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Abstract

Classification with only one labeled example per class
is a challenging problem in machine learning and pattern
recognition. While there have been some attempts to ad-
dress this problem in the context of specific applications,
very little work has been done so far on the problem under
more general object classification settings. In this paper, we
propose a graph-based approach to the problem. Based on
a robust path-based similarity measure proposed recently,
we construct a weighted graph using the robust path-based
similarities as edge weights. A kernel matrix, called graph
Laplacian kernel, is then defined based on the graph Lapla-
cian. With the kernel matrix, in principle any kernel-based
classifier can be used for classification. In particular, we
demonstrate the use of a kernel nearest neighbor classifier
on some synthetic data and real-world image sets, showing
that our method can successfully solve some difficult classi-
fication tasks with only very few labeled examples.

1. Introduction

Classification with only one labeled example per class
is a challenging problem in machine learning and pattern
recognition, since straightforward application of standard
classification methods is infeasible due to overfitting.

Recently, some computer vision researchers proposed to
study the single training example per class problem for face
recognition tasks. The most common approach in this line
of research is to augment the training information as much
as possible from a single labeled face image. For example,
some researchers proposed to extract various configural fea-
tures from a single labeled face image [1]. Others proposed
to obtain multiple training examples for each class by par-
titioning each labeled face image into a set of subimages or
use the derived images to augment the training set [13, 4].
With this approach of augmenting the original training set
which contains only one labeled example per person, tra-
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ditional face recognition methods such as linear discrimi-
nant analysis (LDA) and its variants can then be used. The
most recent work on face recognition from a single image
under varying illumination uses a 3D spherical harmonic
basis morphable model (SHBMM) [12] to eliminate the il-
lumination effects and hence achieve high recognition rates.
However, these methods which are devised for specific ap-
plications (face recognition in particular) cannot be used for
general object classification tasks.

In the machine learning community, semi-supervised
learning methods have emerged over the past few years
as a promising approach to improving classification perfor-
mance with the aid of unlabeled data. For example, Zhou
et al. proposed an interesting graph-based method to prop-
agate the labels from the limited labeled nodes to the unla-
beled nodes in the graph based on the assumption of lo-
cal and global consistency [14]. Fink proposed to use a
nearest neighbor classifier based on class relevance met-
rics to discriminate between two target classes from a sin-
gle example, where the class relevance metrics are learned
from multiple labeled examples of other related classes [6].
Among these semi-supervised classification methods are
some kernel-based methods that have been demonstrated to
exhibit promising performance. Some of them are based on
constructing appropriate kernels by transforming the spec-
trum of the graph over labeled and unlabeled data, such
as cluster kernels [3] and nonparametric transformation of
graph kernels [15]. Other methods include the connectiv-
ity kernels [7], which are directly induced from a so-called
path-based dissimilarity measure defined on the weighted
graph. However, despite the promising performance of
these methods as demonstrated on some semi-supervised
classification or clustering tasks, they are not robust enough
in the presence of noise points or outliers.

In this paper, we propose a novel kernel-based method
for general object classification applications with as few as
only a single labeled example per class. More specifically,
inspired by our recent work [2], we propose to construct
a weighted graph based on some robust similarity measure
and then define a kernel matrix based on the graph Lapla-
cian for use in the subsequent kernel-based classification
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algorithm. Not only does the proposed method make good
use of unlabeled data to solve the classification problem in a
semi-supervised setting, but it also exhibits high robustness
against the data noise and insensitivity towards the model
parameter.

The rest of this paper is organized as follows. In Sec-
tion 2, we present the graph Laplacian kernels that incorpo-
rate a robust similarity measure. A semi-supervised classi-
fication algorithm using the graph Laplacian kernels is then
presented in Section 3. Section 4 gives some experimental
results on both synthetic and real-world data to demonstrate
the effectiveness of our method. Finally, we give some con-
cluding remarks in the last section.

2. Graph Laplacian Kernels
2.1. Path-Based Similarities on Graph

We denote a set of n data points in a multidimensional
Euclidean space by X = {x1, . . . ,xn}. The data set can
be represented as a fully connected undirected graph G =
(V,E), with vertex set V = {1, . . . , n} and edge set E ⊂
V ×V . For each edge (i, j) ∈ E, i 6= j, we assign a weight
w′ij = exp(−‖xi − xj‖2/(2σ2)) to represent the pairwise
similarity between vertices i and j (corresponding to data
points xi and xj , respectively), with the scaling parameter
σ specifying the spread of the Gaussian window in the input
space. We assume that there is no self-loop in the graph and
hence we take w′ii = 0 in the sequel.

Note that the pairwise similarities w′ij are solely deter-
mined by the Euclidean distances between the correspond-
ing points in the input space, revealing no information about
whether the points belong to the same class or not. To
capture such information, one effective approach is to ex-
ploit the underlying manifold structure of the global data
distribution so that points belonging to the same manifold
(or class) have higher similarity while points belonging to
different manifolds (or classes) have lower similarity. In
general, the manifolds can be nonlinear and elongated in
structure. Following the formulation of a path-based dis-
similarity measure originally proposed in [8], we defined a
path-based similarity measure which can implicitly convert
elongated manifolds into compact ones [2].

The path-based similarity wij between vertices i and
j is defined as follows. For each path p connecting ver-
tices i and j, the effective similarity wp

ij between the two
vertices is the minimum edge weight along the path, i.e.,
wp

ij = min1≤h<|p| w
′
p[h]p[h+1], where p[h] denotes the hth

vertex along path p from vertex i to vertex j and |p| denotes
the number of vertices in p. Then, wij is the maximum
among all effective similarities corresponding to all paths
from vertex i to vertex j:

wij = max
p∈Pij

wp
ij = max

p∈Pij

{

min
1≤h<|p|

w′p[h]p[h+1]

}

. (1)

However, as pointed out in [2], this path-based similarity
measure is very sensitive to noise and outliers. In [2], this
measure was further extended to a robust version, as to be
analyzed in the next subsection.

2.2. Robust Adjacency Matrix

Robust statistical estimation techniques are estimation
techniques which are insensitive to the presence of gross
errors or outliers that do not fit to the stochastic model of
parameter estimation [11]. Here we use the idea of M-
estimation based on maximum likelihood considerations to
devise a more robust similarity measure.

Consider the data points in the neighborhood of xi as re-
alizations from some estimator of xi. The squared residual
error e2ij of xi for neighbor xj can be defined based on the
distance between xi and xj : e2ij = ‖xi−xj‖2/|Ni|, where
Ni denotes the neighborhood set of xi and |Ni| its cardi-
nality. The standard least squares method tries to minimize
∑n

i=1

∑

xj∈Ni
e2ij .

An M-estimator tries to reduce the influence of out-
liers through replacing the squared residual error by
a convex function ρ(·). Solving the problem of
min

∑n

i=1

∑

xj∈Ni
ρ(eij) with respect to some parameter

to be estimated is equivalent to solving the following itera-
tive reweighted least squares problem:

min
n
∑

i=1

∑

xj∈Ni

a(e
(t−1)
ij )e2ij , (2)

where (t−1) denotes the iteration number and a(·) is
the weight function for estimator ρ(·), which is defined as
a(eij) = ρ′(eij)/eij . During the robust estimation proce-
dure, the weight function is recomputed after each iteration.

Usually, the robust estimator ρ(·) is selected to grow
more slowly than the quadratic function. One example is
the Welsch function used in [2]:

ρ(eij) =
c2

2
[1− exp(−(eij/c)

2)], (3)

where c is some positive parameter. The corre-
sponding weight function is a(eij) = ρ′(eij)/eij =
exp(−(eij/c)

2) = exp(−‖xi − xj‖
2/(|Ni| c

2)).
Based on the robust estimator, we can obtain a weight α′i

for each data point xi by summing up the weight function
values a(eij) of all its neighbors. It is worth noting that by

setting c =
√

2
|Ni|

σ, the weight can be expressed solely in
terms of the original similarities:

α′i =
∑

xj∈Ni

a(eij) =
∑

xj∈Ni

w′ij . (4)

Making use of the normalized weights, αi =
α′i/maxxi∈X α

′
i, the robust path-based similarity measure

is expressed as [2]:



wij = max
p∈Pij

{

min
1≤h<|p|

αp[h]αp[h+1]w
′
p[h]p[h+1]

}

. (5)

This measure can reflect not only the possibility for xi and
xj to belong to the same class, but also the genuine similar-
ity even in the presence of noise points or outliers. More-
over, this measure is not sensitive to the choice of the Gaus-
sian parameter σ.

From (5), we can define a robust adjacency matrix as
W = [wij ]. The weighted graph G with the robust ad-
jacency matrix W will then be used to construct a graph
Laplacian kernel.

2.3. Constructing Graph Laplacian Kernels

The graph Laplacian L is defined in terms of the adja-
cency matrix W as: L = D − W, where D is a diag-
onal matrix with the ith diagonal entry defined as Dii =
∑n

j=1 wij . The normalized graph Laplacian L̃ is defined
as: L̃ = D− 1

2 LD− 1

2 [5].
Let R(G) denote the linear space of real-valued func-

tions defined on G and {λi,ui}n
i=1 denote an eigensystem

of L̃, where λ1 = · · · = λr = 0 and 0 < λr+1 ≤ · · · ≤ λn.
We define a Hilbert space of functions on G, H(G) = {g |
gT ui = 0, i = 1, . . . , r}, which is a linear subspace of
R(G) orthogonal to the eigenvectors of L̃ with zero eigen-
value. Similar to [10] for L, we can prove that the pseu-
doinverse of L̃ is the reproducing kernel ofH(G):

Theorem 1 The pseudoinverse of the normalized graph
Laplacian, L̃+, is the reproducing kernel ofH(G).

Proof: We can express L̃ and L̃+ as L̃ =
∑n

i=r+1 λiuiu
T
i

and L̃+ =
∑n

i=r+1 λ
−1
i uiu

T
i . Let K = L̃+ and Ki be the

ith column of K. Hence, L̃+L̃ =
∑n

i=r+1 uiu
T
i = I −

∑r

i=1 uiu
T
i . For any g = (g1, . . . , gn)T ∈ H(G), we have

L̃+L̃g = g −
∑r

i=1 uiu
T
i g = g since the second term is

zero for all g ∈ H(G). Let ei be an n-dimensional indicator
vector with all entries equal to 0 except the ith entry which
is 1. So, gi = eT

i g = eT
i L̃+L̃g = eT

i KL̃g = KT
i L̃g =

〈Ki,g〉, which shows that the reproducing property holds.
Hence K = L̃+ is the reproducing kernel ofH(G). ¤

We call the kernel matrix K = L̃+ the graph Lapla-
cian kernel. As opposed to using generic, data-independent
kernels such as the polynomial kernel and the Gaussian
RBF kernel, this approach results in a data-dependent ker-
nel which captures the structure in the data. Specifically,
in our case, it exploits the robust adjacency matrix defined
above to construct a data-dependent graph Laplacian kernel
that can be used subsequently by any kernel-based method.

3. Object Classification: A Kernel Approach
Let c be the number of classes in the data set X . In

our setting, each class has exactly one labeled data point.

For a labeled data point xi, we denote its class label as
yi ∈ {1, . . . , c}. A labeled data point can also be repre-
sented more completely as (xi, yi). Without loss of gen-
erality, we assume that the first c data points are labeled
as: {(x1, 1), . . . , (xc, c)}. The remaining n−c data points,
{xc+1, . . . ,xn}, are unlabeled.

With the graph Laplacian kernel K computed from both
the labeled and unlabeled data points, we implicitly con-
vert the elongated clusters into compact ones. The simi-
larity between two data points belonging to the same class
tends to have larger value than that between two data points
from different classes. Therefore, even a simple kernel
nearest neighbor classifier is expected to achieve impres-
sive performance with a single training example per class.
More specifically, the following classification is performed
by comparing the squared Euclidean distance between the
labeled and unlabeled data points in the kernel-induced fea-
ture space with φ being the implicit feature map: ‖φ(xi)−
φ(xj)‖2 = Kii + Kjj − 2Kij , with i = 1, . . . , c and
j = c+1, . . . , n. Note that the term Kjj is irrelevant to the
classification of an example xj to one of the c classes. The
overall classification algorithm based on the graph Lapla-
cian kernel is summarized in Figure 1 below.

Input: Labeled data set {(x1, y1), . . . , (xc, yc)}
Unlabeled data set {xc+1, . . . ,xn}

Offline kernel construction:
Construct fully connected graph G over X
Compute robust adjacency matrix W (Equation (5))
Compute normalized graph Laplacian L̃ from W

Compute graph Laplacian kernel K = L̃+

Online classification:
for j = c+1, . . . , n do

yj = arg mini=1,...,c{Kii − 2Kij}
end

Output: Labels yj , j = c+1, . . . , n.

Figure 1. Classification algorithm based on graph Laplacian ker-
nels

4. Experiments
In this section, we empirically evaluate the semi-

supervised classification algorithm described above on both
synthetic and real-world data sets.

4.1. Experimental Setup

We compare our kernel-based classification method de-
scribed in Section 3 with two related methods proposed pre-
viously by other researchers. The first method is a kernel
nearest neighbor classifier based on the connectivity kernel
[7]. In their work, the connectivity kernel is induced from
effective dissimilarities over the weighted graph, which are
related to the robust path-based similarities used in our



method. The authors apply the connectivity kernel to some
clustering tasks. Although their method can deal with some
challenging clustering problems with elongated data struc-
tures, the effective dissimilarity measure (hence the con-
nectivity kernel) does not possess the robustness property,
as will be shown in our experimental results below. An-
other method is the method proposed by Zhou et al. [14].
Their semi-supervised classification method is not a ker-
nel method. Based on enforcing local and global consis-
tency, their method has shown very promising results for
some difficult classification tasks with very limited labeled
data. Besides these two methods, we also include an ordi-
nary nearest neighbor classifier for baseline comparison.1

In summary, the following four classification methods are
included in our comparative study:

1-NN 1-nearest neighbor classifier
Connectivity kernel Kernel 1-NN using connectivity kernel
LLGC Local and global consistency method
Graph Laplacian kernel Kernel 1-NN using our proposed

graph Laplacian kernel

We perform experiments on a synthetic data set and two
real-world image data sets (MNIST digits and UMIST face
images). For the image data sets, we use the classification
accuracy on the unlabeled data to quantify the classifica-
tion performance of different methods. For each data set,
we randomly generate 10 different training sets, with each
training set containing one example per class. The average
classification results over the 10 runs are reported.

4.2. Synthetic Data

We first demonstrate the power of our proposed method
on a synthetic data set.

Figure 2(a) shows a noisy 2-moon data set. Data points
with the same mark and color belong to the same class. This
synthetic data set is commonly used in some recent semi-
supervised learning work. However, the difference is that
we also add some noise points (black dots) to the otherwise
clean data set.

In our classification experiments, we choose one exam-
ple for each class as training examples, which are shown
with larger marks in the figures. If the 2-moon data set
contains no noise points, both the connectivity kernel and
LLGC can classify the clean data very well even with only
one labeled example per class. This has been empirically
verified by us for the connectivity kernel method. As for
LLGC, please refer to [14] for illustration. However, neither
of the two methods can give good classification results when
there exist noise points in the data, as shown in Figure 2(b)

1Note that a kernel nearest neighbor classifier with the RBF kernel
gives the same result as an ordinary nearest neighbor classifier, since the
RBF kernel does not change the relative ordering of the distances in the
input space.

and (c). Note that some noise points located between the
two moons end up connecting the two classes. Due to the
existence of noise points, the dissimilarity measure, from
which the connectivity kernel is induced, gives much lower
dissimilarity values than they should be to point pairs re-
siding in different classes. As a consequence, its classifi-
cation result is not satisfactory. Similarly, the propagation
procedure of the LLGC algorithm is also seriously affected
by the noise points. On the other hand, our classification
method based on a data-dependent graph Laplacian kernel
gives fairly good result, as shown in Figure 2(d). This shows
that the robust path-based similarity measure is indeed very
effective in reducing the influence of the outliers.

4.3. MNIST Digits

We further perform experiments on handwritten digits
from the well-known MNIST database.2 Unlike the syn-
thetic data, this data set is of much higher dimensionality.
The digits in the database have been size-normalized and
centered to 28×28 gray-level images, so the dimensionality
of the digit space is 784. In our experiments, we randomly
choose 200 images for each digit from a total of 60,000 digit
images in the MNIST training set.

Figure 3 shows the classification results on the data set
containing digits “8” and “9”. The digit images are plot-
ted based on the two leading principal components esti-
mated from the data, as shown in Figure 3(a), where “8”
and “9” are represented by (red) dots and (blue) crosses, re-
spectively. As we can see, the data points form relatively
compact clusters in the 2D space with some outliers located
between them or even inside the other clusters. Two labeled
examples are denoted by larger marks. The classification
results using different methods are shown in Figure 3(b),
(c) and (d). It can be seen that our method outperforms the
connectivity kernel and LLGC methods.

We conduct more experiments on different digit subsets
under the same experimental settings. The classification re-
sults are summarized in Table 1. There are two result values
for each classification method and each data set. The upper
value is the test accuracy averaged over 10 random trials and
the lower value represents the standard deviation. From the
results, we can see that the connectivity kernel generally can
improve the classification performance but LLGC leads to
poor results. On the other hand, our proposed method out-
performs all other classification methods for all data sets.

4.4. UMIST Face Images

The UMIST face database [9] consists of 564 gray-level
images from 20 persons. Images of each person contain a
range of poses from profile to frontal views. The original
pre-cropped images are of size 112× 92. We down-sample

2http://yann.lecun.com/exdb/mnist/
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Figure 2. Classification results for noisy 2-moon data set: (a) 2-moon data with some noise points (black dots); and classification results
using (b) connectivity kernel; (c) LLGC; and (d) graph Laplacian kernel.
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Figure 3. Classification results for digits “8” and “9”: (a) digit images plotted based on the two leading principal components; and classifi-
cation results using (b) connectivity kernel; (c) LLGC; and (d) graph Laplacian kernel.

Figure 4. Examples of synthesized “noise” face images.

them to smaller ones of size 56× 46. In our experiments, a
subset of 149 face images belonging to the first five people
are selected. The numbers of images from each person are
38, 35, 26, 24 and 26, respectively.

Besides these clean images, we synthesize 10 more im-
ages artificially. Each of them (fnew) is the weighted aver-
age of two randomly selected face images (fi and fj) from
two different persons in the image set: fnew = 0.75 × fi +
0.25 × fj . As a result, the new face image can be seen as
a “noise” image of fi with shade from another person (fj).
Some examples of the “noise” face images for the first per-
son are shown in Figure 4. These artificially created images
act as outliers in the subsequent experiments.

Instead of computing the leading principal components,
we perform classification directly on the high-dimensional
feature vectors extracted from the face images. For visu-
alization purpose, we use multidimensional scaling (MDS)
to embed the face images into a 3-dimensional space, as
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Figure 5. 3D embeddings of face images from five persons. Ten
“noise” faces are marked as black circles.

shown in Figure 5. We can see that the face images of dif-
ferent persons form elongated manifolds. The “noise” faces
marked as black circles scatter among the five manifolds.

The average test accuracy and the standard deviation for
five different methods are summarized in Table 2. The left
column contains the classification results for the clean im-
age set, while the right column contains the results when
“noise” images are added. For both settings, our proposed
kernel-based method achieves the highest accuracy.



Method {1, 4} {1, 7} {3, 6} {8, 9} {0, 6, 8} {1, 3, 7}

1-NN 0.9261 0.8920 0.8588 0.8201 0.7296 0.6197
±0.0013 ±0.0034 ±0.0154 ±0.0116 ±0.0317 ±0.0002

Connectivity kernel 0.9644 0.9298 0.9048 0.7573 0.6928 0.6372
±0.0001 ±0.0000 ±0.0000 ±0.0114 ±0.0506 ±0.0172

LLGC 0.8327 0.8332 0.7983 0.7181 0.6698 0.5801
±0.0103 ±0.0039 ±0.0068 ±0.0003 ±0.0269 ±0.0102

Graph Laplacian kernel 0.9739 0.9548 0.9457 0.9075 0.7394 0.6284
±0.0001 ±0.0001 ±0.0000 ±0.0163 ±0.0146 ±0.0257

Table 1. Classification results on several subsets of the MNIST digit database.

Method Clean data Noisy data
1-NN 0.5361 0.5215

±0.0091 ±0.0063
Connectivity kernel 0.8924 0.6458

±0.0032 ±0.0054
LLGC 0.5646 0.5187

±0.0112 ±0.0062
Graph Laplacian kernel 0.9722 0.8326

±0.0156 ±0.0029

Table 2. Classification results on a subset of the UMIST database

So far we have only considered classification under the
transductive setting. For new test data points, we can
compute the robust path-based similarities between the test
points and the labeled data points based on the constructed
graph G with the robust adjacency matrix W. Nearest
neighbor classification is then performed. Preliminary ex-
periments show that our method is also effective under this
out-of-sample setting.

5. Concluding Remarks
We have proposed a novel kernel-based method for ob-

ject classification with a single labeled example per class.
Experimental results on both synthetic and real-world data
sets verify the effectiveness of the method.

In our future research, we will perform more experi-
ments on the out-of-sample extension and apply our method
to more real-world problems.

References
[1] R. Brunelli and T. Poggio. Face recognition: features ver-

sus templates. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 15(10):1042–1062, 1993. 1

[2] H. Chang and D. Yeung. Robust path-based spectral cluster-
ing with application for image segmentation. In Proceedings
of the Tenth IEEE International Conference on Computer Vi-
sion, 2005. 1, 2

[3] O. Chapelle, J. Weston, and B. Schölkopf. Cluster kernels
for semi-supervised learning. In Advances in Neural Infor-
mation Processing Systems 15. 2003. 1

[4] S. Chen, J. Liu, and Z.-H. Zhou. Making FLDA applica-
ble to face recognition with one sample per person. Pattern
Recognition, 37(7):1553–1555, 2004. 1

[5] F. Chung. Spectral Graph Theory, volume 92 of Regional
Conference Series in Mathematics. American Mathematical
Society, 1997. 3

[6] M. Fink. Object classification from a single example utiliz-
ing class relevance metrics. In Advances in Neural Informa-
tion Processing Systems 17. 2004. 1

[7] B. Fischer, V. Roth, and J. M. Buhmann. Clustering with
the connectivity kernel. In Advances in Neural Information
Processing Systems 16. 2004. 1, 3
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