
Social Relations Model for Collaborative Filtering

Wu-Jun Li† and Dit-Yan Yeung‡
† Shanghai Key Laboratory of Scalable Computing and Systems

Department of Computer Science and Engineering, Shanghai Jiao Tong University, China
‡ Department of Computer Science and Engineering

Hong Kong University of Science and Technology, Hong Kong, China
liwujun@cs.sjtu.edu.cn, dyyeung@cse.ust.hk

Abstract

We propose a novel probabilistic model for collaborative fil-
tering (CF), called SRMCoFi, which seamlessly integrates
both linear and bilinear random effects into a principled
framework. The formulation of SRMCoFi is supported by
both social psychological experiments and statistical theo-
ries. Not only can many existing CF methods be seen as spe-
cial cases of SRMCoFi, but it also integrates their advan-
tages while simultaneously overcoming their disadvantages.
The solid theoretical foundation of SRMCoFi is further sup-
ported by promising empirical results obtained in extensive
experiments using real CF data sets on movie ratings.

Introduction

Collaborative Filtering Collaborative filtering (CF)
(Breese, Heckerman, and Kadie 1998) does not exploit
explicit user profiles but only past activities of the users,
such as their transaction history or product satisfaction
expressed in ratings, to predict the future activities of the
users. In a typical CF task, we often use a sparse matrix R
of size N ×M to denote the rating or preference values on
the items given by the users. Here N denotes the number of
users, M is the number of items, and each matrix element
Rij represents the preference of item j given by user i. The
matrix R is sparse because many elements are missing, and
such elements Rij are assigned the value of 0 to indicate
that item j has not been rated by user i. The goal of CF is
to learn a function to predict some of the missing elements
in R based on the observed elements.

Existing CF methods can be divided into two main cate-
gories (Sarwar et al. 2001; Koren 2008; Zhen, Li, and Yeung
2009): memory-based and model-based methods. Memory-
based methods predict new ratings by (weighted) averaging
the ratings of similar users or items. According to whether
similarity is defined based on users or items, memory-
based methods can be further divided into user-based meth-
ods (Breese, Heckerman, and Kadie 1998) and item-based
methods (Sarwar et al. 2001). Unlike memory-based meth-
ods, model-based methods learn a model from data using
statistical learning techniques. Methods based on matrix fac-
torization (MF) (Takács et al. 2008), or called latent factor

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

models (Koren 2008), are the most representative model-
based methods. MF methods can make use of either proba-
bilistic (Lim and Teh 2007; Salakhutdinov and Mnih 2008b)
or non-probabilistic (Srebro, Rennie, and Jaakkola 2004;
Rennie and Srebro 2005; Takács et al. 2008) formulations.
Recently, some hybrid models combining both memory-
based and model-based techniques have also emerged (Ko-
ren 2008).

Social Relations Model The social relations model1
(SRM) (Kenny 1994; Li and Loken 2002) has been widely
used for modeling dyadic data appeared in many fields, in-
cluding social psychology, behavioral science and statisti-
cal science.2 SRM was first introduced in the context of in-
terpersonal perception studying the beliefs that people have
about others. During the perception process, there exist a
perceiver (or called actor) and a target (or called partner).
For example, Bob might have beliefs that his friend, Mary,
is intelligent. Here, Bob corresponds to a perceiver and Mary
to a target.

To collect dyadic data, there are two basic designs: round-
robin design and block design. In the round-robin design,
each person interacts with or rates every other person in a
group. In the block design, a group is divided into two sub-
groups and members from each subgroup interact or rate the
members of the other subgroup. Sometimes only half of the
data are gathered from the block design, which is referred
to as a half-block design. More specifically, in a half-block
design, a group is divided into two subgroups (say A and
B), and only the members from one subgroup (say A) rate
the members of the other subgroup (say B), but not vice
versa. As stated in (Kenny 1994, page 24), a half-block de-
sign is typical when the targets are presented on videotapes
or movies. Hence, the CF problem can be seen as an exam-
ple of the half-block design in the perception study because
only users rate items but not the other way around.

However, it should be noted that SRM cannot be directly
applied to the CF problem because the focus of SRM is on
the analysis of variance (ANOVA) over actors, partners as
well as the relationships between actors and partners. For

1http://davidakenny.net/srm/soremo.htm
2http://davidakenny.net/doc/srmbiblio.pdf

lists hundreds of references on various applications of SRM.

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

803

example, we can use SRM to analyze the actor variance to
find out whether people see others as similar in terms of in-
telligence. Moreover, in general, it is assumed that we can
collect all of the data for SRM and hence no elements are
missing. For CF, however, the goal is to predict some of the
missing ratings, making it fundamentally different from that
of the original SRM.

Contributions By adapting SRM, we propose in this pa-
per a novel CF model called SRMCoFi. Some promising
properties of SRMCoFi are highlighted here:
• SRMCoFi formulates the CF problem under a probabilis-

tic framework, making it very convenient to learn the
model parameters and subsequently control the model ca-
pacity automatically.

• SRMCoFi, which subsumes many existing model-based
CF methods as special cases, provides a general frame-
work for CF.

• SRMCoFi offers theoretical justifications for many em-
pirical findings by previous CF methods.

• SRMCoFi is very efficient and easily implementable due
to the closed-form updates for parameter learning.

Social Relations Model

Let Fij denote the dyadic measurement of the perception or
rating from actor i to partner j. In SRM (Kenny 1994), Fij

is decomposed into random effects a, b, e as follows:
Fij = μ+ ai + bj + eij + εij , (1)

where μ is a constant representing the overall mean, ai is
the actor effect representing the average level of rating of an
actor in the presence of a variety of partners, bj is the part-
ner effect representing the average level of a rating which a
person elicits from a variety of actors, eij is the relationship
effect representing the rating of an actor toward a particu-
lar partner, above and beyond their actor and partner effects,
and εij is an error term representing the unstable aspect of
the perception. In particular, for the movie rating applica-
tion, actors refer to users and partners to movies.

In general, a, b, e, ε are assumed to be random variables
with the following distributions:

ai
iid∼ N (·|0, σ2

a), bj
iid∼ N (·|0, σ2

b),

eij ∼ N (·|0, σ2
e), εij

iid∼ N (·|0, σ2
ε),

Cov(ai, bi) �= 0, Cov(eij , eji) �= 0, (2)

where Cov() denotes the covariance. In SRM, all the other
covariances are assumed to be 0. Cov(ai, bi) �= 0 means
that the actor effect and partner effect of the same individual
i have nonzero covariance. Since CF is a half-block design,
one specific individual can only have either actor effect or
partner effect, but not both. Hence, it is unnecessary to con-
sider these covariances for CF.

The focus of SRM is not on estimating the effects for spe-
cific individuals and relationships but on estimating the vari-
ance due to effects. So, as said above, ANOVA (Li and Lo-
ken 2002) is the main goal of the original SRM. Moreover,
SRM typically assumes that all of the data are observed.

This is completely different from the goal of CF which is
to predict some of the missing elements in the rating matrix.
Hence, SRM cannot be directly applied to CF.

SRMCoFi

Since CF is fundamentally different from traditional appli-
cations of SRM, we need to adapt SRM appropriately if we
want to apply it to CF. The result is our social relations
model for collaborative filtering, which we abbreviate as
SRMCoFi in the sequel.

Model

SRMCoFi defines the likelihood function over the observed
ratings as follows:

Fij = μ+ ai + bj + UT
i Vj ,

E(Rij |Fij) = g−1(Fij),

p(R|F, φ) =
N∏
i=1

M∏
j=1

[p(Rij |Fij , φ)]
Iij , (3)

where U ∈ R
D×N is the latent user feature matrix and

V ∈ R
D×M is the latent movie feature matrix, with col-

umn vectors Ui and Vj denoting user-specific and movie-
specific latent feature vectors respectively, E(·) is the ex-
pectation function, g(·) is the link function in a generalized
linear model (GLM) (Gelman et al. 2003), φ is the variance
or dispersion parameter of the GLM (Gelman et al. 2003),
and Iij is an indicator variable which is equal to 1 if user i
rated movie j and 0 otherwise. For example, if g−1(Fij) =
exp(Fij) and p(Rij |Fij) = Poisson(Rij |g−1(Fij)), the
model is equivalent to a Poisson regression model (Gelman
et al. 2003) with the log-link function, which is always used
to model data taking the form of counts. One representative
application of the Poisson regression model is epidemiology
where the incidence of diseases is studied (Gelman et al.
2003, page 51).

The SRMCoFi model defined in (3) adapts SRM in two
aspects:

• SRMCoFi adopts a bilinear term UT
i Vj to represent the

relationship effect eij of SRM. Hence, SRMCoFi seam-
lessly integrates the linear (ai, bj) and bilinear effects
into a principled framework. This adaptation is very cru-
cial for SRMCoFi to achieve the goal of CF, which is to
predict some missing elements in the preference matrix.
After learning the model, each user i is associated with
a latent feature vector Ui and each movie j with a latent
feature vector Vj . Based on these learned feature vectors,
the missing elements in the preference matrix can be pre-
dicted easily. For example, the expected value E(Rij |Fij)
computed based on (3) can be used as the predicted value
for a missing element Rij , which is the strategy used in
this paper. On the other hand, it is not easy to directly ap-
ply SRM to predict the missing elements.

• By exploiting different GLMs, SRMCoFi generalizes
SRM to accommodate different types of data, such as bi-
nary measurements and counting data.

804

We gave an example above on how to model counting data
via a Poisson regression model based on the log-link func-
tion. Here we give two other examples among many possi-
bilities:

• Logistic regression model: If Rij is binary, we can
define g−1(Fij) =

exp(Fij)
1+exp(Fij)

and p(Rij |Fij) =

Bernoulli(Rij |g−1(Fij)). Here, the link is the logit func-
tion and there is no dispersion parameter φ. As for CF, if
the task is to predict whether user i has rated movie j, i.e.,
to predict Iij , this model might be a good choice.

• Normal-linear model: If g−1(Fij) = Fij and
p(Rij |Fij , φ) = N (Rij |Fij , σ

2), it is a normal-linear
model with φ = σ2, which is a typical choice for mod-
eling continuous values.

Other combinations of g−1(Fij) and p(Rij |Fij , φ) can
be used to devise different models for different data types.3
Hence, SRMCoFi provides a flexible framework for model-
ing data from diverse applications.

In this paper, we only study the normal-linear model
in detail with g−1(Fij) = Fij and p(Rij |Fij , φ) =
N (Rij |Fij , σ

2). The learning and inference procedures for
other variants are similar except that the closed-form solu-
tions for the normal-linear model may not exist for other
variants. Nevertheless, even if this is the case, we can still
resort to a gradient method (Shewchuk 1994) to obtain so-
lutions. Due to the page limit, such variants will not be de-
scribed in detail in this paper.

We place Gaussian priors on the latent variables of
SRMCoFi:

p(a) =

N∏
i=1

N (ai|0, σ2
a), p(b) =

M∏
j=1

N (bj |0, σ2
b),

p(U) =
N∏
i=1

N (Ui|0, σ2
UI), p(V) =

M∏
j=1

N (Vj |0, σ2
V I),

p(μ) = N (μ|0, σ2
μ), (4)

where a = (a1, a2, . . . , aN)T , b = (b1, b2, . . . , bM)T , and I
is the identity matrix. Here, the latent variables μ,a,b, U, V
are referred to as parameters and σ2, σ2

μ, σ
2
a, σ

2
b , σ

2
U , σ

2
V as

hyperparameters.
We assume independence among the parameters

and hence p(μ,a,b, U, V) = p(μ)p(a)p(b)p(U)p(V).
Furthermore, the likelihood of the normal-linear
model is: p(R|μ,a,b, U, V, σ2) = p(R|F, σ2) =∏N

i=1

∏M
j=1

[N (Rij |Fij , σ
2)
]Iij .

Thus, the log of the posterior distribution over the param-

3Theoretically any combination may be adopted. By taking into
consideration the computational requirements, however, only some
of these combinations are good choices for real applications. For
example, we always constrain g−1(Fij) and p(Rij |Fij , φ) to what
can give a concave log-likelihood function.

eters can be written as follows:
ln p(μ,a,b, U, V |R, σ2, σ2

μ, σ
2
a, σ

2
b , σ

2
U , σ

2
V) =

− 1

2σ2

N∑
i=1

M∑
j=1

Iij(Rij − Fij)
2 − 1

2σ2
U

N∑
i=1

UT
i Ui

− 1

2σ2
V

M∑
j=1

V T
j Vj − 1

2σ2
μ

μ2 − 1

2σ2
a

N∑
i=1

a2i

− 1

2σ2
b

M∑
j=1

b2j −
1

2

N∑
i=1

M∑
j=1

Iij lnσ
2 − ND

2
lnσ2

U

−MD

2
lnσ2

V − 1

2
lnσ2

μ − N

2
lnσ2

a −
M

2
lnσ2

b + C, (5)

where C is a constant that does not depend on the parameters
and hyperparameters.

For fixed hyperparameters, maximizing the log-posterior
over the parameters is equivalent to minimizing the follow-
ing objective function:

L =
1

2

N∑
i=1

M∑
j=1

Iij(Rij − Fij)
2 +

λU

2
tr(UTU)

+
λV

2
tr(V TV) +

λμ

2
μ2 +

λa

2
aTa+

λb

2
bTb, (6)

where tr(·) denotes the trace of a matrix, λU = σ2/σ2
U ,

λV = σ2/σ2
V , λμ = σ2/σ2

μ, λa = σ2/σ2
a, and λb = σ2/σ2

b .

Parameter Learning

The learning procedure for SRMCoFi consists of two parts:
learning the parameters and learning the hyperparameters.
We will discuss hyperparameter learning in detail in the fol-
lowing subsection. In this subsection, we only consider the
parameter learning problem, which is to optimize the objec-
tive function in (6) with fixed hyperparameters (or, equiva-
lently, with fixed λ’s).4

Note that (6) is not jointly convex over μ,a,b, U, V .
However, it is convex with respect to each individual vari-
able with the others held fixed. We exploit this property to
perform alternating updates for each variable iteratively, the
convergence of which can be guaranteed and will be proved
later in this subsection.

To update μ, we compute the gradient of L with respect
to μ and set the gradient to 0, giving

μ =

∑N
i=1

∑M
j=1 Iij

[
Rij − (ai + bj + UT

i Vj)
]

λμ +
∑N

i=1

∑M
j=1 Iij

. (7)

Similarly, closed-form solutions exist for updating ai, bj :

ai =

∑M
j=1 Iij(Rij − μ− bj − UT

i Vj)

λa +
∑M

j=1 Iij
, (8)

bj =

∑N
i=1 Iij(Rij − μ− ai − UT

i Vj)

λb +
∑N

i=1 Iij
. (9)

4Here we overload the term ‘hyperparameters’ to refer to the
λ’s. We can easily realize from the context whether ‘hyperparame-
ters’ refer to the σ2s or the λ’s. In fact, they refer to the same thing
because the λ’s can be computed from the σ2s.

805

To update U , we first rewrite (6) as follows:

L =
1

2

N∑
i=1

⎧⎨
⎩UT

i

⎛
⎝λUI+

M∑
j=1

IijVjV
T
j

⎞
⎠Ui

−2

⎡
⎣ M∑
j=1

Iij(Rij − μ− ai − bj)V
T
j

⎤
⎦Ui

⎫⎬
⎭+ C1, (10)

where C1 is a constant independent of U . We can see that
the vectors Ui for different i are decoupled, which means
that we can solve a linear system of equations for each row
of U separately.

It is not difficult to see that the objective
function in (10) is convex. If D is small, we
can directly solve the linear system to obtain:
Ui =

(
λUI+

∑M
j=1 IijVjV

T
j

)−1 [∑M
j=1 Iij(Rij − μ− ai − bj)Vj

]
.

Otherwise, if D is large, we can instead apply the steep-
est descent method (Shewchuk 1994) with convergence
guaranteed.

Similarly, updating V corresponds to solving the follow-
ing linear system:(
λV I+

N∑
i=1

IijUiU
T
i

)
Vj =

N∑
i=1

Iij(Rij −μ−ai− bj)Ui.

Theorem 1 The learning procedure above guarantees local
convergence.
Proof: (Sketch) The objective function in (6) is lower
bounded by 0. Furthermore, the objective function decreases
its value monotonically in each iteration when the variables
are updated. Hence, the learning procedure always con-
verges to a local minimum. �
Theorem 2 Both the time complexity and space complexity
are linear in the number of training ratings available in R.
Proof: Let us denote the number of training ratings by γ.
It is easy to see that the time needed for updating μ,a,b
is O(Dγ). For updating U , the time for computing all the∑M

j=1(·) for all Ui is O(Dγ), and for each Ui, O(D3+D2)
is needed for computing the matrix inverse and multiplica-
tion. Hence, the total time for updating U is O(Dγ+D3N).
Similarly, O(Dγ+D3M) is needed for updating V . Hence,
the time complexity for each iteration is O(γ) because D is
typically a small constant and N,M � γ. Moreover, from
our experiment, only a small number (< 20) of iterations
is sufficient for the algorithm to achieve good performance.
Hence, we can say that the time complexity of the whole
algorithm is O(γ).

The space complexity of R,μ, a,b, U, V is
O(γ), O(1), O(N), O(M), O(DN), O(DM) respec-
tively. Hence, the overall space complexity is also O(γ).
�

Hyperparameter Learning

How to choose appropriate regularization parameters (or
called hyperparameters here), such as the λ’s in (6), is cru-
cial to model capacity control. For models based on non-

probabilistic formulations, a validation set or, more gener-
ally, cross validation is often used to determine the hyper-
parameters. However, in cross validation, only a small num-
ber of discrete values are considered as candidate choices.
Hence, the values eventually chosen for the hyperparame-
ters are not necessarily optimal.

Probabilistic formulation allows the hyperparameters to
be learned automatically. In this paper, we adopt an alternat-
ing method to efficiently learn the hyperparameters. More
specifically, in the learning procedure, we fix the hyperpa-
rameters and optimize over the parameters first and then op-
timize over the hyperparameters with the parameters kept
fixed, and this procedure iterates until some termination con-
dition is satisfied. In this paper, we use a conjugate hyper-
prior which gives closed-form updates for inference. More
specifically, we use an inverse-χ2 distribution as a conjugate
hyperprior for the hyperparameters (σ2s).

Assume that p(y|0, σ2
y) = N (y|0, σ2

y) with σ2
y unknown,

the likelihood of n i.i.d. observations is

p(y|σ2
y) ∝

1

σn
y

exp

(
−
∑n

i=1 y
2
i

2σ2
y

)
=

1

σn
y

exp

(
− n

2σ2
y

s

)
,

where s is the sufficient statistic: s(σ2
y) =

∑n
i=1 y2

i

n .
If we use a scaled inverse-χ2 (Gelman et al. 2003) as the

hyperprior for σ2
y: σ2

y ∼ Inv-χ2(ν0, σ
2
0), we can get

σ2
y|y ∼ Inv-χ2

(
ν0 + n,

ν0σ
2
0 + ns

ν0 + n

)
. (11)

Hence, the hyperprior can be thought of as providing
prior information equivalent to ν0 observations with average
squared deviation σ2

0 (Gelman et al. 2003).
It is easy to derive the sufficient statistics of the σ2s for

SRMCoFi:

s(σ2) =

∑N
i=1

∑M
j=1 Iij(Rij − Fij)

2∑N
i=1

∑M
j=1 Iij

, s(σ2
μ) = μ2,

s(σ2
a) =

∑N
i=1 a

2
i

N
, s(σ2

b) =

∑M
j=1 b

2
j

M
,

s(σ2
U) =

∑N
i=1 U

T
i Ui

ND
, s(σ2

V) =

∑M
j=1 V

T
j Vj

MD
.

The mode, which is ν
ν+2σ

2
y for Inv-χ2(ν, σ2

y), of the pos-
terior of the σ2 is adopted to update the λ’s in (6). It is easy
to see that the time and space complexity of hyperparameter
learning is also linear in the number of training ratings.

Comparison with Related Work

Let us first consider MF methods based on non-
probabilistic formulations. Maximum margin matrix fac-
torization (MMMF) (Srebro, Rennie, and Jaakkola 2004;
Rennie and Srebro 2005) can be seen as a special case of
(6) by setting μ = ai = bj = λμ = λa = λb = 0.5

5The original MMMF (Srebro, Rennie, and Jaakkola 2004) only
used the hinge loss, but many subsequent works also used other
loss functions such as smooth hinge (Rennie and Srebro 2005) and
squared loss (Weimer, Karatzoglou, and Smola 2008). Here we re-
fer to the squared loss function.

806

It has been demonstrated empirically by many researchers
(Takács et al. 2008; Weimer, Karatzoglou, and Smola 2008)
that adding offset (or bias) terms to MMMF can improve
its performance. These methods, MMMF+offset in (Weimer,
Karatzoglou, and Smola 2008) and BRISMF in (Takács et
al. 2008), are equivalent to (6) by setting μ = λμ = 0. All
these non-probabilistic methods have shortcomings when it
comes to choosing the hyperparameters.

Other MF methods (Lim and Teh 2007; Salakhutdinov
and Mnih 2008a; 2008b) are based on probabilistic for-
mulations. PMF (Salakhutdinov and Mnih 2008b) can be
seen as a special case of SRMCoFi by removing the terms
for μ,a,b. Bayesian PMF (BPMF) (Salakhutdinov and
Mnih 2008a) extends PMF by putting some hyperpriors on
the hyperparameters and uses Gibbs sampling for learn-
ing and inference. The underlying formulation of VB (Lim
and Teh 2007) is the same as Bayesian PMF except that
VB adopts variational methods for Bayesian inference. Al-
though SRMCoFi in this paper does not perform fully
Bayesian inference, the techniques used in extending PMF
to Bayesian PMF (or MMMF to VB) may also be applied
here to extend SRMCoFi to its fully Bayesian counterpart,
possibly incurring higher computation cost to take advan-
tage of a fully Bayesian approach. In that case, BPMF and
VB can be seen as special cases of the corresponding fully
Bayesian counterparts of SRMCoFi. We will pursue this di-
rection in our future work. One common characteristic of
these probabilistic formulations is that they do not include
the very important linear terms used in SRMCoFi. Actually,
many variants of MF methods were empirically studied in
(Takács et al. 2008) and MMMF with the added linear terms
(called BRISMF) was found to perform the best. This shows
that the importance of the linear terms as supported by psy-
chological experiments is also verified by empirical findings
in CF applications.

Modeling the offset terms (i.e., the linear random effects
in SRMCoFi) and hyperparameter learning are two impor-
tant characteristics for a promising CF model. However,
existing methods do not simultaneously take both of them
into consideration. Although SRMCoFi has been motivated
by the study of social relations, it coincides with a model
which seamlessly integrates these two aspects into a princi-
pled framework. The solid foundation validated by theories
and experiments from psychological and statistical studies
provides justification for the inclusion of the offset terms.
Hence, compared with existing methods, better performance
can be expected from SRMCoFi.

Experiments

Data Sets and Evaluation Metric

We evaluate SRMCoFi on two widely used data sets:
MovieLens (Sarwar et al. 2001) and EachMovie (Breese,
Heckerman, and Kadie 1998). Some information about the
data sets is summarized in Table 1.

Root mean squared error (RMSE) is used as the error
measure. Suppose there are totally H elements to be pre-
dicted, and Rh and R̃h denote the ground-truth and pre-
dicted values respectively for element h. Then the RMSE

Table 1: Data sets for evaluation.
Dataset # Users # Movies # Ratings

MovieLens 943 1,682 100,000
EachMovie 61,265 1,623 2,811,718

is defined as follows: RMSE =

√∑H
h=1(Rh−R̃h)2

H . We can
see that the smaller the RMSE is, the better the method will
be.

Effect of Hyperparameter Learning

Here, we compare SRMCoFi with MMMF+offset (Weimer,
Karatzoglou, and Smola 2008). We keep part of the training
data as a validation set to determine the hyperparameters for
MMMF+offset, while the hyperparameters of SRMCoFi are
automatically learned with our proposed algorithm. Hence,
the main difference between MMMF+offset and SRMCoFi
lies in how the hyperparameters are determined.

We randomly select 20%, 40%, 60% and 80% of the data
to form the training set and use the rest as the test set for
evaluation. This random selection is carried out 10 rounds
independently for each splitting ratio. In all the experiments
in this paper, we set D = 30. The mean and standard de-
viation of the RMSE are reported in Table 2. Two other ap-
proaches, UserMean and MovieMean, are also included for
comparison. UserMean uses the sample mean of the same
user’s training ratings for prediction, and MovieMean uses
that of the same movie’s training ratings. From the results,
we can see that hyperparameter learning is very important
for CF and SRMCoFi is very effective.

Table 2: Comparison between SRMCoFi and MMMF+offset to
show that hyperparameter learning is effective. The best perfor-
mance (with smallest RMSE) is shown in bold. All standard devi-
ations are 0.002 or less.

20% 40% 60% 80%

MovieLens

UserMean 1.060 1.049 1.044 1.043
MovieMean 1.054 1.036 1.030 1.027

MMMF+offset 0.974 0.954 0.945 0.940
SRMCoFi 0.969 0.941 0.918 0.910

EachMovie

UserMean 1.477 1.443 1.432 1.427
MovieMean 1.389 1.388 1.387 1.387

MMMF+offset 1.286 1.233 1.191 1.161
SRMCoFi 1.245 1.195 1.160 1.136

Effect of Linear Random Effects

MMMF+offset Vs MMMF The difference between
MMMF+offset and MMMF lies in the linear offset terms.
Here, we compare them to demonstrate the significance of
these terms. Both MMMF+offset and MMMF use a vali-
dation set to determine the hyperparameters, with the same
data set partitioning scheme as that above. The results are
shown in Table 3, from which we can see that the linear off-
set terms dramatically improve performance.

807

Table 3: Comparison between MMMF+offset and MMMF to
show the effectiveness of the offset terms. All standard deviations
are 0.002 or less.

20% 40% 60% 80%

MovieLens
MMMF 1.040 0.981 0.964 0.955

MMMF+offset 0.974 0.954 0.945 0.940

EachMovie
MMMF 1.377 1.281 1.265 1.208

MMMF+offset 1.286 1.233 1.191 1.161

Comparison with PMF Both PMF (Salakhutdinov and
Mnih 2008b) and SRMCoFi can perform hyperparameter
learning automatically. Hence, the only difference between
them lies in the linear terms. The results are shown in Ta-
ble 4, which once again verifies that the linear terms are very
crucial for CF.

Table 4: Comparison between SRMCoFi and PMF. All standard
deviations are 0.002 or less.

20% 40% 60% 80%

MovieLens
PMF 1.029 0.977 0.956 0.952

SRMCoFi 0.969 0.941 0.918 0.910

EachMovie
PMF 1.324 1.233 1.224 1.178

SRMCoFi 1.245 1.195 1.160 1.136

Comparison with VB and MVTM We further compare
SRMCoFi with other state-of-the-art methods, including
VB (Lim and Teh 2007) and the matrix-variate t model
(MVTM) (Zhu, Yu, and Gong 2008). As in (Zhu, Yu, and
Gong 2008), we randomly select 80% of the EachMovie
data for training and use the rest for testing. The mean and
standard deviation over 10 rounds are reported in Table 5.
The better performance of SRMCoFi can be directly at-
tributed to the linear random effects of SRMCoFi because
VB only has bilinear terms.

Table 5: Comparison of SRMCoFi with VB and MVTM. All stan-
dard deviations are 0.002 or less.

VB MVTM (mode) MVTM (mean) SRMCoFi

1.165 1.162 1.151 1.136

Computational Cost

In real implementation, we find that SRMCoFi is quite effi-
cient. In the experiment on EachMovie with 80% of data for
training, it takes less than 10 minutes to complete one itera-
tion of both hyperparameter learning and parameter learn-
ing, which is comparable with a C++ implementation of
CoFiRank (Weimer et al. 2008) even though our SRMCoFi
implementation is in MATLAB. Compared with the MMMF
implementation in (Rennie and Srebro 2005), SRMCoFi is
an order of magnitude faster.

Conclusion

SRMCoFi, which has been inspired by social psychologi-
cal studies, can be seen as a model that seamlessly inte-
grates both hyperparameter learning and the use of offset
terms into a principled framework. As a result, SRMCoFi

integrates the advantages of existing methods and simul-
taneously overcomes their disadvantages, achieving very
promising performance in real CF tasks. To a certain extent,
a major contribution of SRMCoFi is that it serves to provide
justifications from social psychological studies to many em-
pirical findings by existing CF methods.

Acknowledgments
Li is supported by a grant from the “project of Arts & Sci-
ence” of Shanghai Jiao Tong University (No. 10JCY09). Ye-
ung is supported by General Research Fund 621310 from the
Research Grants Council of Hong Kong.

References
Breese, J. S.; Heckerman, D.; and Kadie, C. M. 1998. Empirical
analysis of predictive algorithms for collaborative filtering. In UAI,
43–52.
Gelman, A.; Carlin, J. B.; Stern, H. S.; and Rubin, D. B. 2003.
Bayesian Data Analysis, Second Edition. Chapman & Hall/CRC.
Kenny, D. A. 1994. Interpersonal Perception: A Social Relations
Analysis. Guilfold Publications, Inc., New York.
Koren, Y. 2008. Factorization meets the neighborhood: a multi-
faceted collaborative filtering model. In KDD, 426–434.
Li, H., and Loken, E. 2002. A unified theory of statistical analy-
sis and inference for variance component models for dyadic data.
Statistica Sinica 12:519–535.
Lim, Y. J., and Teh, Y. W. 2007. Variational Bayesian approach to
movie rating prediction. In Proceedings of KDD Cup and Work-
shop.
Rennie, J. D. M., and Srebro, N. 2005. Fast maximum margin
matrix factorization for collaborative prediction. In ICML, 713–
719.
Salakhutdinov, R., and Mnih, A. 2008a. Bayesian probabilistic
matrix factorization using markov chain monte carlo. In ICML,
880–887.
Salakhutdinov, R., and Mnih, A. 2008b. Probabilistic matrix fac-
torization. In NIPS 20.
Sarwar, B. M.; Karypis, G.; Konstan, J. A.; and Riedl, J. 2001.
Item-based collaborative filtering recommendation algorithms. In
WWW, 285–295.
Shewchuk, J. R. 1994. An introduction to the conjugate gradient
method without the agonizing pain. Technical report, Pittsburgh,
PA, USA.
Srebro, N.; Rennie, J. D. M.; and Jaakkola, T. 2004. Maximum-
margin matrix factorization. In NIPS.
Takács, G.; Pilászy, I.; Németh, B.; and Tikk, D. 2008. Investiga-
tion of various matrix factorization methods for large recommender
systems. In Proc. of the 2nd KDD Workshop on Large Scale Rec-
ommender Systems and the Netflix Prize Competition.
Weimer, M.; Karatzoglou, A.; Le, Q.; and Smola, A. 2008. Cofi
rank - maximum margin matrix factorization for collaborative
ranking. In NIPS 20.
Weimer, M.; Karatzoglou, A.; and Smola, A. 2008. Improv-
ing maximum margin matrix factorization. Machine Learning
72(3):263–276.
Zhen, Y.; Li, W.-J.; and Yeung, D.-Y. 2009. TagiCoFi: tag informed
collaborative filtering. In RecSys, 69–76.
Zhu, S.; Yu, K.; and Gong, Y. 2008. Predictive matrix-variate t
models. In NIPS 20.

808

