and a large amount of unlabeled data.
The mapping function learned can be used online to deter-
mine the location of a mobile node in a sensor network based
on the signals received.

We have tested our algorithmLeMan using a sensor net-
work implemented using the Crossbow MICA2. Experi-
mental results show that we can achieve a higher accuracy
with much less calibration effort. We have found that with
a much lower proportion of labeled data,LeMan achieves
much higher accuracy than many state-of-the-art algorithms.
We have also found that with an increase of the amount of
unlabeled data, the accuracy can be greatly improved.

Background
Related Works in Localization and Tracking
Ranging-based approaches (Savvides, Han, & Strivastava
2001; Priyanthaet al. 2001) are popular localization meth-
ods due to their simplicity and efficiency. Usually, they first



estimate the distance of an unknown-location sensor node to
somen beaconnodes (n ≥ 3) based on certain sensor read-
ing, e.g. RSS values, and formulae that model the signal
propagation patterns. After that, the most probable location
of the unknown-location sensor node can be calculated by
solving a system of equations (Savvides, Han, & Strivas-
tava 2001). As mentioned above, these approaches prefer
an ideal environment which is often not the case in reality
(Nguyen, Jordan, & Sinopoli 2005).

In contrast to ranging-based approaches, learning-based
methods to location estimation in a sensor network rely on
models that are trained with collected data. The training data
typically consist of RSS values associated with locations that
are manually collected offline (Bahl & Padmanabhan 2000;
Lorincz & Welsh 2006) or automatically collected online
with GPS and mobile robots. When environmental factors
combine together, they demonstrate some nonlinear statis-
tical patterns, which makes it possible to encode these pat-
terns using kernels (Nguyen, Jordan, & Sinopoli 2005). A
major problem with these methods is that to collect train-
ing data requires much effort and costs. Furthermore, these
offline data are subject to changes when the network is ex-
posed to environmental dynamics.

A viable approach is to collect a small amount of la-
beled training data and supplement the lack of labels with
a large amount of unlabeled data. (Shanget al. 2003)
tries to recover all the locations of sensor nodes simul-
taneously through a multidimensional scaling (which is
known as MDS). (Patwari & Hero 2005) further gener-
alized the MDS approach to manifold learning-based lo-
calization through Laplacian Eigenmap (Belkin & Niyogi
2003). Their approach is able to obtain the global opti-
mum with less computational overhead. However, many
of these methods considerstatic sensor nodes only, which
performance is unknown in a mobile scenario. The work
of (Moore et al. 2004) can accurately trackmobilenodes,
but it requires some special hardware such as ultrasonic
transceivers, which may not be available on sensor nodes.
Adding the required hardware increases the cost and size of
sensor nodes.

Manifold Regularization for Learning Functions
Many kernel methods such as support vector machines
(SVM) (Burges 1998) can be formulated under the regu-
larization framework. Specifically, the learning problem
corresponds to minimizing some regularized risk functional
which consists of an empirical risk functional and a regu-
larizer. The empirical risk functional is defined based on
some loss function for the labeled training data. Different
loss functions are used for different learning problems. For
example, the hinge loss function is used for classification
problems and the squared loss function orǫ-insensitive loss
function is used for regression problems. The regularizer
imposes appropriate constraints to control the complexityof
the model and hence the complexity of the solution.

This paper is an attempt to learn a mapping between
the signal space and the physical space in sensor-network
based tracking under the semi-supervised learning setting.
To avoid poor generalization due to limited labeled data, the

learning problem is formulated under a regularization frame-
work. Specifically, it is a data-dependent regularization
framework calledmanifold regularization(Belkin, Niyogi,
& Sindhwani 2005) that exploits the geometric structure of
the marginal distribution of the data in the signal space. The
basic underlying assumption of manifold regularization is
that if two points are close in the intrinsic geometry of the
marginal distribution, then their conditional distributions are
similar. For classification problems, this implies that they
are likely to have the same label. For regression problems,
their regression function values are similar. Manifold reg-
ularization introduces to the regularized risk functionalan
additional regularizer that serves to impose this assumption
on the learning problem.

Let us now define the learning problem more formally.
Suppose we have a set ofl labeled examples{(ri, zi)}

l
i=1

and a set ofu unlabeled examples{rj}
l+u
j=l+1, whereri and

rj are sampled from the input spaceX according to the mar-
ginal distributionPX andzi ∈ R is governed by the con-
ditional distributionP(z|r). The learning problem corre-
sponds to solving the following optimization problem:

f∗=arg min
f∈HK

1
l

Pl
i=1 V (ri,zi,f)+γA‖f‖2

K+γI

R

M
〈∇M,∇M〉, (1)

which finds the optimal functionf∗ in the reproducing ker-
nel Hilbert space (RKHS)HK of functionsf : X → R

corresponding to a Mercer kernelK : X × X → R.
The first term of the regularized risk functional is defined

based on the loss functionV which measures the discrep-
ancy between the predicted valuef(ri) and the actual value
zi. The second term controls the complexity off in terms
of the norm‖ ·‖K , with γA being the regularization parame-
ter. The third term is specific to manifold regularization and
is based on the assumption that the support ofPX forms a
compact submanifoldM. It controls the complexity off in
the intrinsic geometry ofPX , with γI being the correspond-
ing regularization parameter.

In (Belkin, Niyogi, & Sindhwani 2005), the third term is
approximated using the graph Laplacian (Chung 1997) de-
fined on alll + u labeled and unlabeled examples without
using the label information. Hence the optimization prob-
lem can be reformulated as:

f∗=arg min
f∈HK

1
l

Pl
i=1 V (ri,zi,f)+γA‖f‖2

K+
γI

(u+l)2
f̂T Lf̂, (2)

wheref̂ = (f(r1), . . . , f(rl+u))′ andL is the graph Lapla-
cian.

From the extended Representer Theorem (Belkin, Niyogi,
& Sindhwani 2005), the optimal function can be expressed
in the following form:

f∗(r) =

l+u∑

i=1

αiK(ri, r). (3)

When focusing on regression,V in (2) is set to be the
squared loss functionV (ri, zi, f) = (zi−f(ri))

2 to give the
Laplacian Regularized Least Squares (LapRLS) algorithm
(Belkin, Niyogi, & Sindhwani 2005). It can be shown that
the optimal solutionα∗ = (α∗

1, . . . , α
∗
l+u)′ is given by

α∗ = (JK + γAlI +
γI l

(u + l)2
LK)−1Z, (4)



whereK is the(l + u) × (l + u) Gram matrix over all la-
beled and unlabeled examples,Z is an(l + u)-dimensional
label vector given byZ = (z1, . . . , zl, 0, . . . , 0)′, andJ =
diag(1, . . . , 1, 0, . . . , 0) is an(l +u)× (l +u) diagonal ma-
trix with the firstl diagonal entries being 1 and the rest being
0.

Methodology
Problem Statement
Consider a two-dimensional tracking problem1. Assume
that there areN sensor nodes fixed in an areaC ⊆ R

2

that we are interested in. Thesebeaconnodes periodically
send out beacon signals to other nodes. The locations of
beaconnodes are not necessarily known. There are one
or more mobile nodes of unknown locations. At timet,
a mobile node can measure the RSS sent by theN bea-
con nodes by detecting their signals which gives a vector
st = (st1, st2, . . . , stN )′ ∈ R

N . In addition, we have col-
lected a small amountl of labeled training data which are
signal-location pairs{(sti

, ℓti
)}l

i=1 at various locations, and
u unlabeled data{stj

}l+u
j=l+1.

Our objective is to determine the locationℓt = (xt, yt)
′ ∈

C of a mobilenode based on the signal vectorst measured
at timet. Figure 3 shows an example of the floor in our ex-
perimental test-bed, which consists ofN = 8 beaconnodes
and onemobilenode.

Domain Characteristics
To establish the feasibility of our manifold regularization ap-
proach, we first examine the signal distribution properties
of the sensor-network environment. Figure 2(a) shows the
distance-signal correspondence between amobilenode and
a beaconnode. As can be seen, the signal attenuates in a
way that is highly nonlinear and noisy. The uncertainty is
relatively larger at a farther distance. Even when themobile
node is fixed in one location, the signal would not be stable.

When there is little noise, every two-dimensional loca-
tion would uniquely determine a signal vector in a high-
dimensional signal space and the localization area would be
mapped to a two-dimensional manifold. However, when we
take into account the uncertainty introduced by environment
noise and node mobility, the manifold is corrupted. How-
ever, the manifold regularization is still feasible for ourprob-
lem. As shown in Figure 2(b), the average signal change be-
tween two time points which is measured by Euclidean norm
‖sti

− stj
‖, grows with the physical distance‖ℓti

− ℓtj
‖.

Similarly, the signal change also grows with the time interval
|ti − tj | because of robot movement, which is shown in Fig-
ure 2(c). These two figures support the fact that neighboring
locations have more similar signal vectors than those that are
far away. This fact also holds at the dimension of time since
amobilenode can not move too fast. Furthermore, we found
that such signal change has a stable statistical pattern. More
specifically, the signal change is likely to obey a Gaussian
distribution at a fix physical distance or time interval evenif
the signal itself is not Gaussian at a fixed location or time.

1Extension to the three-dimensional case is straight-forward

Labeled Example Unlabeled Examples

Figure 1: The use of labeled and unlabel examples
One example is shown in Figure 2(d). A more detailed hy-
pothesis testing of the above hypothesis will be provided in
our future work. Our problem basically satisfies the assump-
tion of manifold regularization that similar signal vectors in
the intrinsic geometry lead to similar location distribution.
Figure 1 illustrates how the unlabeled examples can supple-
ment the sparsity of labeled ones in the sample space. A
dashed line shows that two examples are similar in signal or
time dimensions.

The LeMan Algorithm
Our location estimation algorithmLeMan, which is based
on manifold regularization, has two phases : an offline train-
ing phase and an online localization phase.

• Offline Training Phase
1. Collect l labeled signal-location pairs{(sti

, ℓti
)}l

i=1
at various locations andu unlabeled signal examples
{stj

}l+u
j=l+1 with a mobile robot, on which top we attach a

sensor node. The mobile robot runs and stops around the
test-bed so that these signal vectors form a long trace.

2. Scale each component of every signal vectors to [0, 1]

wheres ∈ S = {(stp1, . . . , stpN )}l+u
p=1 . This step is

commonly used in kernel methods.

3. For each signal vectorstp
∈ S, connectstp

to its k near-
est neighbors, which distance is measured by Euclidean
norm ‖stp

− stq
‖ wherep, q ∈ [1, l + u]. We further

link thosestp
andstq

together if|tp − tq| < ∆T . These
two kinds of connections are based on our analysis from
Figure 2(b) and 2(c). After that, the adjacency graph and
weight matrix can be used to form the graph LaplacianL.

4. Laplacian Regularized Least Square, with proper choice
of kernel, is used to learn the mapping from signal vector
s to locationℓ. In particular, the optimalα∗

x andα∗
y are

obtained from Equation (4) forx andy coordinates.

• Online Localization Phase
1. At time t, themobilenode collects a signal vectors̃t. For

thosebeaconnodes that are far away, which signals are
too weak to detect, we fill in a small value, e.g. -95dBm.

2. Scale each component ofs̃t to [0, 1] in a similar way as
Step 2 in the training phase.

3. ℓ̂t = (x̂t, ŷt)
′ = (f∗

αx
(̃st), f

∗
αy

(̃st))
′ is the location esti-

mation at timet, whereα∗
x andα∗

y are obtained from Step
4 in the training phase andf∗ is from Equation (3).

4. Optionally, applying a Bayes Filter (Foxet al. 2003; Hu
& Evans 2004) would be a bonus. For example, Kalman
Filter, which encodes a proper motion model, can be used
to smooth the trajectory and enhance the performance of
any localization algorithm.
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(c) Signal change over time
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Figure 2: Radio Characteristics
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Figure 3: Experimental Test-Bed

Our experiment is performed in a laboratory of HKUST
(Figure 3). The room is large enough for us to set up an
experimental test-bed of 5.0 meter by 4.0 meter. In Figure
3, ‖P1P3‖ = ‖P4P6‖ = 5.0m and‖P1P4‖ = ‖P3P6‖ =
4.0m. There are three main components of our setup:

• Wireless Sensor Networkscan be constructed with Cross-
bow MICA2 or MICA2Dot. Figure 3 shows that there are
eightbeaconsensor nodes deployed on the floor denoted
as1, . . . , 8, which are set to broadcast beacon signals pe-
riodically. Mobilenodes are attached on top of robots.

• Mobile Robotsare used for supporting mobility. However,
in practice, sensor nodes can be attached to any object.
We tried different robots that can run freely around the
floor such as LEGO Mindstorms and Sony AIBO dogs.

• A Camera Array is used to record experiments for
supporting time-dependent location information (ground
truth) of mobile robots. Figure 3 shows that the whole
test-bed is monitored by four USB cameras attached at
the ceiling. They can record videos at20fps with res-
olution 320*240 pixels and track the location of mobile
nodes within error distance2.5cm after calibration.

Experimental Results
In this section, experiments are performed to evaluate the lo-
cation estimation accuracy, calibration effort reductionand
the robustness ofLeMan. For comparison, we also run: (1)
Regularized Least Square (RLS); (2) Support Vector Regres-
sion (SVR); (3) LANDMARC (Niet al. 2003); (4) RADAR

(Bahl & Padmanabhan 2000); (5) MoteTrack (Lorincz &
Welsh 2006); (6) Basic Multilateration (Savvides, Han, &
Strivastava 2001).

In applications, we can attach sensor nodes to any object.
In our experiments, we control a mobile robot to run and
stop around the test area (Figure 3) for collecting data with
sampling interval0.5s. Two data sets are collected at dif-
ferent times within two days, each forming a trace of total
length about1, 400 meters or 7, 000 examples. We spent
nearly two months setting up cameras and exporting loca-
tions from videos. Labels were expensive to obtain. For
every experiment below, we randomly picked up a subset of
data from one data set for training and evaluate the perfor-
mance on the other. To reduce statistical variability, results
here are based on averages over20 repetitions.

We use a Gaussian kernelexp(−‖stp
− stq

‖2/2σ2) for
Equations (3) and (4) since it is widely used in localization
problems for adapting the noisy characteristic of radio sig-
nal (Nguyen, Jordan, & Sinopoli 2005) andσ is set to0.5.
The number of nearest neighborsk and the time interval∆T
for constructing graph LaplacianL are set to5 and0.5s re-
spectively. ForγA andγI in Equation (4), we refer to the
handwritten digit and spoken letter recognition experiments
in (Belkin, Niyogi, & Sindhwani 2005) and setγAl = 0.005
and γI l

(u+l)2 = 0.045.

Location Estimation Accuracy
In this section, experiments are done on the whole testing
set (7, 000 examples) when using another 100 labeled ex-
amples for all compared methods and additional 500 unla-
beled examples forLeMan from the training set. Figure
4(a) plots the cumulative probability with respect to error
distance. More detailed results are summarized in Table 1.
As can be seen,LeMan has a better performance than the
others. Note that RLS is a special case ofLeMan when no
unlabeled examples are used. Furthermore,LeMan has the
smallest mean error distance and standard deviation. In the
worst case,LeMan may predict the location within about
290cm. LeMan, with the help of unlabeled examples, im-
proves the performance of trackingmobilenodes.

Figure 4(b) illustrates an estimated trajectory of about30
seconds. The trajectory is not smooth since we have not yet
applied a Bayes Filter (Step 4) in the online phase. How-
ever, we test that, by employing a filter, the performance of
all compared methods can be enhanced by about 9% to 12%.
What is more, the maximal error distance can be greatly re-



Table 1: Performance of Different Methods
Method Mean Std. Max Accuracy Time

(cm) (cm) (cm) at 100cm (ms)
LeMan * 67 * 39 290 * 82% 0.242
RLS 78 46 358 73% 0.047
SVR 79 40 * 257 75% 0.045
RADAR 86 59 391 68% 0.106
MoteTrack 85 61 418 69% 0.106
Multilateration 108 77 1592 53% 0.125
LANDMARC 118 59 372 42% 0.085

duced because the filter smooths the trajectory. In practice,
Bayes Filters are generally used. However, in this paper,
we prefer to see the original performance of all compared
methods. Thus, experimental results shown in this and the
following sections are done without any Bayes Filter.

Figure 4(c) shows the sensitivity of error distance while
varying parametersγAl andγI l/(u+ l)2 in Equation (4). As
can be seen, the result is stable whenγ = γAl+γI l/(u+ l)2

ranges in[10−1.5, 10−0.5]. When the penalty that controls
the function complexity in Equation (1) or (2) is higher, say
, γ > 10−0.5, the function mapping from signal to location
becomes simpler and tends to underfit. On the other hand, if
γ < 10−1.5, the error distance goes up and overfits.

We test the average time for predicting a new position
using the various methods on Matlab with a3.2GHz CPU
just for easy control of parameters and evaluation. However,
our sensor data are collected on a realistic sensor network
based on Crossbow MICA2. The result is shown in Table 1.
LeMan is relatively slower than the others. However, it is
still suitable in real time.

Calibration Effort Reduction
In the first experiment, we test the performance ofLeMan
in reducing the calibration effort. We set the number of
labeled examples to50, 100, 200 and 400 while varying
the number of unlabeled ones from0 to 1000 in each set-
ting, which results are shown in Figure 4(d). For exam-
ple, the error distance is75cm when given50 labeled and
250 unlabeled examples. Compared to87cm if no unla-
beled examples are available, the performance is enhanced
by (87 − 75)/87 = 14% and is better than the result with
100 labeled examples only.LeMan, with the use of unla-
beled examples, does help reduce calibration effort when the
number of labeled examples is rare.

In the second experiment,we test how the number of la-
beled examples affects all compared methods. We fix the
total number of examplesl + u = 500 and vary the ratio of
labeled partl/(l + u) from 5% to 100%. Figure 4(e) shows
that most of the methods benefit from the increasing number
of labeled examples.LeMan again has a better performance
than the others with the help of unlabeled examples. How-
ever, if more labeled examples are available, the unlabeled
examples become less important.

Robustness to the Number of Beacon Nodes
Low density of nodes due to sparse deployment and node
failure may affect the performance. In this experiment, we

study how the number ofbeaconnodes affect the perfor-
mance. We set the number of labeled and unlabeled exam-
ples to100 and500 respectively and randomly select a sub-
set of beacon nodes for the experiment. The result is shown
in Figure 4(f). As can be seen,LeMan is relatively more
robust than the others.

Conclusion and Future Works
In this paper, we describeLeMan, a manifold regularization
approach to reducing calibration effort for trackingmobile
nodes in wireless sensor networks. Our model is based on
the observation that similar signals frombeaconnodes im-
ply close locations. A mapping function between the sig-
nal space and the physical space is learned by using a small
amount of labeled data and a large amount of unlabeled data.
This function can then be used online to determine the loca-
tion of mobilenodes. Experimental results show that we can
achieve a higher accuracy with much less calibration effort.
It is robust to changes in the number ofbeaconnodes, too.
Furthermore, tracking multiplemobilenodes would not bur-
den the network since eachmobilenode can estimate its own
location by passively listening tobeaconsignals.

We are encouraged by the results and plan to extend this
work in a few directions. First, we would like to move the
experiment from the lab to a more complex environment
to check the performance and robustness. Secondly, we
may consider “distributed storage” of calibration data. Each
beaconnode stores some local calibration data nearby and
broadcasts these data in theirbeaconframes so that we can
reduce the storage cost in eachmobilenode. Third, ifbeacon
nodes are densely deployed and their locations can be deter-
mined with any available hardware or algorithm (Shanget
al. 2003; Nguyen, Jordan, & Sinopoli 2005), we can use
their signal reading and location as the labeled examples.
By combining them with unlabeled examples frommobile
nodes, our algorithm can be fully automatic.
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Figure 4: Experimental Results
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