
COMPUTER PROCESSING OF ORIENTAL LANGUAGES VOL.10, NO.3. 1996

307

A Heuristic Search Approach to Chinese Glyph Generation

Using Hierarchical Character Composition

PAK–KEUNG LAI*, DIT–YAN YEUNG, and MAN–CHI PONG**
Department of Computer Science

Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

dyyeung@cs.ust.hk

*Department of Law, University of Hong Kong,
Pokfulam Road, Hong Kong

 **Computer Centre, University of Hong Kong,
Pokfulam Road, Hong Kong

Abstract: When some Chinese characters used by the user are not represented in the
standard character encoding scheme of a computer system, it would be desirable if the system
can still support these characters. Based on the hierarchical relationships between character
components, we propose structurally based character composition expressions (CCE) for com-
posing these unrepresented Chinese characters unambiguously. We then describe a glyph gen-
eration process, which generates the corresponding glyph for a given CCE. The process makes
use of glyph beauty evaluation metrics which are based on traditional Chinese calligraphy
rules, and uses a beauty evaluation function to guide the search for nice–looking glyphs
through iterations. Our approach can be applied to glyph composition components that corre-
spond to bitmap, vector as well as outline base fonts, as compared to earlier work which can
only use parametric base fonts [1]. A prototype system has been implemented to demonstrate
our approach.

Keywords: Chinese font, Glyph generation, Character composition, Evaluation function,
Heuristic search, Greedy algorithm.

1. Introduction

All commonly used Chinese character encoding schemes (e.g., GB and Big5) assign
character codes to only a limited number of characters. Although Unicode [2] was designed
in an attempt to represent ‘‘all’’ characters in the world, its two–byte format can represent at
most 65,536 characters, yet the total number of characters in the world continues to increase.

In some applications, infrequently used and user–defined characters that are not repre-
sented in the adopted encoding scheme are encountered. It is necessary to come up with a
satisfactory scheme for accommodating unrepresented characters unambiguously. Some
Chinese systems allow the user to define the glyph for a new character and then assign to it
a code from the unused code space. However, the encoding conflict problem may arise: the
same internal code in two different systems may represent two different characters (and hence
two different glyphs). As a consequence, a document created in one system may not be inter-
preted correctly in another system, even though both systems use the same encoding scheme
for the standard set of characters.� �� � � � � � � � � � 	
 � � �
 � � � �
 � �
 � � � � � � � �
 � � � � � �
 � � � �

 � � � � � � � � �
 	 � � � � � � � � � � � � � � � �
 � �
 � � � � �

308 P–K Lai, D–Y Yeung, and M–C Pong

We have proposed to use character composition expressions (CCE) to encode unrepre-
sented characters by specifying the structural relationships between character components
[3]. Based on the use of CCE, this paper presents a method for generating Chinese glyphs,
with the generation process formulated as a heuristic search problem. A prototype glyph gen-
eration system has been implemented. Although our current implementation is based on the
GB encoding scheme, the techniques used are quite general and hence can be applied to other
encoding schemes for both simplified and traditional Chinese characters.

The remainder of this paper is organized as follows. The terms used in the paper are de-
fined in Sec. 2. Section 3 briefly describes the use of CCE for representing Chinese characters.
Section 4 describes the generation of glyphs and the quantitative evaluation of glyph beauty.
Section 5 presents some examples of generated glyphs, and the last section compares our ap-
proach with related work and discusses our future work.

2. Some Definitions

A character is an abstract symbol that represents some concept or object. The graphical
representation of a character is called its glyph. In digital typography, each glyph is usually
represented as a 2–dimensional bitmap. The position of a pixel in the bitmap can be repre-
sented with respect to some reference point in the bitmap. The encoding of a character under
a certain encoding scheme is called its character code, or simply code, in that encoding
scheme.

A Chinese radical is a simple graphical pattern composed of multiple strokes. There is
no standard radical set for Chinese characters. Discussions on the evolution of radicals in Chi-
nese dictionaries can be found in [4].

Some radicals can appear in more than one form. For example, the radical has two

different forms, and . The form can be considered as a variant of the form. Histori-
cally, the two forms were used interchangeably in the composition of some characters. In this
paper, these two forms will be treated as two different radicals as far as character composition
is concerned.

Some radicals are also characters by themselves. For example, the radicals (fire),

(mouth) and (gas) are characters with their own meanings. These radicals (or characters)
are also called radical characters.

A character component may be a character or any structural part of a character. Its glyph
can be used for the composition of more complex glyphs. All radicals are character compo-
nents.

The bounding box of a glyph is a rectangular region bounding the glyph. The bounding
box includes the white borders, if any, surrounding the black pixels of the glyph. The tightest
bounding box of a glyph is the extent of the black pixels of the glyph, excluding the white
borders surrounding the black pixels. See Fig. 1 for illustration.

The bounding box of the glyph of a character component can be represented as (x1, y1,
x2, y2), where (x1, y1) and (x2, y2) correspond to the upper left and lower right corners of the

309 A Heuristic Search Approach to Chinese Glyph Generation

Figure 1. Bounding box and tightest bounding box.

Figure 2. Structural categorization of Chinese characters.

bounding box, respectively. The origin (0, 0) is the upper left corner of the bounding box of
the character glyph (of size xdim by ydim) to be composed from the glyphs of the character
components.

3. Chinese Character Composition

3.1 Structure of Chinese characters

The structural categorization of Chinese characters has been studied by many research-
ers. Figure 2 (adapted from [5]) shows one scheme of classifying Chinese characters based
on the character components. There are basically four different types, namely, one–element,
horizontal composition, vertical composition, and surround composition. One–element char-
acters are those characters that cannot be further decomposed.

Note that character composition can also be considered in a hierarchical manner. For

example, instead of horizontally pairing up the three radicals , and to form the charac-

ter , one may alternatively pair up and where the character can be constructed from

 and .

310 P–K Lai, D–Y Yeung, and M–C Pong

Table 1. Construction operators supported by the current system.

3.2 Our approach

In our design, a character composition expression (CCE) consists of a character

construction operator followed by two components [3]. For example, the character is rep-

resented by the expression h(,). A component is either another CCE, a Chinese charac-
ter, or a radical. The construction operators supported by our current system are shown in
Table 1.

3.3 Encoding principles

The representation of a character may not be unique. For example, can be repre-

sented as h(, h(,)) or h(h(,),). This may lead to problems in some applica-
tions. To ensure a unique representation for each character, the following encoding principles
are applied to resolve ambiguities:

(1) For a character or character component that already exists in the encoding scheme, its
code should be used instead of composing the character structurally.

(2) If a character component is a radical and it already exists in the standard radical set (i.e.,

it only has a radical code, but not a character code), e.g., , , , , , , the radical
code should always be used. For a character component which has both a radical code and
a character code, the exact choice depends on whether the component acts as a radical.

For example, when appears on the left, it is a radical and the radical code of should
be used. However, if it appears on the right, it is a character component but not a radical.

In this case, the character code of should be used.

(3) We should always compose a character using an expression that requires the least number

of components. Suppose the character does not exist in an encoding scheme. To com-

pose it, it should be represented as h(,). The other two possible representations h(,

h(,)) and h(h(,),)) should not be used because they require more compo-
nents.

(4) In case there exist more than one composition with the least number of components, the
composition with the simpler left subtree should be chosen. For example, the character

 should be expressed canonically as h(, h(,)) rather than h(h(,),).

(5) The simpler–left–subtree rule is also applicable to the components that appear as the two
operands of a composition expression. Suppose a character is to be composed by horizon-

tally pairing up the three components , and . It can be composed by h(,)

311 A Heuristic Search Approach to Chinese Glyph Generation

Figure 3. Glyph generation process.

or h(,). The latter expression h(,) should be used because its left operand is
simpler.

(6) If it is possible to compose a character by either horizontal or vertical composition using
the same number of operands, then the horizontal composition is preferred. For example,
the character that is composed of four radicals arranged in four quadrants should be
expressed as h(v(,), v(,)) rather than v(h(,), h(,)).

4. Generation of Glyphs by Character Composition

4.1 The glyph generation process

In this section, we describe the process of generating the glyph of a character to be com-
posed given its CCE. Here the term configuration (of a composed glyph) refers to a graphical
representation of the components arranged in a certain manner. A composed character glyph
can have many configurations. Sometimes we may just refer to the configuration as glyph
when the context is clear.

The glyph generation process is basically a greedy search (Fig. 3). The target of the
search is a satisfactory configuration. Starting with an initial configuration, each intermediate
configuration is modified by different transformation operators to generate some possible
transformed configurations. These transformed configurations are evaluated using a beauty
evaluation function. The configuration which gets the highest score is chosen to be the next
intermediate configuration, if its score is higher than that of the current configuration. This
process repeats until no further improvement can be obtained using a greedy algorithm.

In the following subsections, different subproblems involved in the process will be dis-
cussed.

312 P–K Lai, D–Y Yeung, and M–C Pong

Figure 4. The need for stroke width normalization.

Figure 5. Stroke width nomalization after scaling.

4.2 Representing the configurations

Since a CCE corresponds to a hierarchical structure, each configuration is represented
by a tree, called glyph generation tree. In each node of the tree, the bounding box of the glyph
rooted at the node must be maintained by the glyph generation process.

4.3 Choosing the base font

To be used as a base font for character composition, a font should satisfy the following
conditions:

(1) It should be rescalable, so as to avoid the boundary aliasing effect when it is scaled up.

(2) It should be possible to control the stroke width, so as to keep roughly equal stroke width
in different components. For a glyph composed of components of different sizes, different
stroke widths will be resulted if the components are shrunk equally. Figure 4 shows a
glyph without stroke width normalization and one with stroke width normalization.

Dong and Li’s parametric graphics approach [6], which is used in Fan’s font generation
algorithm [1], can handle the stroke width normalization problem by using different paramet-
ric subroutines to generate the structural components of a Chinese font down to individual
strokes. However, building the whole base font using this approach is apparently very tedious.

Another approach is to use an ordinary outline font or a high resolution bitmap font as
the base font. When the character components are shrunk, the strokes are thickened to com-
pensate for the reduction in stroke width due to shrinking. A simple method to handle this is
to replace each pixel in the shrunk glyph by a rectangular region of black pixels to normalize
the stroke width. Figure 5 illustrates this process. We adopt this approach in our system.

4.4 Generating the initial configuration

We define the distance between two configurations to be the smallest number of trans-
formations required to transform one configuration to the other. The time for the search to
converge is proportional to the distance between the initial and final configurations. In other
words, the better the initial configuration is, the faster is the search to converge.

We choose to preprocess the initial configuration so that the white space in the compo-
nents is roughly evenly distributed. This follows from one of the Chinese calligraphy rules

313 A Heuristic Search Approach to Chinese Glyph Generation

(see Sec. 4.6). Our experiments show that this method is quite effective and requires relatively
little computation.

A simple heuristic for better allocation of space in the initial glyph is to assign space
proportional to the density of a component. Such space allocation scheme keeps the densities
of the two resultant components to be approximately equal. The boundary is then normalized
to eliminate excess boundary white space. We can then eliminate excessive gaps between
components. For the surround composition operator, the initial configuration is found by
searching for the maximum empty rectangular region enclosed by the surrounding compo-
nent. This region is assigned to be the initial location of the surrounded component.

4.5 Choosing the transformation operators

In our current study, transforming a configuration only affects the bounding boxes of
its components. That is, no nonlinear deformation within a component is considered since this
requires stroke–based information in the base font. In general, the more powerful the set of
transformation operators is, the wider is the fan–out at each level of the search tree and hence
the bigger is the search space. Although this implies a greater chance to reach the optimal
configuration, searching a huge tree could be computationally expensive. Instead, a greedy
approach is used here to find a satisfactory (but not necessarily optimal) configuration.

We use the following 18 transformation operators:

(1) move (left, right, up, down).

(2) enlarge (left, right, top, bottom, vertical, horizontal).

(3) shrink (left, right, top, bottom, vertical, horizontal).

(4) boundary shift (to–child1, to–child2).

Figure 6 shows the effect of each operator on the radical of the character .

For a character composed of two components, we have to consider up to 16 ! 2 + 2 =
34 possible transformed configurations. The first term 16 ! 2 refers to the four move opera-
tors, six enlarge operators and six shrink operators for each component. The second term 2
refers to the two shift operators for the boundary between the two components.

The first three categories of transformation operators are self–explanatory. The bound-
ary shift operators affect two components at a time. For example, the shift to–child1 operator
causes the boundary between the two components to shift towards the first child. Similarly,
the shift to–child2 operator causes the boundary to shift towards the second child.

Another factor we have to consider is the granularity (or step size) of the operators. For
a glyph of size 128 X 128, it is not efficient to perform all transformation operations in the
granularity of one pixel change at a time. Currently we set the initial granularity to be 1/16
of the dimension of the square glyph, which is then reduced by half every time for fine tuning
until it becomes zero.

314 P–K Lai, D–Y Yeung, and M–C Pong

Figure 6. Effects of the 18 transformation operators (step size = 4).

4.6 Defining the beauty evaluation metrics

The beauty evaluation function is a weighted sum of the glyph beauty evaluation met-
rics, which are quantitative interpretations of several traditional Chinese calligraphy rules:

 (good alignment and geometric stability).

 (even distribution of white space).

(appropriate elimination of gap between components).

(consistent style throughout the whole font).

These rules are suggested by books on calligraphy [7, 8], and are relatively easy to quan-
tify. Each metric takes the glyph generation tree as input. The glyph is rendered on a bitmap
of width xdim and height ydim. A number, called its beauty metric value, is returned as output.
A metric is an attempt to quantify some visual quality of a glyph. In our system, the smaller
the metric value is, the better is the quality. The best possible value for each metric is equal
to zero.

We have devised 10 different beauty evaluation metrics: (1) component alignment met-
ric; (2) center of gravity metric; (3) white space evenness metric; (4) density range metric;
(5) feature stroke spacing evenness metric; (6) shortest distance between components metric;
(7) aspect ratio difference metric; (8) size change metric; (9) border elimination metric; and
(10) rule–based beauty metric.

Some metrics are only applicable to some of the horizontal, vertical and surround com-
position operators. Details of the metrics can be found in [9]. As an illustration, We describe
metrics 2 and 10 below.

315 A Heuristic Search Approach to Chinese Glyph Generation

Figure 7. Relatively fixed position of the radical “mouth”.

4.6.1 Center of gravity metric

In the calligraphy rule “good alignment and geometric stability”, the second half of it
is “good geometric stability”. It means that if a glyph is treated as a rigid body, the center of
gravity of the glyph should be positioned at the center.

To compute the center of gravity of a glyph, each black pixel is treated as a unit mass.
Suppose the glyph consists of n black pixels denoted as (xi, yi), 1 " i " n, the center of grav-
ity (CGx, CGy) is defined as:

CGx #
$

n
i % 1 x i

n CGy #
$

n
i % 1 y i

n

A metric derived from the center of gravity is

M2 # & CGx ' xdim

2 & (& CGy ' ydim

2 &
where xdim and ydim are the width and height of the glyph, respectively. A zero value of M2

means that the center of gravity is located exactly at the center of the glyph, and is thus “geo-
metrically stable”.

The dimensionally normalized metric is

MI2 #) CGx
xdim

' 1
2) (CGy

ydim
' 1

2

4.6.2 Rule–based beauty metric

This metric is related to the calligraphy rule “consistent style throughout the whole
font”. For a set of glyphs in a font to look consistent, the style over different glyphs should
be uniform. The style can be represented as some global properties of the entire font which
can be stated as specific rules. An example of such a rule is the relatively fixed position of
the radical (mouth) whenever it appears in the left side of a glyph, as shown in Fig. 7.

We have designed a rule–based system for maintaining uniform global font style. The
rules are expressed below in BNF form, where nonterminal symbols are delimited by angular
brackets:

<Rules> → <Rule> <Rules>

316 P–K Lai, D–Y Yeung, and M–C Pong

<Rule> → <Op> <Component1> <Component2>

<NewComponent1> <NewComponent2>

<Location1> <Location2>

<Weight> “NEWLINE”

<Location1> → <BoundingBox>

<Location2> → <BoundingBox>

<BoundingBox> → “(” bbx1 bby1 bbx2 bby2 “)” | “ABSENT”

<Weight> → floatingPointNumber

<Op> → horizontalOp | verticalOp | surroundingOp

<Component1> → chineseCode | “ABSENT”

<Component2> → chineseCode | “ABSENT”

<NewComponent1> → chineseCode | “ABSENT”

<NewComponent2> → chineseCode | “ABSENT”

The semantics of a rule <Rule> is as follows: whenever a CCE in the form of <Op>
<Component1> <Component2> is encountered, the radical <Component1> will be replaced
by <NewComponent1> and the radical <Component2> will be replaced by <NewCompon-
ent2> if they are present (i.e., not ABSENT). <NewComponent1> and <NewComponent2>
are called replacement components for the original two components. The replacement com-
ponents are used so that it leaves room for improvement. For example, the radical character

 can be replaced by a better designed radical (new component) of as in the character

. Another example is the character component in the composition of characters like .
If a location is specified in the rule, it will be used as the desired location for the component.
The transformation operators will try to move the component to this desired location in the
final glyph to achieve consistent style, subject to the influence of other metrics in finding the
final configuration.

For a given rule with the desired location of the components specified, the following
metric is defined:

M10 * |bbx1 + bbx
^

1|
xdim , |bbx2 + bbx

^
2|

xdim , |bby1 + bby
^

1|
ydim , |bby2 + bby

^
2|

ydim

where (bbx1, bby1, bbx2, bby2) and (bbx
^

1, bby
^

1, bbx
^

2, bby
^

2) are the current and desired loca-
tions of the component, respectively. By minimizing M10, a replacement component will be
moved to its desired location as much as possible.

4.7 Defining the beauty evaluation function

In the previous subsection, we have described several metrics for quantifying the beauty
of a glyph. However, when a metric Mi has value m, how can we tell whether this value m

317 A Heuristic Search Approach to Chinese Glyph Generation

represents a good or bad result? Also, since more than one metric may be applied during the
glyph generation (refinement) process, we also need a method to normalize the metric values
so that different metrics have comparable effects.

4.7.1 Normalization of metric values

Let us consider a font of n glyphs c1, c2, ..., cn, where the metric values of the glyphs
are MIi (cj) for 1 - j - n. Suppose the theoretical optimal value of metric MIi is zero, and
the mean and standard deviation of the metric values for the font are mi and . i, respectively.
We can normalize a metric so that its values are in approximately equal ranges:

MNi(c) / MIi(c)
mi 0 . i

2

By squaring the normalized value, a higher penalty is given to glyphs with unsatisfactory val-
ues.

4.7.2 Evaluation function

The evaluation function is defined as:

h(c) / 1
i

wi MNi(c)

where wi is the weight of metric MNi in the linear combination. The weight of a metric corre-
sponds to the relative importance of the metric among all metrics. It is a difficult task to assign
weights to the metrics. In our current system, the weights are set by trial–and–error.

4.8 Postprocessing the satisfactory configuration

After a satisfactory configuration has been found by the glyph generation process, a
postprocessing step called border normalization is performed by scaling the glyph and adding
to it a fixed–width border. This is important for maintaining a globally consistent style of the
whole font. The method used in our system is simply to keep the tightest bounding box of the
final glyph fixed. Another algorithm for border normalization can be found in [10].

5. Examples of Generated Glyphs

Figure 8 illustrates the glyph generation process that successively improves the glyph
of a character until it cannot be refined any further.

For the character which is well balanced, the appearance of the glyph looks reason-
ably good even at the initial phase. The preprocessing step does not help much. Later steps
are mainly for fine–tuning the glyph, like further improving the alignment and separation be-
tween the components of the character.

For some characters, like which is expressed as h(,) with one small component
and one big component, the situation is more complicated and the preprocessing step be-
comes important. For the example shown in Fig. 9, size hinting information small about left

318 P–K Lai, D–Y Yeung, and M–C Pong

Figure 8. Example 1 – Iterations in the font generation process.

Figure 9. Example 2 – Iterations in the font generation process.

radical is specified in the CCE, suggesting that the left radical should be shrunk. After the
preprocessing step, the alignment is improved, and the difference between the densities of
the two components is much reduced. Other attributes, like the center of gravity of the glyph,
are also improved during the search. When no better glyph can be generated, the border is
normalized to give the final glyph.

To verify our approach, the first 94 characters in the GB character set are analyzed here.

Some of them, like , , , , , , and , are not composed of multiple components.
All other characters are specified in CCE and their glyphs are generated with a relatively low–

319 A Heuristic Search Approach to Chinese Glyph Generation

Figure 10. Examples of generated glyphs with rules applied.

Figure 11. Examples of generated glyphs using a Song based font.

quality vector–based Hei style base font and with the rule–based beauty metric applied. The
result is shown in Fig. 10.

A set of 64x64 bitmap Song style base font is also tested. Figure 11 shows some gener-
ated glyphs. Even with stroke width normalization, the generated glyphs have different stroke
widths due to rounding errors caused by scaling bitmaps. This problem can be alleviated by
using a vector base font or an outline base font.

6. Discussions

6.1 Comparison with other related work

Our approach to glyph generation has been inspired by a previous method proposed by
Fan [1]. However, there are substantial differences between our approach and Fan’s approach.
We address the problem based on a different set of assumptions. Fan’s approach is used for
font design and generation, and is only applicable to fonts based on parametric graphics. Our
approach is intended for using different existing fonts. As a result, we have chosen to put less
restriction on the base font. Although our current system only handles bitmap and vector
fonts, it can also be extended to handle outline and parametric fonts. This will make our tech-
niques applicable to many existing Chinese fonts.

As we have made fewer assumptions about the base font, composing high–quality
glyphs is more difficult in our system. For example, stroke–based information is absent in the
bitmap or outline representation of a glyph, but it can be found in a parametric representation.
As a result, stroke–based optimization can be done in Fan’s approach, but not as easily in ours.
On the other hand, our approach does not require a special font to be built. Existing software

320 P–K Lai, D–Y Yeung, and M–C Pong

Table 2. Differences between our approach and Fan’s approach.

can use our approach more readily, say, by using a font server where most existing fonts can
be reused.

Fan classified Chinese characters into nine classes and 25 subclasses. We group the nine
classes into three categories and use hierarchical character composition. This reduces the am-
biguities caused by a large number of different classes. For example, if we have a three–hori-

zontal–component operator h3, the character can then be expressed as either h(,) or

h3(, ,). It thus violates the principle of enforcing unique character encoding. Fan’s 25
subclasses are replaced by the technique of radical size hinting in our approach for greater
flexibility.

Moreover, the metrics used by Fan are relatively simple. His metrics include the center
of gravity metric, gap elimination metric, and size difference metric. Although these metrics
seem to be sufficient in his approach, we need more metrics to control the quality of the gener-
ated glyphs because the quality of the base font used for composition is unknown in advance.
Fan’s metrics are augmented by some more sophisticated metrics in our approach, like the
density difference metric, aspect ratio metric, alignment metric, stroke spacing evenness met-
ric, and border elimination metric. The advantages of using these metrics are discussed in [9].

The differences between our approach and Fan’s approach are summarized in Table 2.

If we decompose character components further, we will have strokes. Composition of
characters using strokes as basic units is much more difficult. With only simple topological
information like the horizontal, vertical and surround composition operators, it is difficult,
if not impossible, to handle stroke–based character composition. In [11], D2 rst tried to repre-
sent Kanji using a coordinate–independent description, where Kanji is represented using a
box–bar model. Stroke segments are treated as bars, while radicals and character components
are treated as boxes. Their topological relationships are described by the intersection points
in the characters, as shown in Fig. 12. An algorithm for reconstructing the glyph of a character
represented by the box–bar model has been implemented. However, the quality of the fonts
generated using this approach is poor, since many features of Kanji (and hence Hanzi), like
serif, length of strokes, location of intersection points, ratio of space occupied by the compo-
nents, etc., will be missing if only the topological relationships of strokes are represented. Fig.
13 shows some characters generated using this approach.

321 A Heuristic Search Approach to Chinese Glyph Generation

Figure 12. A coordinate–independent description for a Kanji (Hanzi).

Figure 13. Examples of characters generated by a coordinate–independent description.

6.2 Future work

Our evaluation function is a weighted sum of the normalized beauty evaluation metrics.
The means, standard deviations and weights of the metrics are font dependent. For a particular
base font, we can determine the means and standard deviations of the metrics by using the
glyphs of the base font as training data. The relative weights of different beauty evaluation
metrics, however, are quite difficult to determine.

Right now, a trial–and–error approach is used for adjusting the weights of different met-
rics. More systematic methods, preferably with low computational requirements, will be stu-
died in our future work.

Acknowledgement

The research work reported in this paper has been supported by the Research Infrastruc-
ture Grant RI92/93.EG08 of the Hong Kong University of Science and Technology.

References

[1] J. Fan, “Towards intelligent Chinese character design,” in R. Morris and J. Andre (eds.),
Raster Imaging and Digital Typography, Cambridge University Press, Cambridge, 1991,
pp. 166–176.

[2] Unicode Consortium, The Unicode Standard: Worldwide Character Encoding, Vols. 1
and 2, Addison–Wesley, Reading, Massachusetts, 1991.

[3] P. Lai and M. Pong, “Approaches to handle user–defined Chinese characters,” in Pro-
ceedings of the International Conference on Computer Computing, Singapore, 1994, pp.
235–241.

[4] , “ ,” (Yuwen Jianshe), , No. 2, 1993, pp.
29–32.

322 P–K Lai, D–Y Yeung, and M–C Pong

[5] , , 1992.

[6] Y. Dong and K. Li, “A parametric graphics approach to Chinese font design,” in R. Morris
and J. Andre (eds.), Raster Imaging and Digital Typography, Cambridge University
Press, Cambridge, 1991, pp. 156–165.

[7] , , , 1986.

[8] , , , 1986.

[9] P. Lai, “Encoding and generation of extensible Chinese font,” MPhil Thesis, Department
of Computer Science, Hong Kong University of Science and Technology, 1994.

[10]F. Uchio, T. Higuchi, et al., “A method of normalizing the appearance size of square
styled brush–written Chinese characters,” Transactions of the Institute of Electronics, In-
formation and Communication Engineers, Vol. JF2D–II, No. 10, 1989, pp. 1650–1656.

[11] M. J. D3 rst, “Coordinate–independent font description using Kanji as an example,” Elec-
tronic Publishing: Origination, Dissemination and Design, Vol. 6, No. 3, 1993, pp.
133–143.

323 A Heuristic Search Approach to Chinese Glyph Generation

Pak–Keung Lai received his bachelor degree from the University of Hong
Kong and M.Phil. degree from the Hong Kong University of Science and
Technology. His research interests include Chinese computing. Currently
he is working for the Law–On–Line Project at the University of Hong
Kong.

Dit–Yan Yeung received his B.Sc.(Eng.) degree in electrical engineering
and M.Phil. degree in computer science from the University of Hong
Kong, and the Ph.D. degree in computer science from the University of
Southern California. He is currently an assistant professor in the Hong
Kong University of Science and Technology. His research interests include
Chinese computing, neural computation, statistical learning theory, and

handwriting recognition.

Man–Chi Pong is currently a member of staff in the Computer Centre of
the University of Hong Kong. He looks after the campus network and
World Wide Web services. He has worked as a researcher, teacher, and
member of the technical staff in the Hong Kong Hospital Authority, the
Hong Kong University of Science and Technology, the University of Kent
and the University of Edinburgh in the U.K., and the Institute of Software,

Chinese Academy of Sciences, Beijing, China. He is a co–author of the widely used X–win-
dow Chinese terminal emulator called cxterm.

