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ABSTRACT
The massive increase of spam is posing a very serious threat to
email which has become an important means of communication.
Not only does it annoy users, but it also consumes much of the
bandwidth of the Internet. Most spam filters in existence arebased
on the content of email one way or the other. While these anti-spam
tools have proven very useful, they do not prevent the bandwidth
from being wasted and spammers are learning to bypass them via
clever manipulation of the spam content. A very different approach
to spam detection is based on the behavior of email senders. In this
paper, we propose a learning approach to spam sender detection
based on features extracted from social networks constructed from
email exchange logs. Legitimacy scores are assigned to senders
based on their likelihood of being a legitimate sender. Moreover,
we also explore various spam filtering and resisting possibilities.

1. INTRODUCTION
Unsolicited commercial email (UCE), a.k.a. spam, is not a new

problem causing complaints from many Internet users. Spamming,
i.e., the act of sending UCE, involves the sending of nearly identi-
cal emails to thousands or even millions of recipients without the
recipients’ prior consent or even violates recipients’ explicit re-
fusal [9, 30,34]. Unsolicited bulk email (UBE) is another category
of emails that can be considered spam. As suggested in recentre-
ports by Spamhaus [4] and Symantec [31], spam is increasingly
being used to distribute virus, spyware, links to phishing web sites,
etc. The problem of spam is not only an annoyance, but is also
becoming a security threat.

There is an increasing trend for both UCE and UBE. For in-
stance, Symantec has detected a 44% increase in phishing attempts
from the first half of 2005 to the second half. Statistics fromthe
Distributed Checksum Clearinghouse (DCC) project [24] shows
that 54% of the email messages checked by the DCC network in
2005 are likely to be from bulk email. Also, statistics from MX
Logic [22] shows that on average 80.78% of the email messages
delivered to their clients during the week of March 24–30, 2007
are considered spam, with peaks at more than 90%.

Various legal means of anti-spam attempts have been discussed
in [16,23]. Legislations specifically targeted at email spam as well
as unwanted messages in general have been introduced in some
countries, such as the United States of America. Before targeted
legislations are introduced, some existing laws are soughtfor fight-
ing spam. Possible approaches are based on laws and statutesthat
combat fraud, antiracketeering, trespassing and antiharassment. These
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approaches are considered ineffective as they require considerable
costs and efforts for the prosecutor to prove the relevance between
the spam messages and the law. Another challenging problem to
the legal approach is the limited jurisdiction of the law concerned.
Also, many legislators are forced to leave loopholes in the legisla-
tions to avoid infringing the freedom of speech [16]. These often
allow spammers to slip through and the restriction merely becomes
a burden to legitimate senders.

To prevent users from being overwhelmed by spam, many Inter-
net service providers (ISP) and organizations deploy spam filters
at the email server level. The family of Naive Bayes (NB) classi-
fiers [13, 25] is probably one of the most commonly implemented,
which is also embedded in many popular email clients. They ex-
tract keywords and other indicators from email messages andde-
termine whether the messages are spam using some statistical or
heuristic scheme. However, spam senders (spammers) nowadays
are using increasingly sophisticated techniques to trick content-
based filters by clever manipulation of the spam content [14]. For
example, random character strings are inserted to counter frequency
analysis. Also, words with scrambled character order can render
vocabulary-based detection techniques ineffective, yet humans can
still understand the scrambled words. As a consequence, content-
based filters are becoming less effective and hence other approaches
are being explored to complement them.

One popular approach is based on blacklists and whitelists.A
blacklist is a list of senders whose emails are blocked from getting
through to the recipients. A whitelist is just the exact opposite.
While a blacklist specifies who is to be kept out allowing all others
to pass, a whitelist only allows those who are already on the list
to get through. Since spammers almost always spoof the “From:”
field of spam messages, blacklists usually keep IP addressesrather
than email addresses. For incoming messages from senders not
on the lists, content-based filters may be applied so that thetwo
approaches can complement each other.

In this paper, we propose a machine learning approach to spam
detection that may be regarded as partially automating the construc-
tion and maintenance of blacklists and whitelists. Specifically, the
proposed framework extracts seven features from email social net-
works for each sender. Based on these features, a supervisedlearn-
ing model is used to learn the behaviors of spammers and legitimate
senders given a set of training data. The model is then used toas-
sign a legitimacy score to each sender. The score assignmentworks
by analyzing batches of logs and thus is an off-line process.Scores
are made ready in a database where online mitigation methodscan
query for the score of a particular sender.

The rest of this paper is organized as follows. Section 2 re-
views related work on sender-based spam detection methods and
social networks. Section 3 describes the spam detection problem



addressed by this paper. Section 4 details the proposed sender scor-
ing scheme and section 5 explores possible deployment schemes
for spam mitigation. Section 6 presents experimental results and
finally section 7 concludes this paper.

2. RELATED WORK
A sender-based spam detection method tries to determine whether

a sender is a spammer or a legitimate sender. Our proposed scheme
belongs to this category.

One popular approach, and possibly the earliest one employed, is
based on blacklists and whitelists. While blacklists and whitelists
are effective for filtering spam without affecting legitimate email,
the main problem of this approach is the effort required for con-
structing the lists and keeping them up to date. Some automatic
whitelisting methods can be applied based on heuristics, such as
whitelisting addresses that a user replies to. SpamAssassin in-
troduced auto-whitelisting [29] since 2001. The algorithmis part
of the SpamAssassin rule-based anti-spam system, in which many
score generating rules are combined to give a spam score to an
email. The auto-whitelisting algorithm takes into accountthe av-
erage score of the emails corresponding to the sender and pushes
the score for a new email to be the new average score. As a result,
a sender that mostly sends legitimate emails will be ensuredto get
a low score. This effectively whitelists the sender. The reverse is
also true for a persistent spammer whom will be auto-blacklisted.

Another popular approach is the sender reputation system. Gol-
beck and Hendler [11] presented a reputation network schemebased
on user feedback in a social network. Users assign their reputation
ratings to other users on a social networking platform. The users of
the reputation network are connected to each person that they have
rated. A recursive algorithm was proposed to infer the reputation
scores for email senders. A user, namely the source, can request for
the reputation of another user, namely the sink. If the source has
rated the sink then the reputation is simply the rating. Otherwise,
the source requests all of his/her neighbors to recursivelyrequest
for a reputation of the sink. At each recursion, the local ratings of
each user in the path of the query are taken into account.

Chirita et al. [6] proposed a global reputation scheme called Mail-
Rank. Email communication data are collected to construct aglobal
email network consisting of email users. A userU1 sending an
email to another userU2 is considered a trust vote fromU1 to U2.
A power iteration algorithm can then be used to calculate thescores
for all email addresses in the email network. A set of trustedusers
is predetermined by ways of email address books and autowhitelists
from the users. These trusted users bootstrap the reputation system
as high reputation users.

Taylor [32] discussed the domain reputation system deployed in
Google’s Gmail system [1]. The reputation system maintainsthe
reputation for each domain that sends email to Gmail. The reputa-
tions are calculated based on previous results from statistical filters
and user feedback. If the reputation of a domain is good, the do-
main will be whitelisted and the reverse will be blacklisted. The
emails from senders in neither lists are further processed with sta-
tistical anti-spam filters for making the final decision. Email clas-
sification results are logged as auto spam or auto nonspam events.
Users can send feedback to the system by clicking on a button in
the webmail interface for reporting misclassification. These events
are also logged and used during the next update of reputations.

Taylor also discussed the problem of spoofed source addresses
which can affect sender-based detection systems. The Sender Pol-
icy Framework (SPF) [35] and Domain-based Email Authentica-
tion (DomainKeys) mechanisms are used to authenticate whether
an email is really sent from the domain that it claims to be from.

Besides reputation systems, heuristics-based approacheshave also
been explored. Harris proposed a heuristic method called Greylist-
ing [15] to avoid receiving spam at the recipient’s Mail Transfer
Agent (MTA). When a recipient MTA that uses Greylisting receives
a delivery attempt, the MTA will respond with an SMTP temporary
error message. As required by the SMTP RFC [17], upon receiv-
ing an SMTP temporary error, the sending host has to store the
message and retry at a later time. The recipient MTA will record
the identity of the recent attempts of delivery so that the next at-
tempt will be accepted. Legitimate senders that conform to the
standard will have their message delivered, as they will retry ac-
cording to the RFC. Whereas spammers, who concern more about
coding simplicity and speed of the spamming engine, ignore any
error message and move on to the next recipient in the list instead
of retrying. Thus, spam can be avoided.

Structural features in email social networks may also be exploited
for sender-based spam detection. Gomes et al. [12] presented a
graph-theoretic analysis of email traffic and proposed several fea-
tures that can serve to distinguish between spam and legitimate
email. Although they did not present any spam detection study
in their paper, the features proposed can be used for spam detec-
tion. In particular, we use the features called Communication Reci-
procity (CR) and Clustering Coefficient (CC) in this paper.

Boykin and Roychowdhury [3] proposed an automated anti-spam
tool that exploits the properties of social networks to construct black-
lists and whitelists. Based on some heuristics on the structural
properties of a social network, the nodes in the network are clus-
tered to form spam and non-spam components automatically.

3. PROBLEM STATEMENT
Given a set ofn email accountsA = {a1, a2, ..., an}, a sender

setS ⊆ A is defined as the set of email accounts that have sent
at least one email and a receiver setR ⊆ A is the set of email
accounts that received at least one email. Within the set of senders,
t of them are initially labeled as follows:

yi =

(
1 if ai is a legitimate sender,

−1 if ai is a spammer,

for ai ∈ S and t < n. We call this set oft labeled sender the
training setai ∈ Sl ⊂ S. Although the training set may contain all
the sendersSl ⊆ S, such a scenario will not be of interest to us as
all senders are already labeled.

Logs of events in email transactionsL = {li} between accounts
are available as a tuple of attributes:

(ai, aj1 , aj2 , . . . , aji
, x1, x2, . . . , xm)

whereai ∈ S and{aji
∈ R} are the sender and the corresponding

set of receiver accounts, respectively, andx1 throughxm are other
attributes that the log may have, such as time of transaction, mes-
sage size, event type, sender’s host IP, authentication status, etc. In
particular, the possible event types can be{accepted, delayed, re-
jected sender address, rejected recipient address, unexpected con-
nection termination, other errors}. The goal is to assign the remain-
ing accounts{ak+1, ..., an} with a scoreyi in [−1, 1], where the
sign of the score classifies a sender as either a spammer when neg-
ative or a legitimate sender otherwise. Moreover, the magnitude of
yi reflects the confidence of the classification. The score can also
be interpreted as the extent of legitimacy of the sender.

In this paper, we limit our focus on the two categories: account
that spams (spammer) and account that does not (legit./non-spammer).



4. PROPOSED DETECTION SCHEME
Figure 1 is an overview of the proposed solution for detecting

spam senders. Email social networks are first constructed from
email transaction logs. A social network can be representedby
a directed graph where senders are represented as nodes and email
transactions are represented as edges. After the feature extraction
and preprocessing stages, a machine learning method, such as k-
Nearest Neighbor(k-NN) classifier, can be used for the classifica-
tion task. Some postprocessing on the classifier output may yield
results that are more versatile. The reminder of this section details
the steps involved.

Email social networks

Email transaction logs

Feature vectors, one per sender

Email exchanges
between users

Other
features
(currently
not used)in/out counts and

degrees, CR, CIA, CC

Vectors with weighted features

Feature weighting adjustments

Gaussian distance weighted 
k-NN classification

Sender scores

Figure 1: System flow chart

4.1 Social network from logs
Almost all popular SMTP MTA implementations keep the logs

of email transactions. The logs record both normal and errorSMTP
transactions. In addition to the time and date of a transaction, the
log also records the IP address of the SMTP client, envelope orig-
inator and recipient addresses, message-id, authentication status,
etc. Email social networks can be constructed off-line by parsing
the email transaction logs.

This paper focuses on events that correspond to successful email
deliveries only. The potential contributions of other events, such as
attempted delivery to non-existent addresses, are considered as one
of the future extensions.

Information about email exchanges between users needs to be
extracted from the logs. Let:

• EmailCount(ai, aj) = number of emails sent fromai to
aj , whereai ∈ S, aj ∈ R, andS ∪ R = A

• C = {−1, 1} as the set of class labels where−1 and1 rep-
resent spammer and non-spammer, respectively.

It is expected that in a real social network that has interactive
participants, some senders are also receivers, i.e.,S ∩ R 6= ∅.

An email social network is represented by a directed graphG =
(A, E). Each unique email user appeared in the logs is represented
by exactly one nodeai ∈ A in the graph. The sender and recip-
ient relationship is represented by a directed edgeeij ∈ E which
originates from senderai and terminates at recipientaj . The edge
weight [ai, aj ] may be used to store the number of emails sent
from ai to aj , i.e., [ai, aj ] = EmailCount(ai, aj) The subset
of sendersSl ⊂ S is labeled where each sender has a class label.

4.2 Features from email social networks
Most email users communicate and interact within social groups.

They communicate with people who have some kinds of mutual
ties among them, such as friends, colleagues, common interests,
etc. Their email transaction patterns thus naturally form social
networks [3, 18]. On the contrary, spammers generally compose
their spam recipient lists by various methods [16, 19, 28, 33] and
harvest from a wide variety of sources such as websites, news-
groups, forums, public directories, etc., with robots or even spy-
wares. According to a research study by the Federal Trade Com-
mission (FTC) [10], more than 85% of email addresses posted to
web pages and newsgroups received spam. Virtually everything
presented with the ‘@’ sign and looks like an email address are
harvested. As a result, their recipients are unlikely to be socially
related among themselves. This paper proposes to capture social
network related features that reflect the aforementioned observa-
tion for spam detection.

4.2.1 In-count and out-count
The sum of edge weights of all out-edges represents the total

number of emails sent and the sum of edge weights of all in-edges
represents the total number of emails received. By definition, a
non-spoofed spammer account sends emails in bulk. Such an ac-
count sends many more emails than an average sender would. Also,
a normal sender sends more emails than a spoofed spammer ac-
count as a spammer switches to a new spoofed account frequently.
Again, with the same argument as discussed in the previous section,
we can expect a spammer account to receive much fewer emails
than a normal user.

4.2.2 In-degree and out-degree
In-degree and out-degree in social networks represent the num-

bers of email accounts that a node receives email from and sends
email to, respectively. A non-spoofed spammer account is expected
to have a larger list of recipients than that of a normal sender. Af-
ter all, spammers exercise mass emailing. A spoofing spammer,
however, may use each spoofed originator account to send only a
couple of spam before generating another spoofed account. As a
result, such an account is expected to have a lower out-degree than
a normal user would have.

In-degree is related to the response rate and interactivityof an
email account. One would expect a human user to be engaged
in more bi-directional and interactive communications andthus a
higher in-degree. As for spam, the content usually directs the reader
to visit web pages rather than an email reply. Also, since spam, by
definition, is unsolicited email, we can expect fewer email accounts
would respond to a spammer. As for spoofed non-existent spammer
accounts, there can be no response at all.

4.2.3 Communication Reciprocity
The Communication Reciprocity (CR) of a node is defined as

CR(ai) =
|OS(ai) ∩ IS(ai)|

|OS(ai)|
, (1)

whereOS(ai) is the set of accounts{a ∈ V } that received at least
one message fromai andIS(ai) is the set of accounts{a ∈ V }
that sent at least one message toai.

This feature measures the percentage of interactive neighbors
that a nodeai has. It aims at capturing the social behavior of
human users that tend to provide responses to other users within
their social groups. On the contrary, a spam source has a strong
structural imbalance between the set of senders and receivers. This
follows from the observation that spammers send emails to many



receivers while few of their recipients reply and few other senders
send emails to spammers.

4.2.4 Communication Interaction Average
The Communication Interaction Average (CIA) of a node is de-

fined as:

CIA(ai) =

P
j:∃eij

w(eji)/w(eij)

Out-degree ofai

. (2)

This feature measures the level of interaction between a sender with
each of the corresponding recipients. It is the average ratio of re-
ceive count/send countamong the recipients of a sender.

As part of a social behavior of human users, they do not only
send emails once or twice but exchange emails with other social
neighbors many times. Social groups once formed tend to stayfor a
considerable time and witness interactive communications. There-
fore, accounts that engage in solicited communications should give
a higher CIA than those that do not. For instance, spam has a very
low response rate. Many of the spam are simply ignored or dis-
carded by recipients. Even if the recipient is interested inthe sub-
ject described in a spam, the usual action is to follow a hyper-link
in the spam instead of replying to the email. In the case of spoofed
originator addresses, the difference is even more obvious.The CIA
of spammers should be near zero.

4.2.5 Clustering Coefficient
The Clustering Coefficient (CC) of a node measures the friends-

of-friends relationship between email accounts. This relationship
exists in human user accounts because a social group is established
out of some common bonding that holds the group members to-
gether. For instance, personal friends of a particular person A are
likely to know each other as well, perhaps through group activities.
Therefore, the friends, in addition to communicating withA, would
also communicate with each other.

As for spammers, since they harvest email addresses from the
public domain, such as web pages, and merge them with addresses
from many other sources, the resulting recipients are unlikely to
share common interests and communicate with each other. In other
words, those neighbor accounts of spammers are unlikely to exhibit
the friends-of-friends relationships.

Givenz neighbors, it is easy to observe that the maximum num-
ber of connections among thez neighbors is[z × (z − 1)]/2. CC
measures the existence of such connections among neighborsof a
node. It is defined as

CC(ai) =
nai

[zai
(zai

− 1)]/2
, (3)

wherezai
is the number of neighbors ofai andnai

is the number
of such connections that actually exist in the social network of ai.

4.3 Preprocessing
For the purpose of spam detection, we propose to estimate the

likelihood that an email originator is a spammer by using machine
learning techniques. The goal is to assign a score to each sender
based on the likelihood of that sender being a spammer. This sec-
tion details the formulations of the machine learning approach given
social network features extracted in previous steps. The discussion
below focuses on a supervised learning approach with only two
classes of senders: (1) spammers and (2) legitimate senders.

4.3.1 Sender Feature Vectors
Since a spammer that we can detect must be one of the senders

in the email social network, extracting features for email accounts
that sent at least one email is enough. As will be shown in section 6,

using only any one of the seven features presented in the previous
section is not sufficient in detecting spammers accurately.Instead,
the values of the seven featuresf̂l (l = 1, . . . , 7) are used to form
a feature (row) vector̂xi = (f̂1, . . . , f̂l, . . . , f̂7) for each of the
accountsai ∈ S.

Since the seven features are of different units and magnitudes,
each of the feature values is normalized, the attributesf̃l of the
normalized feature vector̃xi is given by:

f̃l =
f̂l − MEAN(f̂l)

V AR(f̂l)
, ∀l, (4)

whereMEAN(f̂l) andV AR(f̂l) are the mean and variance, re-
spectively, off̂l over allai ∈ S.

4.3.2 Weighted features
Among the seven features, some may be more useful than oth-

ers in distinguishing spammers from legitimate senders. While the
in/out-degrees and in/out-counts can be useful as auxiliary features,
using these features alone can focus the learning process. Afterall,
some legitimate users may look like spammers if one looks at these
four features only. For example, there exist low traffic legitimate
users who have small values for all four features, similar toseem-
ingly low traffic spammers that employ originator spoofing. On
the other hand, the three other features capture the main structural
differences between spammers and legitimate senders. To prevent
the influence of important features from being masked out, normal-
ized feature values are further weighted according to theirrelative
importance to give the weighted feature vectorxi:

xi = x̃iw, (5)

wherew = (w1, . . . , wl, . . . , w7)
T is the weight (column) vector

with higher attribute values for relatively more importantattributes.
Although the description above assumes seven features, it is pos-

sible to include more (or fewer) features,l = 1, 2, . . . , L. A pos-
sible future extension to incorporate additional features. As a sum-
mary, each sender now has a feature vector with normalized and
weighted feature values.

4.4 Machine Learning to Assign Spam Score
Each sender in an email social network is now represented by

a feature vector of normalized and weighted feature values.It is
assumed that similar senders have similar feature values. Given a
set of labeled sendersSl, the goal is to label the rest. This sec-
tion describes the formulation to use ak-Nearest Neighbor (k-NN)
classifier to assign spam scores to unlabeled senders.

k-NN is an instance based supervised learning algorithm. The
algorithm assumes all inputs to be points in then-dimensional Eu-
clidean space. To classify a new instanceaq, the Euclidean dis-
tances between the instance and other training points are calculated.
One may assign a class by the majority vote among thek-nearest
labeled neighbors. Letyj be the classification of training instance
aj , wherej = 1, . . . , k being thek nearest neighbors ofaq. Then
thek-NN classification is given by:

vkNN = arg max
ci∈C

kX
j=1

δ(ci, yj), (6)

whereδ(a, b) = 1 if a = b, or zero otherwise. One may also
weight the classifications of the training points with the similarities,
such that the more similar a training point is, the more weight its
classification has onaq.

The k-NN can be a simple yet effective method. Nonetheless,
there are some drawbacks. By using the Euclidean space,k-NN



assumes that each feature are of equal importance. This makes the
algorithm vulnerable to irrelevant or noisy features. Thiscan be
compensated by weighting feature values according to theirrelative
importance, as suggested in section 4.3.2. Feature weighting can be
viewed as scaling the axes in the Euclidean space according to the
relative importance of features.

Being a lazy learning algorithm,k-NN can be quite inefficient at
classification time. To classify a new instance,k-NN has to com-
pute the distances between the new instance and all the training
instances, in order to discover thek nearest neighbors. Special data
structures, such as those in [2, 5], can be used for storing and in-
dexing training examples such that the search for nearest neighbors
can be more efficiently done in the expense of some computations
in the training phase and storage overhead. Details of thesetech-
nique are out of the scope of this paper.

Our goal is to assign a legitimacy score to each of the senders
reflecting its likelihood of being a legitimate sender. The higher
the score, the more likely that the sender is legitimate. This paper
proposes to use the similarity weightedk-NN method as will be
discussed in the subsections that follow.

4.4.1 Gaussian Similarity
To use a distance based method likek-NN, we first define the

similarity measure of neighbors. The idea is to give higher weights
to labeled data points that are closer to the data point to be labeled.
We assume the feature vectors to be in an Euclidean space<L,
whereL is the number of features included in the feature vectors.
Let the Euclidean distance between two feature vectorsxi andxj

bed(xi,xj). The Gaussian similarity is given by:

wij = e
−

d2(xi,xj)

2σ2 , (7)

whereσ is a parameter controlling the decay factor of the Gaussian
similarity function. This similarity measure decays exponentially
as the Euclidean distance increases. In other words, the close the
two vectors are in the Euclidean space, the larger the Gaussian sim-
ilarity.

4.4.2 Similarity Weighted Meank-NN Scores
The score for an unlabeled feature vector is inferred from the

similarity weighted mean of labels of itsk nearest neighbors. Given
a vectorxi, we first calculate the Gaussian similaritywij for aj ∈
Sl, i.e., the similarity betweenxi and each of the feature vectors
that corresponds to a labeled sender. Recall that the largerthe Gaus-
sian similarity, the closer the labeled vector is fromxi. Thus, the
score ofxi in thek-NN definition is simply the similarity weighted
mean of the labels with thek largestwij . Denote the set ofk xj

that have thek largest Gaussian similarities asκ. The scorẽyi of
xj is given by:

ỹi =

P
j:xj∈κ

wijyj

k
. (8)

For the case that some of the vectors are of the same similarity
resulting in more thank largest neighbors, we randomly choose
enough vectors to break the tie. As defined earlier, the labels are
−1 for spammers and1 for legitimate users. The sign of the re-
sulting score can be treated as a classification of spammer orlegiti-
mate sender and the magnitude reflects the confidence level. For in-
stance, one may set a threshold for the score below which a sender
is considered a spammer. Three potential ways of using this score
to counter spam are discussed in section 5.

4.4.3 Score scaling
The Gaussian similarity function, which is used to weight the

scores in the previous step, is unlikely to give a weight close to
unity unless the feature vectors are so tightly clustered such that
most of the similarities are near one. Recall that the possible values
of labels are bounded by[−1, 1], weighting the labels with such a
similarity function is likely to give scores that are very small and
thus are not effectively utilizing the whole range of possible scores
(i.e., [−1, 1]). To avoid the distribution of scores being too clus-
tered around zero, we may scale the scores such that the maximum
magnitude is one. Denote the set of vectorsxj corresponding to
unlabeled senders beλ. After all unlabeled senders are scored, the
scaled scorêyi of eachxi is given by:

ŷi =
ỹi

maxxj∈λ{|ỹj |}
. (9)

4.5 Section Summary
Given the feature vectors of labeled senders, this section shows

how k-NN can be used to assign legitimacy scores to unlabeled
senders. It is assumed that senders that share similar feature val-
ues, thus close in proximity in the Euclidean space, belong to the
same class. Based on this, the score is assigned by the similarity
weighted mean ofk-NN’s labels. The sign of the score may be
used to classify a sender and the magnitude reflects the confidence.
Alternatively, the higher the score, the more likely that a sender is
a legitimate sender. The score can therefore be treated as a score of
legitimacy.

5. POTENTIAL MITIGATION SCHEMES
A detection scheme needs a mitigation scheme to react to spam.

There are more than one way to use the legitimacy scores provided
by the social network based detection scheme to mitigate spam.
One of the more straightforward ways is to apply a threshold to the
score below which all email from the sender will be filtered. While
this approach is simple, we observe that it is unlikely that the social
network based detection alone is accurate enough for the purpose.
Also, existing content-based schemes and rule-based schemes are
still performing reasonably well. We prefer to use the social net-
work based detection scheme to complement rather than replace
content-based filtering schemes.

Different ways of combining filters have been explored in the
literatures. Segal et al. [26] proposed to form a pipeline ofanti-
spam filter components. An email passes through each component
in the pipeline one by one. Each component assigns a score to
the email. An email can be directly classified by an intermediate
classifier and skip all subsequent components if the classifier deter-
mined the classification of the email with high confidence. Lynam
and Cormack [21] explored different ways of combining anti-spam
filters. Specifically, the voting of binary classifications from spam
classifiers, the log-odds averaging of spam scores, the use of Sup-
port Vector Machine on spam scores from different spam filters and
the use of logistic regression to find the weights for computing the
weighted average of spam scores from multiple filters.

Since the main focus of this paper is the formulation of the detec-
tion scheme as described in the previous sections, we intendto dis-
cuss only simplified views of three potential approaches in which
the legitimacy sender scores may be used to complement existing
score generating filters. In depth study on the benefits and effec-
tiveness on advanced filter ensemble schemes are reserved for fu-
ture work.



5.1 Parallel single thresholding approach

Sender score

Email

Content-based
scoring system

Score

Spammy

Figure 2: A parallel single thresholding system

Many of the content-based spam detection schemes are able to
generate a spam score, and so does the proposed social network
based scheme. A natural way to combine the two is to run the two
schemes in parallel so that each of them generates a score. The
two scores are combined to give a decision. Figure 2 shows such a
setup.

An email is fed to both schemes. The content-based analyzer
will analyze the content of the email and assign a scoresc to the
email. The higher the scoresc is, the more confident that the
analyzer thinks the email is spam. The proposed social network
based scheme will identify the originator of the email concerned
and query the score database for the sender’s score. Since the score
from the database is a legitimacy score, we may switch it to a spam
score by a simple negation, i.e.,ss = (−1)yi. This spam score
can then be combined with other content-based and rule-based fil-
ters with, for example, a weighted sum, to generate a single spam
score. Emails with a score higher than a certain threshold can be
considered as spam.

5.2 Serial multiple thresholding approach
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Figure 3: A serial multiple thresholding system

To cope with the advanced techniques of spamming, content-
based filters are getting more and more sophisticated. The sophisti-
cation also translates to heavier load on the spam filtering module.
On the contrary, the spam sender score is first determined offline.
Only a lightweight query to the score database is needed during
the online process. One may consider taking a serial approach by
filtering spam with the lightweight sender score approach first.

Figure 3 shows a serial multiple thresholding system. During the
spam filtering process, the legitimacy score for the email sender
will first be fetched from the database. Two thresholdsTl > Ts

on this score will be defined. Emails from senders with legitimate
score aboveTl will be accepted directly to the inbox, skipping the
content-based filter. Senders with a score lower thanTs will be
considered spammers. Their emails can be rejected at this stage or
flagged as spam directly. Email from senders with a score in be-
tween the two thresholds, i.e.,Ts ≤ fi ≤ Tl, will be passed to the
content-based analyzer that will make the final decision. Spammy
emails (i.e., emails with high spam scores) can be filtered orflagged
accordingly.

This approach has several advantages. The sender based filter-
ing scheme acts like an automatic whitelist and blacklist approach.
As a result, the load on the content-based filter will be lowered.
Additional resource intensive analysis on the email, such as Opti-
cal Character Recognition (OCR) on images, may now be enabled
to improve the accuracy. Also, notice that some of the legitimate
senders are allowed to skip the subsequence filters, an adminis-

trator may use a more aggressive threshold for those filters while
maintaining the same false overall rejection rate.

5.3 Serial throttling and thresholding approach
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scoring systemInternet Mailbox
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Figure 4: A serial resistance and thresholding system

A variant of the serial approach is to throttle rather than tofilter
senders with the sender score. Figure 4 shows a conceptual diagram
of such an approach. It is observed that spammers generally depend
on a very high email delivery throughput to generate a revenue [7,
19]. Li et al. [20] proposed to slow down the transmission rate of
a suspected spam at the TCP level. Although they did not propose
a way to identify suspicious senders, the authors showed that when
enough recipients are using TCP damping against emails witha
high spam likelihood, it is possible to lower the delivery throughput
of spammers considerably. This may be used as a deterrent that
drives spammer away from the server to avoid high delays.

Also, since emails are slowed down during the delivery but not
entirely dropped, false rejection of legitimate email is much less
expensive. An average user may not care about some minutes of
delays in delivery. However, for spammers that require highdeliv-
ery throughput, a slowdown in delivery hurts their profitability.

One potential problem is that the scheme requires online deter-
mination of the spam likelihood of an email. Content-based anal-
ysis may fall short in this aspect since limited informationabout
the email is revealed during the earlier stage of the email delivery
process. By the time the content of an email is being receivedand
analyzed, it may already be near the end of the delivery. It may
be too late for TCP damping to slow down the spammer enough to
make a difference.

Given that our proposed scheme gives a sender score and an on-
line query of the score is lightweight, one can afford to implement
TCP damping with the legitimacy score. Senders with a high legit-
imacy score would be offered normal or preferential servicewhile
others are slowed down. One of the way is to use an exponential
decay function on the legitimate score to determine the extent of
the damping. The delay imposed by the server grows exponentially
with the decrease of the legitimate score.

6. EXPERIMENTS
The proposed method is tested with legitimate senders extracted

from the Enron dataset prepared by Shetty and Adibi [27] and sim-
ulated spammers. The Enron email dataset has been released to the
public by the Federal Energy Regulatory Commission. The CALO
project [8] extracted and prepared a dataset for research use. Shetty
and Adibi [27] further processed the dataset by removing dupli-
cated, corrupted and system generated emails, and analyzedthem.
The dataset is composed of emails in the mailboxes of 150 users in
the reasonably large organization. The social network characteris-
tics are well preserved. In this paper, email exchange information
is extracted from email headers to simulate email exchange logs for
our evaluation purposes. If an email is addressed to more than on
recipient, one transaction will be generated for each recipient.



x P [out-degree= x]

1 0.664
2 0.171
3 0.070
4 0.040
5 0.024
6 0.014
7 0.010
8 0.007

Table 1: Out-degree probability distribution of simulated spam
accounts

6.1 Extracting legitimate Enron senders
The enron dataset contains both spam and nonspam, thus both

legitimate senders and spammers. To get legitimate sendersfrom
the Enron dataset, we first extract the email transactions within the
Enron email domain (i.e., email transactions with sender and re-
cipient addresses with @enron.com). These senders are, forthe
moment, labeled as legitimate senders. Social networks of these
senders are constructed. Raw emails are also fed to SpamAssassin
to generate scores. By examining the social networks, scores and
email subjects manually, bogus senders that have forged to be from
the Enron domain are identified.

Notice that the dataset only contains emails from mailboxesof
150 Enron users while there are many other Enron users exchange
emails with these 150 Enron users. The transactions not involv-
ing any of the 150 Enron users are not visible. As a result, the
social networks constructed will represent the full socialnetworks
between the 150 Enron users but only a partial view of the social
networks of users other than the 150 users. In reality, a single orga-
nization or an ISP will have a similar situation, where only apartial
view of the social networks is available for senders outsideof the
email domains that they have control of. By including not only the
150 Enron users but also other Enron users, we are not assuming
that we have a global view of the social networks of every email
user.

6.2 Simulated spam senders
Transactions from spammers are simulated by generating spam

accounts that inject spam emails to the dataset of legitimate senders
obtained from the previous section. The out-degree of each spam
account is set according to the out-degree distribution provided
in [12]. The out-degree distribution in [12] is measured from real
email traffic of a university in Brazil. It is assumed that each spam
account will send only one spam to each randomly chosen recipi-
ent. Table 1 summarizes the actual probabilities of spammerout-
degree used. Also, since recipients usually do not reply to the spam
accounts, the probability of a reply from a recipient is fixedto be
0.05.

5000 spam accounts are generated to inject spam traffic into the
Enron dataset obtained as described in the last section. An email
social network is generated from the resulting dataset and is used
for feature extraction. Enron accounts that have out-degrees> 0
are used as legitimate sender accounts. There are 9150 senders,
with 4150 of them being legitimate senders.

Unless otherwise specified, all of the following experiments are
based on this dataset and are repeated 100 times to report theaver-
ages as shown. 120 senders from each class (≈ 2.5%) are randomly
selected to be labeled as the training set. The error bars show the
standard deviations.

6.3 Number of nearest neighbors
To usek-NN, one needs to determine the number of neighbors

(k) to be used in the score calculation. The value ofk affects not
only the accuracy of the scheme, but also the running time require-
ment. The larger thek, the longer it takes for the similarity calcula-
tions in the scoring phase. In this paper, we determine the value of
k empirically through a series of experiments with varyingk. The
relative weights for the features are fixed to be 1 for in/out-degrees
and in/out-counts and 5 for CR, CIA and CC. The ROC curves for
k = {1, 3, 5, 7, 9, 11} are shown in figure 5. We choosek = 3 in
all the subsequent experiments.
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Figure 5: ROC curves: Varying k in k-NN

6.4 Feature weightings
Among the seven features, some are more important than others.

The feature should be weighted accordingly to yield better perfor-
mance. Extensive experiments have been done to investigatedif-
ferent feature weightings. This section presents some of the more
representative results.

Figure 6 shows the ROC curves of six different weights of CC.
As we increase the weight of CC, the classification performance,
in general, increases. This shows the relative importance of this
feature over others. The increase in performance becomes insignif-
icant for weights larger than 15. Table 2 shows the area above
the ROC curve while varying the weights of CIA. Considering the
associated standard deviations of the results, we observe that the
improvement in performance is inconclusive. To proceed on exper-
iments on CR, we choose weighting of CC to be 15, the smallest
among 15, 20 and 25 to avoid over-emphasis; and that for CIA tobe
10. Figure 7 shows the results of varying CR. The trend of degrad-
ing performance is observed as the weight of CR increases. Thus,
a weight of 1 is chosen for CR.

Through similar experiments on the four remaining features: in/out-
counts and in/out-degrees, an increase in their weights hurts per-
formance in general. Another set of feature selection experiments
reveals that using only the three features CR, CIA and CC yields
poor accuracies. Therefore, we choose the weights of the seven
features to be 1 for the in/out-counts, in/out-degrees and CR, 10 for
CIA, and 15 for CC.

Figure 8 shows the results for different numbers of trainingdata
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Figure 6: ROC curves: Varying Clustering Coefficients (CC)

No. Weights Area (%) Std Var
1 01 01 01 01 01 10 15 0.39184 0.15909 0.00025
2 01 01 01 01 01 15 25 0.41627 0.14438 0.00021
3 01 01 01 01 01 25 15 0.42567 0.17520 0.00031
4 01 01 01 01 01 01 15 0.43668 0.21220 0.00045
5 01 01 01 01 01 01 25 0.43872 0.18122 0.00033
6 01 01 01 01 01 05 25 0.44140 0.18848 0.00036
7 01 01 01 01 01 10 25 0.44265 0.15273 0.00023
8 01 01 01 01 01 05 15 0.44560 0.21346 0.00046
9 01 01 01 01 01 15 15 0.45097 0.24533 0.00060
10 01 01 01 01 01 25 25 0.45976 0.25064 0.00063

Table 2: Varying the feature weights of CIA: The mean area
above ROC curve, standard deviation and variance. The seven
values in the first column represent the weights for in-count,
out-count, in-degree, out-degree, communication reciprocity,
communication interaction average, and clustering coefficient.

given. As observed from the figure, the accuracy increases notice-
ably as we increase the number of labeled senders for each class
from 10 (0.2%) to 30 (0.6%) and 90 (1.8%). The detection rate at-
tained 99% with only 0.5% of false positives as 3% of the senders
are labeled.

7. DISCUSSIONS AND CONCLUSION
The proposed scheme facilitated assignment of a legitimacyscore

to each sender given a small portion of labeled senders. No content
of emails is needed. As shown in the previous section, encouraging
results are obtained from a stand-alone setting with only 3%of the
senders labeled for the training phase.

The results may seem sound especially when it is yet to be com-
bined to existing content-based schemes. However, we have to be
cautious about the actual performance of the proposed scheme con-
sidering that we are scoring senders instead of individual emails.

One of the concerns is that the experimental settings are using
originator email addresses as senders. Although in realityspam-
mers do spoof and change their originator email addresses fre-
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Figure 7: Area above ROC: Varying Communication Reci-
procity (CR)

quently and this is reflected in our dataset, there are spammers that
deliberately spoof specific addresses that may be commonly seen
and likely to be whitelisted. For instance, originator addresses of
email notifications from popular websites such as ebay and ama-
zon. As discussed by Taylor in [32], for a sender-based approach,
one may use the domain part of the originator email address to-
gether with the IP address of the sending host to identify a sender.
This combination facilitates, to some extend, sender authentica-
tion. The recipient can authenticate the sender with SenderPolicy
Framework (SPF) and DomainKey.

Another concern is the relative number of emails associatedwith
a spammer address compared to that with a legitimate sender ad-
dress. As we assume that a spammer changes its sender addressfre-
quently, the relative number of emails should be small compared to
an active legitimate sender. Should a false positive occurson an ac-
tive legitimate sender, many emails will be affected. As with other
anti-spam schemes, one would like to push the false positiverate
to near zero. To achieve this, one may need to consider various en-
semble approaches of existing schemes with the proposed scheme,
such as those discussed in section 5.

In this paper, we have explored the new direction of taking a
learning approach on structural features extracted from the email
social networks. Currently, only seven features are considered. One
possible extension is to explore additional features, suchas those
that capture the anomaly in changes of sender behaviors overtime.
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