
Multi-Task Learning in
Heterogeneous Feature Spaces

Yu Zhang & Dit-Yan Yeung
Department of Computer Science and Engineering
Hong Kong University of Science and Technology

Clear Water Bay, Kowloon, Hong Kong, China
{zhangyu,dyyeung}@cse.ust.hk

Abstract

Multi-task learning aims at improving the generalization per-
formance of a learning task with the help of some other re-
lated tasks. Although many multi-task learning methods have
been proposed, they are all based on the assumption that all
tasks share the same data representation. This assumption
is too restrictive for general applications. In this paper, we
propose a multi-task extension of linear discriminant analy-
sis (LDA), called multi-task discriminant analysis (MTDA),
which can deal with learning tasks with different data repre-
sentations. For each task, MTDA learns a separate transfor-
mation which consists of two parts, one specific to the task
and one common to all tasks. A by-product of MTDA is that
it can alleviate the labeled data deficiency problem of LDA.
Moreover, unlike many existing multi-task learning methods,
MTDA can handle binary and multi-class problems for each
task in a generic way. Experimental results on face recogni-
tion show that MTDA consistently outperforms related meth-
ods.

Introduction

Multi-task learning (Caruana 1997; Baxter 1997; Thrun
1996) is a machine learning paradigm which aims at im-
proving the generalization performance of a learning task
with the help of some other related tasks. Early attempts
were strongly inspired by human learning activities in that
people often apply the knowledge gained from previous
learning tasks to help learn a new task. Besides transfer-
ring the learning experience sequentially, learning experi-
ence can also be leveraged when multiple tasks are learned
simultaneously. For example, a baby learning to recognize
human faces also gains experience in recognizing other ob-
jects. Over the past decade, many multi-task learning meth-
ods have been proposed. Multi-task neural network (Caru-
ana 1997) learns the hidden layer representation as a com-
mon data representation for all tasks. Multi-task feature
learning (Argyriou, Evgeniou, and Pontil 2008) also learns
a common data representation but under the regulariza-
tion framework. Regularized multi-task support vector ma-
chine (SVM) (Evgeniou and Pontil 2004) assumes that all
tasks are similar and incorporates this assumption into the
objective function of conventional SVM as a regularization
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term. Task clustering methods (Thrun and O’Sullivan 1996;
Bakker and Heskes 2003) partition all tasks into clusters and
learn a common (or similar) data or model representation for
all tasks in each cluster. More recently, some methods such
as (Zhang and Yeung 2010) have been proposed to learn the
task relationships under the regularization framework.

An underlying assumption shared by all multi-task learn-
ing methods proposed thus far is that different tasks use the
same data representation, i.e., same feature space. While this
assumption is valid for some applications, it is too restricted
for other applications. For example, in some face recog-
nition and object recognition applications, there are im-
age databases collected under different environmental con-
ditions and their data representations are also different. In
the situation that each database contains only limited labeled
data, it is desirable to utilize all databases to improve the
generalization performance since all databases are about the
same application. This thinking is in line with the spirit of
multi-task learning. Unfortunately, existing multi-task learn-
ing methods cannot be applied directly to this scenario be-
cause different tasks have different data representations.

In view of this limitation of existing methods, we pro-
pose a new multi-task learning method, called multi-task
discriminant analysis (MTDA), which can be seen as a
multi-task extension of a widely used supervised dimension-
ality reduction technique called linear discriminant analy-
sis (LDA) (Fukunaga 1991). Unlike simply pooling the data
for multiple learning tasks together and learning a common
transformation for all tasks, MTDA learns a separate trans-
formation for each task. Each transformation consists of two
parts, one specific to the corresponding task and one com-
mon to all tasks. The learning of MTDA is based on an
objective function which is similar to that of the single-
task LDA. The optimization problem can be solved by an
alternating method in which each subproblem can guaran-
tee global optimality. While most existing multi-task learn-
ing methods can only handle learning tasks with data shar-
ing the same feature space, MTDA can naturally deal with
heterogeneous feature spaces. A by-product of MTDA is
that it can alleviate the labeled data deficiency problem of
LDA (Chen et al. 2000) by exploiting the label information
from other tasks to help improve the performance of LDA
for one task. Moreover, while most existing multi-task clas-
sification methods are formulated directly for binary clas-
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sification problems in each task and require nontrivial ex-
tension in order for them to handle multi-class problems,
MTDA, like LDA on which it is based, can be applied to
binary and multi-class problems for each task in a generic
way. Experiments on face recognition applications demon-
strate the effectiveness of our proposed method.

Background
We first give a quick review of LDA which also serves to
introduce some definitions that will be used subsequently.
Suppose we are given a training set of N labeled data points,
D = {(xi, yi)}Ni=1, where xi ∈ R

d and yi ∈ {1, . . . , C}.
D consists of N points from C classes with Nk points
from the kth class, i.e.,

∑C
k=1 Nk = N . The between-class

scatter matrix Sb, within-class scatter matrix Sw and to-
tal scatter matrix St are defined as Sb =

∑C
k=1

Nk
N

(m̄k −
m̄)(m̄k − m̄)T , Sw =

∑C
k=1

∑
yi=k

1
N
(xi − m̄k)(xi − m̄k)

T ,

St =
∑N

i=1
1
N
(xi−m̄)(xi−m̄)T where m̄ = (

∑N
i=1 xi)/N

is the sample mean of the whole data set D and m̄k =
(
∑

yi=k xi)/Nk is the class mean of the kth class. It is easy
to show that St = Sb + Sw. Two objective functions have
been widely used for LDA. The first one is in the ratio trace
form (Fukunaga 1991):

W� = argmax
W

tr
(
(WTSwW)−1WTSbW

)
, (1)

and the second one is in the trace ratio form (Wang et al.
2007):

W� = arg max
WTW=Il

tr(WTSbW)

tr(WTStW)
, (2)

where tr(·) denotes the trace of a square matrix, Il denotes
the l × l identity matrix, l is the reduced dimensionality
of the trace ratio form, and W ∈ R

d×l is the transforma-
tion matrix for dimensionality reduction. The solution of
the ratio trace form can be obtained from the eigenvectors
of S−1

w Sb corresponding to the largest eigenvalues. On the
other hand, the trace ratio form has no analytical solution
and has to resort to an iterative method to obtain the opti-
mal solution. Specifically, if W(k) denotes the solution at
the kth iteration, then at the (k+1)th iteration, W(k+1) can
be obtained from the top eigenvectors of Sb − λkSt where
λk = tr((W(k))TSbW

(k))
tr((W(k))TStW(k))

. This procedure can be proved to
converge to the globally optimal solution.

The two objective functions have advantages and disad-
vantages. The ratio trace form is computationally more effi-
cient than the trace ratio form. On the other hand, the phys-
ical meaning of the trace ratio form is clearer than that of
the ratio trace form because the numerator and denominator
of the objective function in the trace ratio form represent the
average between-class distance and average total distance in
the low-dimensional space, respectively.

Multi-Task Discriminant Analysis

Suppose we are given m tasks {Ti}mi=1. The training set
Di = {(xi

j , y
i
j)}ni

j=1 for Ti contains ni data points with
xi
j ∈ R

di and its corresponding output yij ∈ {1, . . . , ci},
where di is the dimensionality of the data in Di and ci is the
number of classes in Di.

We do not assume that the data sets from different tasks
share the same feature space and hence the feature spaces
can be of different dimensionality. This makes MTDA appli-
cable under more general settings than most existing multi-
task learning methods.

Objective Function

We represent the transformation applied to Di as Ui =

WiP, where Ui ∈ R
di×d, Wi ∈ R

di×d′
, P ∈ R

d′×d

with d′ > d. Here d′ is the intermediate dimensionality. P is
the common structure shared by all tasks representing some
characteristics of the application itself in the common lower-
dimensional space, and Wi captures the characteristics spe-
cific to Di. To a certain extent, this is similar to multi-task
structure learning in (Ando and Zhang 2005). However, in
our case, a subspace is shared in the latent space after trans-
forming each data set Di by Wi, but for (Ando and Zhang
2005) which still assumes different tasks lie in the same fea-
ture space, a common subspace is directly shared in the orig-
inal data representation.

The total, between-class and within-class scatter matrices
for Di are defined as Si

t =
∑ni

j=1
1
ni
(xi

j − m̄i)(xi
j − m̄i)T ,

Si
b =

∑ci
k=1

nik

ni
(m̄i

k − m̄i)(m̄i
k − m̄i)T and Si

w =∑ci
k=1

∑
yi
j=k

1
ni
(xi

j−m̄i
k)(x

i
j−m̄i

k)
T , respectively, where

m̄i is the sample mean of all data points in Di, nik is the
number of data points belonging to the kth class in Di, and
m̄i

k is the class mean of the kth class in Di. It is easy to
verify that Si

t = Si
b + Si

w.
The optimization problem for MTDA is formulated as

max
{Wi},P

tr(
∑m

i=1 P
TWT

i S
i
bWiP)

tr(
∑m

i=1 P
TWT

i S
i
tWiP)

s.t. PTP = Id,W
T
i Wi = Id′ for i = 1, . . . ,m, (3)

where {Wi} denotes the set of all Wi. Since Si
t = Si

b+Si
w

and Si
t, S

i
b and Si

w are all positive semidefinite, the optimal
value of the objective function in (3) lies in [0, 1].

Optimization Procedure

Note that it is difficult to solve the optimization problem (3)
with respect to {Wi} and P jointly. Here we adopt an al-
ternating method. More specifically, we first optimize the
objective function with respect to each of the m matrices
Wi when W−i = {W1, . . . ,Wi−1,Wi+1, . . . ,Wm} and
P are fixed, and then optimize it with respect to P when
{Wi} are fixed. This procedure is repeated until conver-
gence. In what follows, we will present these two steps of
the optimization procedure separately.
Optimizing w.r.t. Wi with fixed W−i and P

When W−i and P are fixed, the optimization problem (3)
becomes

max
Wi

tr(PTWT
i S

i
bWiP) + aid

tr(PTWT
i S

i
tWiP) + bid

s.t. WT
i Wi = Id′ , (4)

where ai = 1
d tr(

∑m
j=1,j �=i P

TWT
j S

j
bWjP) and bi =

1
d tr(

∑m
j=1,j �=i P

TWT
j S

j
tWjP) are two constants. Since

WT
i Wi = Id′ and PTP = Id according to the con-

straints in (3), we have PTWT
i WiP = PTP = Id and
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so tr(PTWT
i WiP) = d. We plug this into (4) and obtain

the following problem:

max
Wi

tr(PTWT
i S̃

i
bWiP)

tr(PTWT
i S̃

i
tWiP)

s.t. WT
i Wi = Id′ , (5)

where S̃i
b = Si

b+aiIdi
and S̃i

t = Si
t+biIdi

. Since this prob-
lem is different from the optimization problem for conven-
tional LDA, we defer its discussion to the next subsection.
From the analysis there, we can find the (globally) optimal
solution for problem (5).
Optimizing w.r.t. P with fixed {Wi}

When {Wi} are fixed, the problem (3) with respect to P
becomes

max
P

tr
[
PT (

∑m
i=1 W

T
i S

i
bWi)P

]

tr
[
PT (

∑m
i=1 W

T
i S

i
tWi)P

] s.t. PTP = Id. (6)

Now problem (6) is also in the trace ratio form of LDA,
so we can use the iterative method in (Wang et al. 2007) to
find the (globally) optimal solution.

Since we can find the (globally) optimal solution in each
step of the alternating method, the method can be guaranteed
to find a local maximum for problem (3) (Bertsekas 1999).

Detailed Results

In this subsection, we provide details on solving the opti-
mization problem (5). We first rewrite (5) as

max
Wi

tr(WT
i S̃

i
bWiM)

tr(WT
i S̃

i
tWiM)

s.t. WT
i Wi = Id′ , (7)

where M = PPT . The trace ratio form of the conventional
LDA in (2) can be seen as a special case of (7) when M is
an identity matrix. In summary, Table 1 shows an iterative
algorithm for solving (7).

Table 1: Algorithm for solving optimization problem (7)
Input: S̃i

b, S̃i
t and M

1: Initialize W
(0)
i ;

2: For k = 1, . . . , Niter

2.1: Compute the ratio αk from W
(k−1)
i as:

αk =
tr((W(k−1)

i )T S̃i
bW

(k−1)
i M)

tr((W(k−1)
i )T S̃i

tW
(k−1)
i M)

;

2.2: Solve the optimization problem
W

(k)
i = argmaxWTW=Id′ tr(WT (S̃i

b − αkS̃
i
t)WM);

2.3: Let S = W
(k)
i (W

(k)
i )T S̃i

tW
(k)
i (W

(k)
i )T ;

2.4: Let W(k)
i be the eigenvector matrix of S corresponding

to the top d′ eigenvalues;
2.5: If ‖W(k)

i −W
(k−1)
i ‖F ≤ ε (here we set ε = 10−4)

break;
Output: Wi

Before analyzing this algorithm, we first solve the opti-
mization problem in step 2.2 of the algorithm. The following
lemma is useful here.
Lemma 1 ((Anderson 2003), pp. 645) Let A and B be real
p × p symmetric matrices and W be a p × p orthogonal
matrix. Then

max
WTW=Ip

tr(WAWTB) =

p∑
i=1

λi(A)λi(B),

where λi(M) denotes the ith largest eigenvalue of a matrix
M.

Although Lemma 1 does not explicitly tell us what the
optimal solution of W is, it is easy to see that one optimal
solution W� satisfies W� = UbU

T
a , where Ua and Ub are

the eigenvector matrices of A and B in descending order of
the eigenvalues.

We now present the solution of the optimization problem
in step 2.2.
Theorem 1 Let A be a real p× p symmetric matrix and B
be a real q × q positive semidefinite matrix where p > q.
Then

max
W∈Rp×q ,WTW=Iq

tr(WTAWB) =

q∑
i=1

λi(A)λi(B),

and the optimal solution W� satisfies W� = Ua1U
T
b Q,

where Ua1 is the eigenvector matrix of A corresponding to
the top q eigenvalues, Ub is the eigenvector matrix of B, and
Q is any q × q orthogonal matrix.

Proof: We let B̃ be
(

B 0q×(p−q)

0(p−q)×q 0(p−q)×(p−q)

)
and

W′ ∈ R
p×(p−q) be the orthogonal basis of the null space

of W, where 0m×n denotes the m × n zero matrix. Then
we denote W̃ as W̃ = [W,W′] and so W̃ and W̃T are

p× p orthogonal matrices. Since WBWT = W̃B̃W̃
T

, we
have

max
WTW=Iq

tr(WTAWB) = max
W̃T W̃=Ip

tr(W̃TAW̃B̃)

=

p∑
i=1

λi(A)λi(B̃)

by applying Lemma 1. Because of the relationship between
B and B̃ and the positive semidefiniteness of B, it is easy to
show that λi(B) = λi(B̃) ≥ 0 for all i ≤ q and λi(B̃) = 0
for all i > q. Plugging these into the above equation, we can
get

max
WTW=Iq

tr(WTAWB) =

q∑
i=1

λi(A)λi(B).

Moreover, the optimal solution W̃� satisfies (W̃�)T =
Ub̃U

T
a where UT

a and Ub̃ are the eigenvector matrices of
A and B̃. Considering the structure of B̃, we have Ub̃ =(

Ub 0q×(p−q)

0(p−q)×q R

)
where R ∈ R

(p−q)×(p−q) is an

orthogonal matrix. Then we can get the optimal solution W�

for W as W� = Ua1U
T
b . Since λi(B) = λi(QBQT ) for

all i when Q is a q × q orthogonal matrix, the optimal solu-
tion satisfies W� = Ua1U

T
b Q. �

Algorithm Analysis

In this subsection, we analyze the algorithm presented in Ta-
ble 1. Let the objective function of problem (7) be denoted
as J(W) =

tr(WT S̃i
bWM)

tr(WT S̃i
tWM)

.

Lemma 2 For the algorithm in Table 1, we have
J(W

(k)
i ) ≥ J(W

(k−1)
i ).
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Proof: We define g(W) = tr(WT (S̃i
b − αkS̃

i
t)WM).

Then g(W
(k−1)
i ) = 0 since αk =

tr((W
(k−1)
i )T S̃i

bW
(k−1)
i M)

tr(W
(k−1)
i )T S̃i

tW
(k−1)
i M)

.

Because W
(k)
i = argmaxWTW=Id′ g(W) and

(W
(k−1)
i )TW

(k−1)
i = Id′ , we have g(W

(k)
i ) ≥

g(W
(k−1)
i ) = 0. This means tr((W

(k)
i )T S̃i

bW
(k)
i M)

tr(W
(k)
i )T S̃i

tW
(k)
i M)

≥ αk,

which implies that J(W(k)
i ) ≥ J(W

(k−1)
i ). �

To prove the convergence of W(k)
i , we introduce the con-

cepts of point-to-set mapping (Hogan 1973) and strict mono-
tonicity (Meyer 1976).

A point-to-set mapping Ω is a function mapping X to 2X
where 2X denotes the power set of a set X . In our algorithm
in Table 1, the change from W

(k−1)
i to W

(k)
i can be viewed

as a point-to-set mapping where the set contains W(k)
i with

any orthogonal transformation.
An algorithm can be viewed as a point-to-set mapping Ω :

X → 2X and, given an initial point X1, the algorithm will
generate a sequence of points via the rule Xk ∈ Ω(Xk−1).
Let f : X → R+ be a nonnegative continuous function. An
algorithm is strictly monotonic with respect to f if (i) Y ∈
Ω(X) implies that f(Y ) ≥ f(X); and (ii) Y ∈ Ω(X) and
f(Y ) = f(X) imply that Y = X .

Lemma 3 The iterative algorithm in Table 1 is strictly
monotonic with respect to f = J(W).

Proof: It is obvious that J(W) is a nonnegative contin-
uous function. From Lemma 2, which says J(W

(k)
i ) ≥

J(W
(k−1)
i ), the first condition of strict monotonicity holds

for our algorithm. For the second condition, if J(W(k)
i ) =

J(W
(k−1)
i ), so αk+1 = αk, and W

(k−1)
i and W

(k)
i are the

optimal solution of the problem

arg max
WTW=Id′

tr(WT (S̃i
b − αkS̃

i
t)WM).

Then from Theorem 1, we can see that there only exists one
orthogonal transformation difference between W

(k−1)
i and

W
(k)
i , that is, W(k)

i = W
(k−1)
i Q where Q is some orthog-

onal matrix. Moreover, from Theorem 1, we can see that
W

(k−1)
i and W

(k)
i lie in the subspace spanned by U1U

T
2

where U1 is the eigenvector matrix of (S̃i
b − αkS̃

i
t) corre-

sponding to the top d′ eigenvalues and U2 is the eigenvector
matrix of M = PPT . After steps 2.3 and 2.4 in the algo-
rithm, W(k−1)

i and W
(k)
i become orthogonal transforma-

tion invariant and thus we have W
(k−1)
i = W

(k)
i . So the

second condition of strict monotonicity holds for our algo-
rithm. Finally, we can reach the conclusion that the iterative
algorithm in Table 1 is strictly monotonic with respect to
f = J(W). �
Theorem 2 For the algorithm in Table 1, αk will monoton-
ically increase and converge to the global optimum.

Proof: Using Lemma 2 and Lemma 3, the proof is similar
to that of Theorem 1 in (Wang et al. 2007). �

Related Work

To the best of our knowledge, no existing multi-task learn-
ing method can handle different feature representations in
different tasks. The only related work is the so-called trans-
lated learning (Dai et al. 2008), which generalizes trans-
fer learning (Pan and Yang 2010) across different feature
spaces. However, the goal of translated learning is to only
improve the performance of a target task with the help of
some source tasks. In our case, however, there is no distinc-
tion between all tasks and the goal is to improve the per-
formance of all tasks simultaneously. Moreover, translated
learning is only applicable to some specific applications,
such as using textual information to help image classifica-
tion as studied in (Dai et al. 2008).

A sparse multi-task discriminant analysis method has
been proposed in (Han et al. 2010). However, this method
still requires that different tasks share the same feature
space. Another restriction of this method is that different
tasks must have some overlapping classes. However, our
method has no such requirement.

There exist some methods for transfer dimensionality re-
duction, e.g., (Wang, Song, and Zhang 2008), which utilize
information in the source tasks to help dimensionality re-
duction in the target task, but they cannot handle heteroge-
neous feature spaces and they, like translated learning, only
improve the performance of the target task but not all tasks.

Experiment

In this section, we report some experimental results on face
recognition to assess the performance of MTDA.

Experimental Setup

Subspace methods are widely used in many face recognition
and object recognition applications, with Eigenface (Turk
and Pentland 1991) (based on principal component analysis,
or PCA) and Fisherface (Belhumeur, Hespanha, and Krieg-
man 1997) (based on LDA) being two of the most popular
subspace methods. For our experiment, we use three face
databases: AR (Martı́nez and Benavente 1998), ORL (Bel-
humeur, Hespanha, and Kriegman 1997), and PIE (Sim,
Baker, and Bsat 2003). The face images in the AR face
database are all frontal view images with differences in ex-
pression, illumination and occlusion. There are 26 images
for each person taken in two sessions, each having 13 im-
ages. In our experiment, 2,600 images of 100 persons (50
men and 50 women) are used. Before the experiment, each
image is converted to gray scale and normalized to a size of
33 × 24 pixels. The ORL face database contains 400 face
images of 40 persons, each having 10 images. These face
images have significant variations in pose and scale. Each
image is preprocessed to a size of 28 × 23 pixels. The PIE
face database contains facial images for 68 persons, and in
our experiment, we choose the frontal pose from the PIE
database with varying lighting and illumination conditions.
There are about 49 images for each subject. Before the ex-
periment, we resize each image to a resolution of 32 × 32
pixels. From the sample images, we can see that the charac-
teristics of the three databases are very different.
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(c) p = 4
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(d) p = 5

Figure 1: Convergence of objective function for different values of p

Table 2: Recognition error rates (in mean±std-dev) on three databases for different values of p. 1ST TABLE: p = 2; 2ND
TABLE: p = 3; 3RD TABLE: p = 4; 4TH TABLE: p = 5. A result marked with � means that it is significantly better than the
other methods.

Method AR ORL PIE
PCA 0.8571±0.0082 0.1950±0.0174 0.7786±0.0068
LDA-rt 0.5198±0.0166 0.1906±0.0193 0.3915±0.0187
LDA-tr 0.4828±0.0119 0.1875±0.0164 0.3427±0.0149
Aggregate 0.9894±0.0022 0.9700±0.0120 0.9841±0.0062
MTDA 0.4463±0.0183� 0.1547±0.0178� 0.3289±0.0150�

Method AR ORL PIE
PCA 0.8150±0.0075 0.1121±0.0190 0.6991±0.0117
LDA-rt 0.4696±0.0234 0.1325±0.0209 0.3124±0.0124
LDA-tr 0.2766±0.0212 0.0882±0.0234� 0.2456±0.0153
Aggregate 0.9907±0.0026 0.9775±0.0086 0.9858±0.0025
MTDA 0.2532±0.0216� 0.0757±0.0183� 0.2116±0.0163�

Method AR ORL PIE
PCA 0.7780±0.0095 0.0879±0.0137 0.6389±0.0098
LDA-rt 0.2990±0.0128 0.0917±0.0275 0.2063±0.0119
LDA-tr 0.2158±0.0108 0.0662±0.0146 0.2022±0.0219
Aggregate 0.2993±0.0142 0.3396±0.0378 0.2126±0.0187
MTDA 0.1746±0.0108� 0.0429±0.0127� 0.1702±0.0105�

Method AR ORL PIE
PCA 0.7405±0.0093 0.0600±0.0183 0.5832±0.0104
LDA-rt 0.3292±0.0136 0.0535±0.0189 0.2026±0.0180
LDA-tr 0.1904±0.0088 0.0505±0.0176 0.1709±0.0191
Aggregate 0.2213±0.0134 0.2415±0.0215 0.1912±0.0139
MTDA 0.1306±0.0084� 0.0320±0.0151� 0.1312±0.0112�

In our experiment, learning from each database is treated
as one task and so there are three tasks in total. Each task
corresponds to a multi-class classification problem where
the number of classes in each task is equal to the num-
ber of subjects (persons) in each database. We compare
our method with single-task PCA and LDA using the ra-
tio trace and trace ratio forms (denoted by LDA-rt and
LDA-tr, respectively) which just use PCA and LDA for
each database. Since different tasks have different data rep-
resentations, existing multi-task learning methods cannot
be applied directly. Moreover, most multi-task classifica-
tion methods assume that each task is a binary classifica-
tion problem and thus they again cannot be applied directly
to our face recognition problem. So we compare MTDA
with a baseline multi-task learning method, called Aggre-
gate method, which first applies PCA to project data from
different databases to a common space in R

d′
and then ap-

plies LDA on all the data points in that space. After per-
forming dimensionality reduction, we use a simple nearest
neighbor classifier to perform classification in the lower-
dimensional space.

Experimental Results

To see the effect of varying the size of the training set, we
randomly select p ∈ {2, 3, 4, 5} images from each subject in
each database for the training set and the rest for the test set.
We fix d′ as 300. For each configuration and each method,
we perform 20 random trials and report the average error
rate as well as the standard deviation for those methods in
Table 2. For each configuration, the lowest classification er-
ror is shown in bold. From Table 2, we can see that MTDA
outperforms single-task PCA, single-task LDA with the ra-
tio trace form, single-task LDA with the trace ratio form and
Aggregate for all tasks consistently. It is interesting to see
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(b) p = 3
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(c) p = 4
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(d) p = 5

Figure 2: Prediction error against d′ for different values of p

that the performance of Aggregate has a large improvement
when the training set increases in size.

Convergence Analysis

To test the convergence of our method, we plot the value of
the objective function in problem (3) in Figures 1(a) to 1(d)
with different values of p. We find that the objective function
value increases and then levels off, showing the convergence
of the algorithm. Moreover, convergence is very fast taking
only about 10 iterations.

Sensitivity Analysis

To see the effect of varying the intermediate dimensional-
ity d′ on the performance, we vary d′ from 200 to 500 at an
interval of 10. Results on the three tasks are shown in Fig-
ures 2(a) to 2(d) with different values of p. From the results,
we can see that the performance of MTDA does not change
too much when d′ varies from 200 to 500, which shows that
MTDA is not very sensitive to the parameter d′. Since the
best results often occur when d′ is between 400 and 500, we
prefer using larger values of d′ in real applications.

Conclusion

We have proposed in this paper a novel extension of LDA to
the multi-task setting, making it possible to perform multi-
task discriminant analysis. By exploiting multiple data sets
from multiple tasks for the same application, MTDA offers
a different solution to overcome the limitation of LDA under
situations when labeled data for each learning task is scarce.

Among the possible extensions of MTDA, one interesting
direction is to extend it to handle tensors for 2D or higher-
order data. Moreover, in case unlabeled data is also available
for each task, we can further extend MTDA to the semi-
supervised setting.
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