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Abstract

For a specific set of features chosen for representing images, the per-
formance of a content-based image retrieval (CBIR) system depends criti-
cally on the similarity measure used. Based on a recently proposed semi-
supervised metric learning method called locally linear metric adaptation
(LLMA), we propose in this paper a stepwise LLMA algorithm for boosting
the retrieval performance of CBIR systems by incorporating relevance feed-
back from users collected over multiple query sessions. Unlike most existing
metric learning methods which learn a global Mahalanobis metric, the trans-
formation performed by LLMA is more general in that it is linear locally
but nonlinear globally. Moreover, the efficiency problem is well addressed
by the stepwise LLMA algorithm. We also report experimental results per-
formed on a real-world color image database to demonstrate the effectiveness
of our method.

1 Introduction
Content-based image retrieval (CBIR) has gained a lot of research interests over the last
decade [15], due largely to the emergence and increased popularity of the World Wide
Web. Image retrieval based on content is extremely useful in many applications. CBIR
is usually performed on a query-by-example basis. The retrieval performance depends on
both the features used to represent the images and the distance function used to measure
the dissimilarity between the query image(s) and the images in the database. Given a spe-
cific feature representation, the retrieval performance depends critically on the distance
function used to measure the dissimilarity between the query image(s) and the images
in the database. Many different distance functions have been proposed for CBIR appli-
cations based on various features. However, they are not very effective in capturing the
semantic (dis)similarity between images. To enhance the retrieval performance of CBIR
systems, one promising direction that has aroused a great deal of research interests in re-
cent years is to learn or adapt the distance function automatically based on images in the
database.



As in traditional information retrieval, relevance feedback from users on the retrieval
results is considered as a powerful tool to bridge the gap between low-level features and
high-level semantics in CBIR systems [14]. When displayed images retrieved in response
to the query image(s), the user is allowed to label some or all of the retrieved images
as either relevant or irrelevant. Based on the relevance feedback, the system modifies
either the query or the distance function and then carries out another retrieval attempting
to improve the retrieval performance. Most existing systems only make use of relevance
feedback within a single query session [14, 4, 5, 3, 16]. More recently, some methods have
been proposed for the so-called long-term learning by accumulating relevance feedback
from multiple query sessions which possibly involve different users [7, 6, 8, 11]. However,
[6] and [8] are based on the assumption that the feature vectors representing the images
form a Riemannian manifold in the feature space. Unfortunately this assumption may not
hold in real-world image databases. Moreover, the log-based relevance feedback method
[11] is expected to encounter the scale-up problem as the number of relevance feedback
log sessions increases.

In machine learning, some researchers have recently proposed semi-supervised met-
ric learning methods based on pairwise constraints, e.g., similarity or dissimilarity side-
information, [17, 1, 10]. Most of these methods try to learn a global Mahalanobis metric
through linear transformation. In particular, relevant component analysis (RCA) [1, 10]
has been applied to enhance image retrieval performance. However, due to large varia-
tions between images in both content and style, image distribution in the feature space can
be highly nonlinear. As a consequence, global metric learning is not desirable for CBIR
tasks as it is not flexible enough in allowing different local metrics at different locations
of the feature space.

In this paper, based on a recently proposed semi-supervised metric learning method
[2], we present a new method for boosting image retrieval performance by adapting the
distance metric in a stepwise manner based on relevance feedback. The metric learning
method is more general as it is linear locally but nonlinear globally (Section 2). Metric
adaptation is applied in a stepwise manner to make use of relevance feedback from mul-
tiple query sessions (Section 3). We perform experiments based on a real-world image
database to compare our metric learning method with others for CBIR and demonstrate
that continuous improvement in retrieval performance can be achieved via the stepwise
learning procedure (Section 4). Finally, some concluding remarks will be given in the last
section.

2 Locally Linear Metric Adaptation
Recently, Chang and Yeung [2] proposed a metric learning method called locally linear
metric adaptation (LLMA). While the original method is based on an iterative optimiza-
tion procedure, we propose here a more efficient, non-iterative version of the method.

2.1 Basic Idea of LLMA
Let X = {x1,x2, . . . ,xn} be a set of data points corresponding to n feature vectors in
some d-dimensional feature space. Since the Euclidean metric in this space may not best
characterize the (dis)similarity between points, the goal is to modify the metric based on
pairwise constraints. As in [1], LLMA only uses pairwise similarity constraints, which



can be represented in the form of a set of similar point pairs. LLMA seeks to transform
the original data points to a new space so that similar points will get closer after the
transformation. However, to preserve the topological relationships between points, we
should not only transform the points in the similar point pairs. Instead, other points should
also be affected, though to different degrees depending on their locations in the feature
space.

To keep the computational demand relatively low, LLMA applies linear transforma-
tion to each local neighborhood. Since different transformations are applied to different
local neighborhoods, nonlinearity can still be achieved globally. In this sense, LLMA
generalizes previous metric learning methods that are based on applying linear transfor-
mation globally [1, 10, 17].

2.2 More Detailed Formulation of LLMA
Let S denote the set of all similar point pairs available as side information for metric
learning. For each point xr involved in some similar point pair, say (xr,xs), a linear
transformation Fr(·;Ar,br) is applied to xr as well as every data point xi in the neigh-
borhood setNr of xr, whereAr and br denote the rotational and translational parameters
of the transformation. Since each data point xi may belong to multiple neighborhood sets
corresponding to different points involved in S, the new location yi of xi is the result of
the combined effects of possibly all points involved in all similar pairs:

yi = xi +
∑

xr:(xr,·)∨(·,xr)∈S

πriFr(xi;Ar,br), (1)

where πri is defined as a Gaussian window function.
To estimate the parameters of each locally linear transformation Fr, the metric adap-

tation problem is formulated as an optimization problem with

J = dS + λP

as the minimization criterion, where dS =
∑

(xr,xs)∈S ‖yr − ys‖
2 is the sum of squared

Euclidean distances for all similar pairs in the transformed space, P is the penalty term
that constrains the degree of transformation, and λ is a regularization parameter that spec-
ifies the relative importance of the penalty term in the objective function. Different from
[2], we define the penalty term to preserve the locally linear relationships between nearest
neighbors, as in a nonlinear dimensionality reduction method called locally linear embed-
ding (LLE) [13]. Specifically, we seek to find the best reconstruction weights for all data
points, represented as an n×n weight matrix W = [wij ], by minimizing the following
cost function

E =
∑

i

‖xi −
∑

xj∈Ni

wijxj‖
2= Tr[X(I−W)T (I−W)XT ]

with respect toW subject to the constraints
∑

xj∈Ni
wij = 1, where Ni denotes the set

of K nearest neighbors of xi, Tr is the trace operator, andX is the matrix with xi’s being
its columns. This can be solved as a constrained least squares problem. Similar to X,
let Y denote the matrix with yi’s being its columns. With the optimal weight matrixW



found, the penalty term P is defined to ensure that points yi’s in the transformed space
preserve the local geometry of the corresponding points xi’s, i.e.

P = Tr[Y(I−W)T (I−W)YT ],

subject to the constraints 1
n

∑
i yi = 1

n
1TYT = 0 and 1

n

∑
i yiy

T
i = 1

n
YYT = Id,

where 1 represents a vector of 1’s and Id is the d× d identity matrix.

2.3 Optimization Based on a Spectral Approach
Equation (1) can be written as Y = X + FΠ = (XΠ+ + F)Π = LΠ, with F =
(F1,F2, . . .),Π = [πri] andΠ+ is its pseudoinverse. Thus, J can be expressed as

J = Tr[YUYT ] + λTr[Y(I−W)T (I−W)YT ]

= Tr[LΠ(U+ λ(I−W)T (I−W))ΠTLT ], (2)

subject to constraints 1
n
1TΠTLT = 0 and 1

n
LΠΠTLT = Id. U is an n×n matrix with

uij defined as uij = uji = τij

∑n

r=1 sir − (1− τij)sij . τij = 1 if i = j and 0 otherwise,
and sij = 1 if (xi,xj) ∈ S and 0 otherwise.

The solution to the optimization problem can be obtained by solving a generalized
eigenvalue problem based on minimizing the criterion in Equation (2). This spectral ap-
proach is more efficient than the iterative optimization approach used in [2].

After estimating all the transformation parameters, the data points in the original space
are then projected to a new space based on the locally linear transformation specified
by the transformation parameters. The Euclidean metric in the transformed space thus
corresponds to a modified metric in the original space to better characterize the implicit
(dis)similarity relationships between data points.

3 Stepwise LLMA for Image Retrieval
The LLMA algorithm incorporates pairwise similarity constraints into metric learning.
Similarity constraints can be obtained from users’ relevance feedback, with each relevant
image and the query image forming a similar pair.

We accumulate the similarity constraints over multiple query sessions before apply-
ing LLMA once. Experimental results show that more pairwise constraints can lead to
greater improvement. However, this also implies higher computational demand. As a
compromise, we perform stepwise LLMA by incorporating the pairwise constraints in
reasonably small, incremental batches each of a certain size ω. Whenever the batch of
newly collected pairwise constraints reaches this size, LLMA will be performed with this
batch to obtain a new metric. The batch of similarity constraints is then discarded. This
process will be repeated continuously with the arrival of more relevance feedback from
users. In so doing, knowledge acquired from relevance feedback in one session can be
best utilized to give long-term improvement in subsequent sessions. This stepwise metric
adaptation algorithm is summarized in Figure 1.



Input: Image database X , maximum batch size ω

Begin
Set Euclidean metric as initial distance metric
Repeat {

Obtain relevance feedback from new query session
Save relevance feedback to current batch
If batch size = ω

Adapt distance metric using LLMA
Clear current batch of feedback information

}
End

Figure 1: Stepwise LLMA algorithm for boosting image retrieval performance

4 Experimental Results
In this section, we compare the image retrieval performance of LLMA with several other
distance learning methods and then apply the stepwise LLMA algorithm to further im-
prove the retrieval performance continuously.

4.1 Image Database and Feature Representation
We perform image retrieval experiments on a subset of the Corel Photo Gallery containing
1010 images of 10 different classes. The 10 classes include bear (122), butterfly (109),
cactus (58), dog(101), eagle (116), elephant (105), horse (110), penguin (76), rose (98),
and tiger (115). The image classes are defined by human based on high-level seman-
tics. We first represent the images in the HSV color space and then compute the color
coherence vector (CCV) [12] as the feature vector for each image. In our experiments,
we quantize each image to 8× 8× 8 color bins, and then represent the image as a 1024-
dimensional CCV, (α1, β1, . . . , α512, β512)

T , with αi and βi representing the numbers
of coherent and non-coherent pixels, respectively, in the ith color bin. The CCV repre-
sentation gives finer distinctions than the use of color histograms. Thus it usually gives
better image retrieval results. For computational efficiency, we apply principal component
analysis (PCA) to retain the 60 dominating principal components.

4.2 Comparative Study of Distance Learning Methods
We compare several distance learning methods for CBIR. Euclidean distance without
distance learning serves as a baseline method. Besides Euclidean distance, we also repeat
the experiments using distance functions learned by Xing et al’s method [17], RCA [1],
DistBoost [9], and LLMA.1 Both Xing et al’s method and RCA change the feature space
by a globally linear transformation. DistBoost is a nonmetric distance learning algorithm
by boosting the hypothesis over the product space.

Cumulative neighbor purity curves are used as performance measure in our experi-
ments. Cumulative neighbor purity measures the percentage of correctly retrieved images

1The MATLAB code for RCA and DistBoost was downloaded from the web page of the authors of [1, 9].
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Figure 2: Retrieval results on the Corel image database.

in the k nearest neighbors of the query image, averaged over all queries, with k up to
some value K (K = 40 in our experiments). For each retrieval task, we compute the
average performance statistics over 5 randomly generated S sets. The number of similar
image pairs in S is set to 150, which is only about 0.3% of the total number of possible
image pairs in the database.

Figure 2 shows the retrieval results using various distance functions. We can see that
LLMA significantly outperforms other distance learning methods.

4.3 Experiments on Stepwise LLMA
To evaluate the stepwise LLMA algorithm described above, we devise an automatic eval-
uation scheme to simulate a typical CBIR system with the relevance feedback mechanism
implemented. More specifically, for a prespecified maximum batch size ω, we randomly
select ω images from the database as query images. In each query session based on one
of the ω images, the system returns the top 20 images from the database based on the
current distance function, which is Euclidean initially. Of these 20 images, five relevant
images are then randomly chosen, simulating the relevance feedback process performed
by a user. LLMA is performed once after every ω sessions.

Figure 3 shows the cumulative neighbor purity curves for the retrieval results on the
Corel image database based on stepwise LLMA with different maximum batch sizes ω.
As we can see, long-term metric learning based on stepwise LLMA can result in continu-
ous improvement of retrieval performance. Moreover, to incorporate the same amount of
relevance feedback from users, it seems more effective to use larger batch sizes. For ex-
ample, after incorporating 40 query sessions from the same starting point, the final metric
(metric4) of Figure 3(a) is not as good as that (metric2) of Figure 3(b), which in turn is
(slightly) worse than that of Figure 3(c). Thus, provided that the computational resources
permit, one should perform each LLMA step using relevance feedback from more query
sessions.
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Figure 3: Retrieval results based on stepwise LLMA with different maximum batch sizes.
(a) ω = 10 sessions; (b) ω = 20 sessions; (c) ω = 40 sessions.



5 Concluding Remarks
In this paper, we have proposed a stepwise metric adaptation method for boosting the
retrieval performance of CBIR systems. Our method is based on relevance feedback from
users accumulated over multiple query sessions. Experimental results on a real-world
color image database demonstrate the effectiveness of the method. Our contributions can
be summarized as follows. First, unlike most previous metric learning methods which
learn a Mahalanobis metric corresponding to performing linear transformation globally,
the transformation performed by LLMA is more general in that it is linear locally but
nonlinear globally. LLMA is also more general in that it does not rely on the manifold
assumption of the images in the feature space. Second, unlike most existing relevance
feedback methods which only improve the retrieval results within a single query session,
we propose a stepwise metric adaptation algorithm to boost the retrieval performance
continuously by accumulating relevance feedback collected over multiple query sessions.
Finally, the efficiency problem is well addressed. On one hand, we propose an efficient,
non-iterative spectral method to solve the optimization problem in LLMA. On the other
hand, the stepwise LLMA algorithm only requires temporary storage of the relevance
feedback as pairwise constraints up to a user-specified maximum batch size.
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