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Abstract In this chapter, dedicated to Dit-Yan’s mentor and friend George Bekey
on the occasion of his 80th birthday, we investigate for the first time the feasibil-
ity of applying the multi-task learning (or called transfer learning) approach to the
learning of inverse dynamics. Due to the difficulties of modeling the dynamics com-
pletely and accurately and solving the dynamics equations analytically to obtain the
control variables, the machine learning approach has been regarded as a viable alter-
native to the robotic control problem. In particular, we learn the inverse model from
measured data as a regression problem and solve it using a nonparametric Bayesian
kernel approach called Gaussian process regression (GPR). Instead of solving the
regression tasks for different degrees of freedom (DOFs) separately and indepen-
dently, the central thesis of this work is that modeling the inter-task dependencies
explicitly and allowing adaptive transfer of knowledge between different tasks can
make the learning problem much easier. Specifically, based on data from a 7-DOF
robot arm, we demonstrate that the learning accuracy can often be significantly in-
creased when the multi-task learning approach is adopted.

1 Appreciation and Dedication

When Dit-Yan arrived at the University of Southern California (USC) in the mid
1980s, he was planning to do theoretical research on the models of computation,
possibly including computational and mathematical models for human intelligence.
Robotics was initially not in his mind. Shortly afterwards he learned of the interest-

Dit-Yan Yeung, Professor
Department of Computer Science and Engineering, Hong Kong University of Science and Tech-
nology, Clear Water Bay, Hong Kong, China, e-mail: dyyeung@cse.ust.hk

Yu Zhang, PhD student
Department of Computer Science and Engineering, Hong Kong University of Science and Tech-
nology, Clear Water Bay, Hong Kong, China, e-mail: zhangyu@cse.ust.hk

1



2 Dit-Yan Yeung and Yu Zhang

ing robotics research carried out in George Bekey’s laboratory and was fascinated
by the fun and challenges in this research area. It was fortunate that George Bekey
agreed to be his PhD advisor.

George has always been a very open-minded scholar who gives unfailing sup-
port for new ideas and explorations, no matter how “silly” they first appear. Dit-Yan
was given a lot of freedom and encouragement to explore new ideas and even un-
explored territories. Eventually he worked on machine learning and robotic control
for his doctoral research. Although for various reasons he no longer worked on
robotics after graduation, the research experience he gained from his doctoral study
helped him greatly in pursing his current research interests in machine learning and
pattern recognition. In psychology such learning experience is known as transfer
of learning. This notion has inspired the development of an active research topic in
machine learning, known as transfer learning or multi-task learning. In this chapter,
it carries a very special meaning to put the three themes, namely, machine learning,
robotic control, and multi-task learning, together as an appreciation and dedication
to George for his great and fatherly mentorship.

The second author of this chapter is one of the recent PhD students of Dit-Yan.
So this transfer originated from George will continue on and on. Thank you George!

2 Robotic Control

2.1 Kinematics and Dynamics

Kinematics and dynamics are two important aspects that are central to the control of
robots or articulated objects with jointed rigid segments [13, 4]. For given angles of
the joints, the forward kinematics problem refers to the computation of the position
and orientation of the end effector of a robot. The more difficult problem is the
inverse problem, called inverse kinematics, which determines the joint angles of the
robot in order for its end effector to achieve some desired pose.

To control the movement of a robot, we have to consider its dynamics as well in
addition to the kinematics. The forward dynamics problem refers to the computa-
tion of the trajectory in terms of the joint angles, velocities and accelerations given
the torques at the joints. Inverse dynamics, like inverse kinematics, is the inverse
problem which is much more difficult to solve than the forward problem.

2.2 Reasons Against Analytic Solutions

Analytic solutions for the kinematics and dynamics equations are often quite ex-
pensive to obtain. The main difficulties arise from the strong coupling between dif-
ferent degrees of freedom (DOFs) and the high dimensionality and nonlinearity of
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the equations for robots with many DOFs, such as humanoid robots which have
aroused a great deal of interests in the robotics community over the past decade. A
robot is a complex system whose parameters are not constant but can vary with the
control or state variables. Also, some parameters may never be known precisely for
control purposes. Methods such as adaptive control using parameter identification
techniques exist for solving such problems. However, these methods usually require
a complete model of the system in order to identify the parameters. In practice,
obtaining an accurate model is very difficult, if not totally impossible.

2.3 Insights from Human Arm Control

In human arm control, it is very unlikely for some dynamics equation to be solved
analytically somewhere inside the brain to issue control commands to the arm. To
move from one location to the other, the arm is usually controlled to go through an
initial feedforward phase of fast motion which brings the arm to the right “ballpark”
of the desired location [1]. This is then followed by a second phase of fine motion
control which relies heavily on sensory feedback. The initial phase does not require
high precision in position control. Rather, its primary concern is to provide fast com-
putation of control commands for moving the arm rapidly to some neighborhood of
the desired location. Such a two-phase scheme is also useful for robotic arm control.
We only need an approximate model for control in the feedforward path. Internal
and external sensors can then be used to provide feedback information to correct the
errors made by the feedforward model.

2.4 Learning and Control

The considerations above motivate robotics researchers to take a machine learning
approach as a viable alternative to the robotic control problem. As part of his doc-
toral thesis research, the first author of this chapter proposed a neural network model
called context-sensitive network [23, 22] as a machine learning approach to robotic
control. Since then, the learning approach has become more commonly used es-
pecially when more complex robotic systems such as humanoid robots are studied.
The focus of this chapter is on a learning approach to the inverse dynamics problem.

3 Learning Inverse Dynamics

The most common learning approach to the inverse dynamics problem is to learn the
inverse model from measured data as a regression problem. Since typical robotic
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systems have multiple DOFs, the regression problem involves multiple response
variables. For example, each response variable corresponds to the torque at one
joint.

3.1 Recent Work

Nonparametric regression methods are more suitable for solving the inverse dy-
namics problem due to their higher model flexibility. The method known as locally
weighted projection regression (LWPR) [21, 20, 19] is currently the standard learn-
ing method used in the robotics community since it is capable of online, real-time
learning even for complex robots such as humanoid robots. However, many other
powerful regression methods have been developed in the machine learning commu-
nity over the past decade or so. In particular, the kernel approach [15] is arguably
the most popular due to its mathematical elegance as well as promising performance
in practice. Support vector regression (SVR) is an extension of the support vec-
tor machine (SVM) from classification problems to regression problems [18, 15].
Besides, Gaussian process (GP) models [14] are nonparametric Bayesian kernel
machines that, like SVR, have demonstrated state-of-the-art performance in many
regression applications. Recently, an empirical performance comparison was con-
ducted to compare LWPR, SVR and GP regression (GPR) for learning inverse dy-
namics [11, 12]. While LWPR is generally more efficient, SVR and GPR are more
accurate and have fewer hyperparameters to set. LWPR has many meta parameters
which are tedious to tune.

3.2 Learning Inverse Dynamics as a Regression Problem

The general form of the dynamics equation can be expressed as

τ = M(θ)θ̈ + τv(θ , θ̇)+ τg(θ)+ τ f (θ , θ̇), (1)

where θ , θ̇ and θ̈ are the joint angles, velocities and accelerations, respectively, τ

is the torque vector, M is the mass or inertia matrix, τv is a vector of centrifugal
and Coriolis terms, τg is a vector of gravity terms, and τ f is a vector of friction
terms. By regarding the learning of the inverse dynamics as a regression problem,
we rewrite (1) as the following regression function

τ = g(θ , θ̇ , θ̈), (2)
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where θ , θ̇ and θ̈ represent the explanatory variables (independent variables) and
τ represents the response variables (dependent variables).1 Note that g is a vector
function since τ is multivariate. For example, if the robot is a 7-DOF arm, then there
are 21 independent variables and 7 dependent variables.

4 Gaussian Process Regression

In this section, we first review the GP approach to regression. We then report our
experimental results on using GPR for learning inverse dynamics.

4.1 Brief Review

We first describe a weight-space view on GPR. Consider a regression problem with
p input variables represented as a p-dimensional input vector x ∈ Rp and an output
variable represented as a scalar output value y ∈ R. We are given a training set D =
{(xi,yi)}n

i=1 of n observations in the form of input-output pairs. Let φ(·) denote a
d-dimensional vector function representing d fixed basis functions that transform x
(usually nonlinearly) from the input space to some other space. The standard linear
regression model with Gaussian noise is given by

f (x) = wT
φ(x) (3)

y = f (x)+ ε, (4)

where w ∈ Rd is a weight vector, f (·) is a latent function, and ε is an indepen-
dent and identically distributed (i.i.d.) Gaussian noise variable with zero mean and
variance σ2, i.e., ε ∼ N(0,σ2).

Uncertainty is modeled probabilistically by defining w to be a random vari-
able following a multivariate Gaussian distribution with zero mean and covari-
ance matrix Σ, i.e., w ∼ N(0,Σ). The prior distribution over w induces a corre-
sponding prior distribution over f (x). Let us define f = ( f (x1), . . . , f (xn))

T and
Φ = (φ(x1), . . . ,φ(xn))

T . Thus the training data set D can be expressed by the lin-
ear regression model in matrix form as

f = Φw. (5)

We are interested in the joint distribution of the function values.
A GP is a collection of random variables such that any finite number of them

exhibit a consistent joint Gaussian distribution. GPR is a nonparametric Bayesian

1 Strictly speaking the variables θ̈ in the regression problem are not exactly the joint accelerations,
but they are corrected by the closed-loop results to give the joint accelerations. See [12] or [7] for
more discussions on inverse dynamics control.
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approach to regression which assumes that the latent function f follows a GP prior (a
prior distribution over functions, which in general are infinite-dimensional objects).
Since f is a linear combination of Gaussian random variables, f is itself Gaussian
with the following mean vector and covariance matrix:

E[f] = ΦE[w] = 0 (6)
cov[f] = E[f fT ] = ΦE[wwT ]ΦT = ΦΣΦ

T . (7)

So we have
f∼ N(0,ΦΣΦ

T ). (8)

Instead of proceeding with the weight-space view, the function-space view bypasses
the modeling of the weights w and the basis functions φ(·). Based on this view, the
Gaussian distribution for f is directly modeled as

f∼ N(0,K), (9)

where K is a positive semidefinite matrix with elements Ki j = k(xi,x j) for some
covariance function k(·, ·), which corresponds to a Mercer kernel in the kernel ap-
proach [15]. Like the kernel approach in general, one advantage of this function-
space view is that we may choose a covariance function k(·, ·) that corresponds to
using a very large or even infinite number of basis functions giving high expressive-
ness. Since ε is an additive i.i.d. noise term, we can easily show that

y∼ N(0,K+σ
2I), (10)

where y = (y1, . . . ,yn)T and I is the n×n identity matrix.
For a new test case x∗, the predictive distribution of its latent function value f (x∗)

has the following Gaussian distribution:

p( f (x∗)|x∗,D) = N(kT
∗C−1y, k(x∗,x∗)−kT

∗C−1k∗), (11)

where k∗= (k(x1,x∗), . . . ,k(xn,x∗))T and C = K+σ2I. Computing this distribution
requires inverting the n×n matrix C with O(n3) time complexity.

4.2 Gaussian Process Regression for Learning Inverse Dynamics

The GPR method reviewed above assumes that the regression function is univariate.
However, for learning inverse dynamics, usually there are multiple DOFs and hence
g = (g1, . . . ,gm) in (2) is a vector function. Learning g may be achieved by learning
each of the component functions g j separately and independently, as in [11, 12].
In this subsection, we report some experimental results we have obtained based on
this setting. This naı̈ve setting will be extended in the next section by regarding the
learning of different DOFs as dependent tasks via sharing information among them.
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We use GPR to learn the inverse dynamics of a 7-DOF SARCOS anthropomor-
phic robot arm by using the data set in http://www.gaussianprocess.org/gpml/data/.
Each observation in the data set consists of 21 input features (7 joint positions,
7 joint velocities, and 7 joint accelerations) and the corresponding 7 joint torques
for the 7 DOFs. There are two disjoint sets, one for training and one for testing. We
only use the first 10000 examples of the training set for training but the entire test
set for testing. We use the MATLAB code provided by Rasmussen and Williams in
http://www.gaussianprocess.org/gpml/code/gpml-matlab.zip for performing GPR.
For our performance measure, like in [11], we adopt the normalized mean squared
error (nMSE) which is defined as the mean squared error divided by the variance
of the target. The squared exponential covariance function is used for the GP.2 We
want to see how the training sample size affects the learning accuracy. To do so, we
perform experiments by gradually increasing the training sample size from 100 to
1100 by 100 at a time. For each sample size, multiple runs are performed on differ-
ent training sets of the same size and the average nMSE is reported. We also perform
an experiment once on all the 10000 training examples.

The results are depicted in Figures 1–7. Each figure shows the regression result of
one DOF expressed in terms of the average nMSE under varying sample size. Ideally
one would expect the average nMSE to decrease when the sample size is increased.
However, this trend is not clearly observed and the variation of nMSE is only within
a very small range. Essentially we can conclude that increasing the sample size
beyond 100 does not significantly increase the learning accuracy. Nevertheless, the
primary objective of this paper is on comparing the standard GPR with a multi-task
extension which will be studied in the next section.

5 Multi-Task Gaussian Process Regression

A common daily experience is that learning to solve a problem can be much easier
if we have learned to solve a different but related problem before. The more related
the two tasks are, the more we can benefit from the previous learning experience.
This is related to the notion of transfer of learning [8] in psychology. In machine
learning this is known as multi-task learning, transfer learning, inductive transfer,
or learning how to learn [17, 2, 3], which has received a lot of attention in the
machine learning community over the past decade or so.

In order that we can benefit from the multi-task learning setting, some tasks to
learn must be related in some sense and some common information must be shared
among these related tasks. One natural approach to this learning problem is through
hierarchical Bayesian modeling. While classical Bayesian modeling is based on
parametric models, nonparametric Bayesian models are generally more desirable
due to their higher model flexibility. GP is a promising nonparametric Bayesian ap-

2 The squared exponential covariance function is also known as the radial basis function (RBF) or
Gaussian covariance function.
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proach and hence our focus here will be on multi-task learning based on the GP
approach [10, 9, 16, 25, 5, 6, 24].

Note that transferring the learning experience regardless of whether the tasks
are related or not may lead to impaired performance. Ideally, how much to transfer
should depend on the “relatedness” between tasks. Many multi-task learning meth-
ods studied in the past simply assume a priori that the tasks concerned are related.
This assumption may be too strong for some real-world applications. A promising
method was proposed recently for multi-task learning by modeling the inter-task
dependencies explicitly [6]. In so doing, transfer can be made adaptive in the sense
that the degree of transfer can depend on how related the tasks are. We will briefly
review this method below and then apply it to the learning of inverse dynamics.
The objective is to demonstrate that the learning problem can be made much easier
under the multi-task learning framework by sharing the learning experience among
different tasks.

5.1 Brief Review of Bonilla et al.’s Method [6]

The training set is now represented as D = {(xi,yi)}n
i=1 where xi ∈ Rp and yi =

(yi1, . . . ,yim)T ∈Rm. For the kth task, there is a corresponding latent function fk. We
assume that fk(xi) has a GP prior with zero mean and each entry of the covariance
matrix is

E[ fk(xi) fl(x j)] = K f
klk

x(xi,x j), (12)

where K f is an m×m symmetric, positive semidefinite matrix with each entry
K f

kl specifying the similarity between tasks k and l, and Kx is an n× n sym-
metric, positive semidefinite matrix with each entry defined by kx(·, ·), which is
a covariance function over inputs just like k(·, ·) in Section 4. If we define f =
( f11, . . . , fn1, f12, . . . , fn2, . . . , f1m, . . . , fnm)T , we can immediately see that

f∼ N(0,K f ⊗Kx), (13)

where ⊗ denotes the Kronecker product. We also assume that each task k has a
separate additive noise term, i.e.

yik = fk(xi)+ εk, (14)

where εk ∼ N(0,σ2
k ) or, equivalently, yik ∼ N( fk(xi),σ2

k ).
For a new test case x∗ that belongs to task k, which is one of the m tasks in the

training data, the predictive distribution of fk(x∗) can be expressed in a form similar
to that in (11) for the univariate (single-task) case, with its mean prediction given by

f̄k(x∗) = (k f
k ⊗kx

∗)
T C−1y C = K f ⊗Kx +D⊗ I, (15)
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where k f
k denotes the kth column of K f , kx

∗ = (kx(x1,x∗), . . . ,kx(xn,x∗))T is the
vector of covariances between the n training data points and the test case x∗, y =
(y11, . . . ,yn1,y12, . . . ,yn2, . . . ,y1m, . . . ,ynm)T , and D is an m×m diagonal matrix with
Dkk = σ2

k . The covariance matrix can be similarly generalized from that in (11).
Note that C is of size mn×mn which is much larger than before.

While Kx is modeled parametrically via some kernel parameters θ x of the kernel
function kx(·, ·), K f is modeled in a nonparametric manner. Hence θ x and K f need
to be determined, either manually or, preferably, automatically. To distinguish them
from the (latent) weight parameters w of the model itself, these parameters are of-
ten referred to as hyperparameters in Bayesian modeling. A method was proposed
in [6] for learning these hyperparameters from data. In addition, they also proposed
a method for dealing with the problem of large n. We refer the readers to their paper
for more details.

5.2 Multi-Task Gaussian Process Regression for Learning Inverse
Dynamics

As in Section 4.2, the learning of each function g j corresponds to one learning
task. However, the difference here is that we now learn the inter-task dependencies
explicitly and make use of them in learning the tasks to achieve multi-task learning.

The experimental settings are the same as those in Section 4.2. The results are
depicted in Figures 8–14. For the convenience of comparing the performance of
GPR and Multi-Task GPR, we also incorporate the results from Figures 1–7 to Fig-
ures 8–14. From the results, we can see that the performance of Multi-Task GPR is
usually significantly better than that of GPR, except for the 6th DOF. In fact, the per-
formance of Multi-Task GPR with as few as 100 training examples is often much
better than that of GPR with as many as 10000 training examples, demonstrating
the effectiveness of multi-task learning. A possible explanation for the somewhat
abnormal behavior of the 6th DOF is the improper characterization of inter-task
similarity which makes the improper transfer to impair the learning performance.
Further investigation is needed to fully unveil the truth.

6 Conclusion

In this chapter, we have presented our first attempt to investigate the feasibility of
applying the multi-task learning approach to robotic control. Although our exper-
imental investigation is preliminary due to the limit of time, the results obtained
are very encouraging. Specifically, we demonstrate that by adopting the multi-task
learning approach, the learning accuracy can be significantly improved even using
two orders of magnitude fewer training examples than that reported recently by oth-
ers.
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There exist many interesting opportunities to take this work forward. Besides
the computational and algorithmic issues related to the multi-task learning method
itself, more extensive experimental investigation on the robotic control problem is
necessary. Among other things, combining feedforward nonlinear control with in-
verse dynamics control for the real-time control of humanoid robots is a challenging
yet rewarding research problem to pursue.

Acknowledgements This research has been supported by General Research Fund 621407 from
the Research Grants Council of the Hong Kong Special Administrative Region, China.
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Fig. 1 nMSE of GPR on the 1st DOF under
varying sample size.

0   100 300 500 700 900 1,100 10000
1

1.001

1.002

1.003

1.004

1.005

1.006

1.007

Sample Size

nM
SE

 

 

GPR

Fig. 2 nMSE of GPR on the 2nd DOF under
varying sample size.
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Fig. 3 nMSE of GPR on the 3rd DOF under
varying sample size.
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Fig. 4 nMSE of GPR on the 4th DOF under
varying sample size.

0   100 300 500 700 900 1,100 10000
1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

Sample Size

nM
SE

 

 

GPR

Fig. 5 nMSE of GPR on the 5th DOF under
varying sample size.
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Fig. 6 nMSE of GPR on the 6th DOF under
varying sample size.
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Fig. 7 nMSE of GPR on the 7th DOF under
varying sample size.
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Fig. 8 nMSE of Multi-Task GPR on the 1st
DOF under varying sample size.
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Fig. 9 nMSE of Multi-Task GPR on the 2nd
DOF under varying sample size.
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Fig. 10 nMSE of Multi-Task GPR on the
3rd DOF under varying sample size.
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Fig. 11 nMSE of Multi-Task GPR on the
4th DOF under varying sample size.
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Fig. 12 nMSE of Multi-Task GPR on the
5th DOF under varying sample size.
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Fig. 13 nMSE of Multi-Task GPR on the
6th DOF under varying sample size.
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Fig. 14 nMSE of Multi-Task GPR on the
7th DOF under varying sample size.


