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Abstract

Many noise models do not faithfully reflect the noise pro-
cesses introduced during data collection in many real-world
applications. In particular, we argue that a type of noise re-
ferred to as sparse noise is quite commonly found in many
applications and many existing works have been proposed
to model such sparse noise. However, all the existing works
only focus on unsupervised learning without considering the
supervised information, i.e., label information. In this paper,
we consider how to model and handle sparse noise in the
context of embedding high-dimensional data under a prob-
abilistic formulation for supervised learning. We propose a
supervised probabilistic robust embedding (SPRE) model in
which data are corrupted either by sparse noise or by a com-
bination of Gaussian and sparse noises. By using the Laplace
distribution as a prior to model sparse noise, we devise a two-
fold variational EM learning algorithm in which the update
of model parameters has analytical solution. We report some
classification experiments to compare SPRE with several re-
lated models.

Introduction
Consider the three images for the same person from the AR
face database (Martı́nez and Benavente 1998) as shown in
Figure 1. While most parts of the three images look simi-
lar, some parts are occluded (e.g., by sunglasses and scarf)
in at least one of the images. If we regard occlusion as the
result of contaminating the data with noise, it is clear that
commonly used noise models such as the additive Gaussian
noise model are not suitable for such applications. This is
not only true for many computer vision applications such
as the one shown in Figure 1, but is also quite commonly
encountered in a large number of real-world applications in
which data are collected in uncontrolled environments. One
characteristic of this type of noise is that it is zero or close to
zero in most parts of the data (e.g., image) but may be quite
significant in some other parts. Due to its sparsity, this type
of noise is referred to as sparse noise, as in (Wright et al.
2009).

There are several reasons and benefits for modeling sparse
noise. If we can model the noise well, we may be able to ap-
ply a denoising process to recover the original data (image).
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Figure 1: Three images of a person in the AR database.

Even if the goal is not to recover the original data, taking
sparse noise into consideration may help to improve the per-
formance of the subsequent learning task, such as classifi-
cation, since the existence of sparse noise violates the as-
sumption (such as Gaussian noise assumption) made by the
underlying model about the noise in the data. Some meth-
ods (Gao 2008; Wright et al. 2009; Xu, Caramanis, and
Sanghavi 2010; Candes et al. 2011; Agarwal, Negahban,
and Wainwright 2011) have recently been proposed to ad-
dress this problem. Moreover, we note that the data in many
of these applications are high-dimensional and hence incur
high storage and processing costs. Fortunately, many studies
have shown that the intrinsic dimensionality of such high-
dimensional data is often much lower. As a result, embed-
ding techniques play an important role in these applications.

Even though there are some works that model sparse
noise, they only handle it under unsupervised learning with-
out considering supervised information such as label infor-
mation. So in this paper, we consider how to model and han-
dle sparse noise in probabilistic embedding under the super-
vised learning setting. Due to its sparsity, we use the Laplace
distribution as a prior to model the noise. Note that the
Laplace prior corresponds to an l1 regularizer in the regu-
larization framework. We propose a supervised probabilistic
robust embedding (SPRE) model for the supervised learning
setting. In our SPRE model, data are corrupted by a combi-
nation of Gaussian and sparse noises which are modeled by
both Gaussian and Laplace priors. We also consider a vari-
ant of SPRE in which data is only corrupted by sparse noise.
For inference, we devise a two-fold variational expectation-
maximization (EM) (Dempster, Laird, and Rubin 1977) al-
gorithm in which the update of model parameters has analyt-

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

1226



ical solution instead of directly maximizing the variational
lower bound of the log-likelihood of the whole data set via
gradient techniques. In experiments, we first test SPRE on
some image classification problems known to have sparse
noise to demonstrate the effectiveness of its sparse noise
modeling ability. Moreover, we also conduct experiments on
some UCI benchmark datasets where the existence of sparse
noise is not known. Experimental results show that the per-
formance of SPRE is comparable to or even better than that
of state-of-the-art probabilistic embedding techniques.

SPRE Model
Without loss of generality, we consider a C-class clas-
sification problem with a training set of n examples,
{(xi, yi)}ni=1, where xi ∈ RD and yi ∈ {1, . . . , C} for
i = 1, . . . , n. We define a class indicator vector yi ∈ RC
for xi where the kth element of yi is 1 if yi = k and 0
otherwise.

The Model
We propose here a latent variable model with sparse noise
in the form of an additive noise term. To model the sparse
noise, distributions such as the Laplace prior or Jeffreys
prior may be used. We use the Laplace prior here for sim-
plicity. The model formulation is detailed as follows:

xi = µ1 + W1zi + εi + εi
yi = µ2 + W2zi + τi

zi ∼ N (0, I)

εij ∼ L(0, b)
εi ∼ N (0,Σ1)

τi ∼ N (0,Σ2), (1)

where 0 denotes a zero vector (or matrix) of appropriate size,
I denotes an identity matrix of appropriate size, N (m,Σ)
denotes a (multivariate) normal distribution with mean m
and covariance matrix Σ, and L(a, b) denotes the Laplace
distribution with location parameter a and scale parameter
b > 0 and its probability density function is

p(x) =
1

2b
exp

{
− |x− a|

b

}
,

where |·| denotes the absolute value of a real scalar. In our
SPRE model, µ1 and µ2 capture the mass of the whole data
set and labels respectively, W1 ∈ RD×d and W2 ∈ RC×d
denote the factor loading matrices for the data and also the
label, zi denotes a d-dimensional latent variable shared by
both xi and yi, εi denotes the sparse noise for xi with
εij as its jth element, and εi and τi capture the Gaussian
noise contained in xi and yi. Here our model in Eq. (1)
assumes that the data points possess sparse noise but their
labels do not. Moreover, as b → 0 which means the ef-
fect of sparse noise becomes very small, model (1) will be-
come the probabilistic linear discriminant analysis (PLDA)
model (Bach and Jordan 2005) which is a well-known prob-
abilistic model capable of recovering the solution of linear
discriminant analysis (LDA).

In the SPRE model, for simplicity, we assume that the
Laplace prior for each element of εi has the same scale pa-
rameter b. In general, we may assign different scale param-
eters for different elements of εi. There also exist other pos-
sibilities between these two extremes. For example, if some
elements of εi tend to be sparse together, they can be as-
signed the same scale parameter. This may be regarded as
applying group LASSO (Yuan and Lin 2006) to the noise
term. When this group version of the model is used, a bene-
fit of the probabilistic formulation is that the group informa-
tion, if not available, can be learned from data via a Bayesian
approach based on some prior, e.g., Dirichlet process mix-
ture (Antoniak 1974). However, such extension is beyond
the scope of this paper and we will investigate it in our fu-
ture research.

As a variant of the above model, we only have sparse
noise in the data. Its formulation is defined as follows:

xi = µ1 + W1zi + εi
yi = µ2 + W2zi + τi
zi ∼ N (0, I)

εij ∼ L(0, b)
τi ∼ N (0,Σ2). (2)

It is easy to see that as the covariance matrix Σ1 approaches
the zero matrix, model (1) will degenerate to model (2) and
hence model (2) can naturally be viewed as a special case
of model (1). Moreover, as discussed above, model (1) will
become the PLDA model when b→ 0. Thus, both model (2)
and PLDA can be regarded as special cases of model (1).

Parameter Learning and Inference
Since model (1) is more general than model (2), we first
discuss parameter learning and inference for model (1). Af-
terwards, we will briefly discuss the modification needed to
make it work for model (2).

We note that the log-likelihood of model (1) cannot be cal-
culated directly due to the Laplace prior on the noise {εi}.
So we resort to a variational method (Jordan et al. 1999).
It is easy to show that the Laplace prior on each εij can be
rewritten as

p(εij) =
1

2b
exp

{
− |εij |

b

}
= max

ηij>0

{
φ(ηij)N (εij |0, b2ηij)

}
, (3)

where ηij is a variational parameter and φ(ηij) =
1
2 exp{−

1
2ηij}

√
2πηij . Eq. (3) holds since

φ(ηij)N (εij |0, b2ηij) =
1

2b
exp

{
− 1

2

(
ηij +

ε2ij
b2ηij

)}
≤ 1

2b
exp

{
− |εij |

b

}
= p(εij),

where the equality holds when ηij =
|εij |
b . Then, based on

the independence property of {εij}Dj=1, we can obtain an
alternative formulation for p(εi) as

p(εi) = max
ηi

{
N (εi|0, b2Λi)

D∏
j=1

φ(ηij)
}
,
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where ηi = (ηi1, . . . , ηiD)
T , Λi = diag(ηi) denotes a di-

agonal matrix with each diagonal element being the corre-
sponding element in ηi. Here for notational simplicity, we
define new variables as

x̃i =

(
xi
yi

)
µ =

(
µ1

µ2

)
W =

(
W1

W2

)
Σ =

(
Σ1 0
0 Σ2

)
.

Then, given the variational parameters {ηij}, we can
lower-bound the log-likelihood of the whole data set as

ln p(X,Y)

=
n∑
i=1

ln p(x̃i)

=
n∑
i=1

ln

∫
p(x̃i|εi)p(εi)dεi

≥
∑
i,j

lnφ(ηij) +

n∑
i=1

ln

∫
p(x̃i|εi)p(εi|ηi)dεi, (4)

where X = (x1, . . . ,xn) denotes the data matrix and Y =
(y1, . . . ,yn) the label matrix. Even though the lower bound
in Eq. (4) can be calculated analytically because

p(x̃i|εi) =

∫
p(zi)p(x̃i|εi, zi)dzi

= N (µ+ ε̃i,Σ + WWT )

and∫
p(x̃i|εi)p(εi|ηi)dεi = N (µ,WWT + b2Λ̃i + Σ),

where ε̃i = (εTi ,0)
T and Λ̃i = diag((ηTi ,0)) accord-

ing to the linear-Gaussian model (Bishop 2006), the op-
timization problem is complicated and it is not easy for
the optimization procedure to find a good local optimum
since the number of variables to optimize is very large es-
pecially for high-dimensional data. Instead, we adopt an
expectation-maximization (EM) algorithm to optimize the
lower bound in Eq. (4). Here {εi} and {zi} are hidden
variables and the model parameters to be learned are de-
noted by Θ = (µ,W, b,Σ, {ηij}). Suppose we are in the
(k + 1)st iteration of the EM algorithm and the current es-
timates of the model parameters are denoted by Θ(k) =

(µ(k),W(k), b(k),Σ(k), {η(k)ij }). We need to find Θ(k+1) to
update the model parameters.

By introducing a variational distribution q1(εi) on εi, we
can lower-bound ln

∫
p(x̃i|εi,ηi)p(εi|ηi)dεi via Jensen’s

inequality due to the concavity of the logarithm function

ln

∫
p(x̃i|εi)p(εi|ηi)dεi

≥
∫
q1(εi) ln

p(x̃i|εi)p(εi|ηi)
q1(εi)

dεi

subject to the constraint on q1(εi) that∫
q1(εi)dεi = 1.

By introducing a Lagrange multiplier λ, the Lagrangian is
formulated as

F =

∫
q1(εi) ln

p(x̃i|εi)p(εi|ηi)
q1(εi)

dεi

−λ
(∫

q1(εi)dεi − 1
)
.

We set the derivative of F with respect to q(εi) to zero and
get

q1(εi) =
p(x̃i|εi)p(εi|ηi)
exp{1 + λ}

.

Due to the constraint
∫
q1(εi)dεi = 1, we can get the opti-

mal q?1(εi) as

q?1(εi)

=
p(xi,yi|εi)N (εi|0, b2Λ(k)

i )∫
p(xi,yi|εi)N (εi|0, b2Λ(k)

i )dεi

= N
(
M

(k)
i

(
Ω

(k)
11 (xi − µ1) + Ω

(k)
12 (yi − µ2)

)
,M

(k)
i

)
,

where

(
Ω

(k)
11 Ω

(k)
12

Ω
(k)
21 Ω

(k)
22

)
= (Σ(k) + W(k)(W(k))T )−1

with Ω
(k)
11 ∈ RD×D and Ω

(k)
12 ∈ RD×C ,

Λ
(k)
i = diag(η(k)i1 , . . . , η

(k)
iD ), and M

(k)
i =(

Ω
(k)
11 + (b(k))−2(Λ

(k)
i )−1

)−1
. Then we can get

ln

∫
p(x̃i|εi,ηi)p(εi|ηi)dεi ≥

∫
q?1(εi) ln p(x̃i|εi)dεi

+

∫
q?1(εi) lnN (εi|0, b2Λi)dεi +Const. (5)

The constant term in Eq. (5) has no effect on the learning of
model parameters and hence can be omitted.

Combining Eq. (4) and (5), we obtain a lower bound of
the log-likelihood of the whole data set as

ln p(X,Y)

≥
∑
i,j

lnφ(ηij) +

n∑
i=1

∫
q?1(εi) lnN (εi|0, b2Λi)dεi

+
n∑
i=1

∫
q?1(εi) ln p(x̃i|εi)dεi +Const

=
∑
i,j

−ηij
2
−

n∑
i=1

b−2tr(Λ−1i E[εiεTi ])
2

− nD ln b

+

n∑
i=1

∫
q?1(εi) ln p(x̃i|εi)dεi +Const, (6)

where tr(·) denotes the trace of a square matrix and E[·]
denotes the expectation operator. Note that the fourth and
fifth terms of the lower bound in Eq. (6) are independent of
b and {ηij}. By setting the derivative of the lower bound in
Eq. (6) with respect to b and {ηij} to zero, we can obtain the
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estimates of b and {ηij} as

η
(k+1)
i =

√
diagm(E[εiεTi ])

b(k)
(7)

b(k+1) =

√√√√ 1

nD

n∑
i=1

tr
((

Λ
(k+1)
i

)−1E[εiεTi ]), (8)

where Λ
(k+1)
i = diag(η

(k+1)
i ), diagm(·) extracts the diago-

nal elements of a square matrix as a column vector, and
√
·

denotes the square root of a scalar, and also the elementwise
square root of a vector.

We next discuss how to update µ, W and Σ. Since only
the fourth term of the lower bound in Eq. (6) depends on
these parameters, it suffices to consider how to maximize
the term

∑n
i=1

∫
q?1(εi) ln p(x̃i|εi)dεi only with respect to

them. Since p(x̃i|εi) = N (µ+ ε̃i,Σ + WWT ), in princi-
ple we can calculate the integral analytically by integrating
out εi and use a gradient method to solve the optimization
problem. However, the optimization problem is non-convex
and the number of optimization variables is not small, mak-
ing it hard to find a good local optimum. We again resort to
the EM algorithm. By introducing a variational distribution
q2(zi) on zi, we get

ln p(x̃i|εi) = ln

∫
p(x̃i|εi, zi)p(zi)dzi

≥
∫
q2(zi) ln

p(x̃i|zi, εi)p(zi)
q2(zi)

dzi.

Similar to above, the optimal q?2(zi) is computed as
q?2(zi)

=
p(xi,yi|εi, zi)p(zi)∫
p(xi,yi|εi, zi)p(zi)dzi

= N
(
P(k)(W(k))TΣ(k)

(
x̃i − µ(k) − ε̃i

)
,P(k)

)
, (9)

where P(k) =
(
I + (W(k))T (Σ(k))−1W(k)

)−1
. Then we

can get

ln p(x̃i|εi) ≥−
1

2

∫
q?2(zi)

(
‖xi − µ1 − εi −W1zi‖2Σ−1

1

+‖yi − µ2 −W2zi‖2Σ−1
2

)
dzi −

1

2
ln |Σ1|

− 1

2
ln |Σ2|+Const,

where ‖x‖M =
√

xTMx for a vector x and a square matrix
M and | · | denotes the determinant of a square matrix. Then
we can get the lower bound as

2
n∑
i=1

∫
q?1(εi) ln p(x̃i|εi)dεi ≥ −

n∑
i=1

{
‖xi − µ1‖2Σ−1

1

+tr(Σ−11 E[εiεTi ]) + tr(WT
1 Σ−11 W1E[zizTi ]) + ln |Σ1|

−2(xi − µ1)
TΣ−11 W1E[zi] + 2tr(Σ−11 W1E[ziεTi ])

+tr(WT
2 Σ−12 W2E[zizTi ])− 2(yi − µ2)

TΣ−12 W2E[zi]

+‖yi − µ2‖2Σ−1
2

+ ln |Σ2| − 2(xi − µ1)
TΣ−11 E[εi]

}
+Const,

where ‖·‖2 denotes the 2-norm of a vector. According to the
form of q?2(zi) in Eq. (9), we rewrite it as q?2(zi) = N (ai −
Bεi,C) where B and C are shared by all data points. Then
we can calculate the expectation terms in the lower bound
above as

E[zi] = E[ai −Bεi] = ai −BE[εi]
E[zizTi ] = C + aia

T
i + BE[εiεTi ]BT − aiE[εi]TBT

−BE[εi]aTi
E[εizTi ] = E[εi(ai −Bεi)

T ] = E[εi]aTi − E[εiεTi ]BT .

We set the derivative of this lower bound with respect to
µ1,µ2,W1,W2,Σ1,Σ2 to zero and get the update rules
as

µ
(k+1)
1 =

1

n

n∑
i=1

(xi − E[εi]−W
(k)
1 E[zi])

µ
(k+1)
2 =

1

n

n∑
i=1

(yi −W
(k)
2 E[zi])

W
(k+1)
1 =

[ n∑
i=1

(
(xi − µ(k+1)

1 )E[zi]T − E[εizTi ]
)]
×

( n∑
i=1

E[zizTi ]
)−1

W
(k+1)
2 =

[ n∑
i=1

(yi − µ(k+1)
2 )E[zi]T

]( n∑
i=1

E[zizTi ]
)−1

Σ
(k+1)
1 =

1

n

n∑
i=1

{
z̃iz̃

T
i + W

(k+1)
1 cov(zi)(W

(k+1)
1 )T

−W
(k+1)
1 Bcov(εi)− cov(εi)B

T (W
(k+1)
1 )T

+cov(εi)}

Σ
(k+1)
2 =

1

n

n∑
i=1

{
ỹiỹ

T
i + W

(k+1)
2 cov(zi)(W

(k+1)
2 )T

}
,

where cov(·) denotes the covariance operator, z̃i = xi −
µ

(k+1)
1 − E[εi] −W

(k+1)
1 E[zi] and ỹi = yi − µ(k+1)

2 −
W

(k+1)
2 E[zi].
In summary, learning the model parameters involves a

two-fold variational EM algorithm. In the E-step of the
outer-fold EM, we first get a lower bound of the log-
likelihood of the whole data set by introducing variational
parameters {ηij} and then view εi as a hidden variable and
calculate q?1(εi). Then we update ηij and b in the M-step of
the outer-fold EM. For the inner-fold EM, we view zi as a
hidden variable and calculate q?2(zi) in the E-step and update
µ, W and Σ in the M-step.

After learning the optimal model parameters, for each
training data point (xi,yi), we can approximate p(xi,yi|zi)
based on variational parameters {ηi} as

p(xi,yi|zi) ≈ N (x̃i|µ+ Wzi,Φi),

where Φi = Σ + b2diag((ηi,0)), and the posterior distri-
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bution of the embedding {zi} as

p(zi|xi,yi) ≈ N (x̃i|µ+ Wzi,Φi)p(zi)∫
N (x̃i|µ+ Wzi,Φi)p(zi)dzi

= N (ΨiW
TΦ−1i (x̃i − µ),Ψi),

where Ψi =
(
Id + WTΦ−1i W

)−1
.

For a test data point x, we first calculate the variational
bound based on x only as

ln p(x)

= ln

∫
p(x|ε)p(ε)dε

≥
∑
i

lnφ(ηi) + ln

∫
p(x|ε,η)p(ε|η)dε

≥
∑
i

lnφ(ηi) +

∫
q(ε) ln

p(x|ε,η)p(ε|η)
q(ε)

dε,

where η = (η1, . . . , ηD)
T denote the variational parameters.

Let η(k) denote the estimate of η in the kth iteration and
Λ(k) = diag(η(k)). The optimal q?(ε) can be calculated as

q?(ε) =
N (ε|0, b2Λ(k))N (x|µ1 + ε,Σ1 + W1W

T
1 )∫

N (ε|0, b2Λ(k))N (x|µ1 + ε,Σ1 + W1WT
1 )dε

=N
(
Ω(k)(x− µ1),Ω

(k)
(
W1W

T
1 + Σ1

))
,

where Ω(k) = b2Λ(k)
(
b2Λ(k)+W1W

T
1 +Σ1

)−1
. We can

then update η = (η1, . . . , ηD)
T as

η(k+1) =
1

b

√
diagm(E[εεT ]).

After learning the optimal η, we approximate p(z|x) as

p(z|x) ≈ N (x|µ1 + W1z,Σ1 + b2Λ)p(z)∫
N (x|µ1 + W1z,Σ1 + b2Λ)p(z)dz

= N (ΨWT
1 (Σ1 + b2Λ)−1(x− µ1),Ψ),

where Ψ =
(
Id+WT

1

(
Σ1+b

2Λ
)−1

W1

)−1
. Then we can

use information from p(z|x), i.e., its mean, to make predic-
tion on the label of x.

Moreover, we can also consider the inference problem in
model (2) in which there is only sparse noise in the data.
In this case, we set Σ1 to ξID (e.g., ξ = 10−4) instead of
learning it. The learning procedure for the other model pa-
rameters remains unchanged.

Related Work
To the best of our knowledge, all the existing methods (Gao
2008; Wright et al. 2009; Xu, Caramanis, and Sanghavi
2010; Candes et al. 2011; Agarwal, Negahban, and Wain-
wright 2011) that consider sparse noise focus on the un-
supervised setting exclusively. Extending these methods to
incorporate label information appears to require nontrivial
effort. On the other hand, it is very easy and natural to in-
corporate label information into our SPRE model. Gao (Gao

2008) has proposed the L1-PCA model with sparse noise
and utilized variational method for inference. The methods
in (Wright et al. 2009; Agarwal, Negahban, and Wainwright
2011; Candes et al. 2011) also consider sparse noise in the
data generation process. Formulated under the regulariza-
tion framework, these methods use l1 regularization to iden-
tify the sparse noise and recover the low-rank data. Another
method (Xu, Caramanis, and Sanghavi 2010) makes an ad-
ditional assumption that if a data point is an outlier, then all
its features are likely to be corrupted by sparse noise. An
l2,1 regularizer is used to model this ‘group sparsity’ phe-
nomenon.

It is well known that the t distribution has heavy tail and
hence is more robust than the Gaussian distribution in deal-
ing with outliers. Archambeau et al. (Archambeau, Delan-
nay, and Verleysen 2006) proposed a robust version of prob-
abilistic principal component analysis (PPCA) and PLDA
via utilizing the t distribution in the noise model instead
of the Gaussian distribution and then extended it to a mix-
ture model in (Archambeau, Delannay, and Verleysen 2008).
Similar to (Archambeau, Delannay, and Verleysen 2006),
Chen et al. (Chen, Martin, and Montague 2009) proposed
a robust version of PPCA by utilizing the t distribution to
deal with the missing data problem. Unlike these methods,
we use the Laplace distribution here for sparse noise model-
ing to achieve model robustness.

Experiments
In this section, we evaluate our method empirically on some
classification problems.

After embedding the data to a lower-dimensional space,
we use a 1-nearest-neighbor classifier for classification.
Similar to PLDA, the reduced dimensionality is set to C − 1
where C is the number of classes in a classification prob-
lem. We compare SPRE with both PLDA (Bach and Jordan
2005) and robust PLDA (rPLDA) (Archambeau, Delannay,
and Verleysen 2006). While the MLE solution of PLDA is
identical to that of LDA, rPLDA improves over PLDA by
using the t distribution instead of the Gaussian distribution
to model noise. We consider two variants of SPRE, with
SPRE-1 referring to the model in which there exist both
Gaussian and sparse noises in the data, i.e., model (1), and
SPRE-2 referring to the model in which there is only sparse
noise in the data, i.e., model (2).

We first do experiments on three image databases, namely,
the face databases PIE (Sim, Baker, and Bsat 2003) and AR
and the object database COIL (Nene, Nayar, and Murase
1996). These databases are known to contain sparse noise
due to the conditions under which the images were captured.
While the sparse noise in PIE comes from variations in illu-
mination, that in AR is due to occlusion as shown in Figure 1
while that in COIL is due to object rotation. For each con-
figuration, we randomly select 50% of the data for training
and the rest for testing. This random selection is repeated
10 times to obtain the mean classification error and standard
deviation as reported in Table 1. Paired t-test at 5% signifi-
cance level is applied to compare different methods and the
best results are shown in bold for clarity. From the results,
we can see that SPRE-1 consistently outperforms PLDA
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and rPLDA, showing that the Laplace prior is effective in
capturing sparse noise. We also note that SPRE-2 outper-
forms PLDA, showing the superiority of the Laplace prior
over the Gaussian prior in modeling sparse noise. Compar-
ing SPRE-2 with SPRE-1, SPRE-1 is generally better for
these image datasets probably due to the existence of Gaus-
sian noise in the data in addition to sparse noise.

Table 1: Average classification errors on the face and object
datasets. The first row of each dataset records the mean and
the second one is the standard deviation.

Dataset PLDA rPLDA SPRE-1 SPRE-2
PIE 0.3592 0.1504 0.1131 0.2178

0.0137 0.0178 0.0199 0.0198
AR 0.5165 0.2705 0.2191 0.4230

0.0114 0.0241 0.0214 0.0192
COIL 0.2400 0.1446 0.0832 0.0464

0.0142 0.0185 0.0120 0.0057

We further do more experiments on some widely used
UCI datasets (Asuncion and Newman 2007). Unlike the im-
age databases, we do not know whether sparse noise exists
in the data of these datasets. The experimental settings are
identical to those of the above experiments. Table 2 sum-
marizes the results obtained. For some datasets, SPRE-2 is
inferior to PLDA. A possible reason is that Gaussian noise is
more common than sparse noise in these datasets. Moreover,
SPRE-1, which models both Gaussian and sparse noises, is
often comparable to or even better than rPLDA. This may
suggest that using a combination of Gaussian and Laplace
distributions is a favorable alternative to the t distribution
for modeling noise in real data.

Table 2: Average classification errors on several UCI
datasets. The first row of each dataset records the mean and
the second one is the standard deviation.

Dataset PLDA rPLDA SPRE-1 SPRE-2
sonar 0.4219 0.4205 0.2644 0.5041

0.0689 0.0709 0.0078 0.0316
balance-scale 0.1849 0.3388 0.1155 0.6164

0.0211 0.0362 0.0283 0.0574
ecoli 0.2026 0.2683 0.2000 0.1974

0.0307 0.0417 0.0207 0.0101
glass 0.4188 0.4242 0.4577 0.3785

0.0263 0.0372 0.0464 0.0390
hayes-roth 0.4179 0.4821 0.3768 0.4839

0.0330 0.0188 0.0132 0.0530
iris 0.1086 0.1886 0.0495 0.0876

0.0257 0.0528 0.0395 0.0183
mfeat-karhunen 0.0943 0.0897 0.0593 0.1607

0.0089 0.0142 0.0092 0.0053
mfeat-pixel 0.2540 0.1264 0.1010 0.0626

0.0161 0.0148 0.0070 0.0070
soybean 0.3188 0.1893 0.1924 0.2766

0.0162 0.0099 0.0077 0.0115

Figure 2: Average classification error against d from 2 to
C − 1 where C is the number of classes.

Moreover, we also conduct an experiment on the PIE
dataset for the sensitivity analysis of the performance of the
SPRE-1 model with respect to the reduced dimensionality.
By varying the reduced dimensionality d from 2 to C − 1
at an interval of 5, we record the average classification er-
rors in Figure 2. From the results, we can see that the per-
formance becomes better when the reduced dimensionality
becomes larger, which suggests that setting d to C − 1 is a
good choice.

Conclusion
In this paper, we have proposed a supervised probabilis-
tic robust embedding model that takes sparse noise into
consideration under the supervised learning setting. Model
learning is based on a two-fold variational EM algorithm in
which the update of model parameters has analytical solu-
tion and hence has an advantage over gradient-based meth-
ods. One possible direction to extend the current work is
to devise a mixture model for probabilistic robust embed-
ding, as in (Tipping and Bishop 1999; Archambeau, Delan-
nay, and Verleysen 2008), which is useful for more complex
data. Another interesting direction is to incorporate group
sparsity into our models by using Dirichlet process mixture
to learn the group information.
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