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Abstract

Over the past decade, multiple-instance learning (MIL)
has been successfully utilized to model the localized
content-based image retrieval (CBIR) problem, in which a
bag corresponds to an image and an instance corresponds
to a region in the image. However, existing feature rep-
resentation schemes are not effective enough to describe
the bags in MIL, which hinders the adaptation of sophisti-
cated single-instance learning (SIL) methods for MIL prob-
lems. In this paper, we first propose an evidence region
(or evidence instance) identification method to identify the
evidence regions supporting the labels of the images (i.e.,
bags). Then, based on the identified evidence regions, a
very effective feature representation scheme, which is also
very computationally efficient and robust to labeling noise,
is proposed to describe the bags. As a result, the MIL prob-
lem is converted into a standard SIL problem and a sup-
port vector machine (SVM) can be easily adapted for local-
ized CBIR. Experimental results on two challenging data
sets show that our method, called EC-SVM, can outperform
the state-of-the-art methods in terms of accuracy, robust-
ness and efficiency.

1. Introduction

1.1. Background

According to the low-level image features used in the
retrieval process, existingcontent-based image retrieval
(CBIR) methods can be categorized into two major classes,
namely, global methods and localized methods (a.k.a.local-
ized CBIR[11, 12]). Global methods exploit features char-
acterizing the global view of an image, such as color his-
tograms, to compute the similarity between images. These
methods have been widely used by traditional CBIR sys-
tems. Although global features can be extracted easily,
in many cases, only a small part or several small parts of
the image are useful for characterizing the visual content

of the image. If features from the whole image area are
used to represent an image, the useful information may be
overridden by noisy information from irrelevant regions.
For example, in Figure3, if the interest of the user is in
the object “FabricSoftenerBox”, the two images with label
“FabricSoftenerBox” should have higher similarity than the
first two images in the upper row. However, the first two im-
ages in the upper row are expected to give higher similarity
than the two images in the leftmost column if global meth-
ods are used. On the contrary, localized CBIR [11, 12, 13],
which describes the task where the user is only interested in
a portion of the image with the rest being irrelevant, is more
natural and is in line with human perception. For example,
in Figure3, a user may only be interested in theapplein the
image with label “Apple”.

A new learning paradigm calledmultiple-instance learn-
ing (MIL) [ 6]1 was proposed to model learning problems
where the class labels are only associated with sets of exam-
ples rather than individual examples. In MIL, an individual
example is called aninstanceand abag contains a set of
instances. Training labels are associated with bags rather
than instances. A bag is labeled positive if at least one of its
instances is positive; otherwise, the bag is negative. In this
paper, we use the termsingle-instance learning(SIL) to re-
fer to the traditional supervised learning paradigm in which
each individual example has a class label.

In the existing localized CBIR work, the region of inter-
est can be either at a fixed location or marked by the user.
The first case does not conform to the general image re-
trieval task and the second case requires too much effort
from the user, making it unappealing in practice. Hence,
thefocus of this paperis to design a general automatic local-
ized CBIR system that does not necessarily require the user
to mark the region of interest. Specifically, we require that
multiple labeled images be provided for the system to auto-

1Due to the page limit constraint, in this paper, we can only cite the
most related references from the computer vision community or those fo-
cused on vision applications. Many other references, especially those from
the machine learning community, can be found in [7].



matically learn the interest of the user. This can be achieved
through relevance feedback or by inputting aquery image
set [12] labeled as positive or negative by the user accord-
ing to whether the images contain the target regions of in-
terest. Under this setting, the underlying learning problem
for localized CBIR is essentially an MIL problem where an
image corresponds to a bag and each region in the image
corresponds to an instance.

1.2. Motivation

Few of the existing MIL methods have designed effective
feature representation schemes to describe the bags, mak-
ing it difficult to adapt some sophisticated SIL methods for
MIL problems. DD-SVM [4] is the first MIL method try-
ing to propose a feature representation scheme for the bags
in MIL to convert MIL into SIL. However, the features of
DD-SVM are very sensitive to noise and incur very high
computation cost. MILES [3] (Multiple Instance Learning
via Embedded instance Selection) also converts MIL into a
standard SIL problem via feature mapping, in which each
feature is defined by an instance from the training bags, in-
cluding both positive and negative bags. Although MILES
is less sensitive to noise and more efficient than DD-SVM,
the feature space for representing bags is of very high di-
mensionality because it contains too many irrelevant fea-
tures. Hence, appropriate classifiers that can make use of
the feature representation scheme in MILES are limited to
those that can perform both feature selection and classifica-
tion simultaneously, such as 1-norm SVM [3]. Therefore,
the motivationof this work is to design an effective as well
as efficient feature representation scheme for representing
the bags in MIL.

1.3. Main Contributions

In this paper, we propose a feature representation scheme
for the bags in MIL to convert MIL into SIL and adapt the
sophisticated SIL technique, SVM, to solve MIL problems.
The main contributions are summarized as follows:

• We propose an evidence region (or evidence instance)
identification method to identify the evidence regions
that support the labels of the images (i.e., bags).

• A very effective feature representation scheme, which
is also very computationally efficient and robust to la-
beling noise, is proposed to describe the bags based on
the identified evidence regions. As a result, the MIL
problem is converted into a standard SIL problem and
an SVM is successfully adapted for localized CBIR.
The resulting method is called EC-SVM, which will
be described in detail later.

• We compare our method extensively with many state-
of-the-art methods on two challenging data sets to

demonstrate the promising performance of our method
with respect to multiple performance metrics, includ-
ing accuracy, efficiency and robustness.

It should be emphasized that thefocus of this workis on
CBIR rather than image classification. Although the tech-
niques for CBIR are also suitable for image classification,
and vice versa, their application scenarios are somewhat dif-
ferent. While for image classification a large number of la-
beled images can be provided for training, for CBIR it is
unreasonable (or impractical) to require the user to input a
large number of query images.

2. A Feature Representation Scheme for MIL

2.1. Notations and Conventions

B+
i denotes a positive bag andB−

i denotes a negative
bag. When the label of a bag is irrelevant, we simply de-
note the bag asBi. B

+
ij denotes an instance in a positive

bagB+
i andB−

ij is an instance in a negative bagB−
i . Let

B = {B+
1 , B

+
2 , . . . , B

+
n+ , B

−
1 , B

−
2 , . . . , B

−
n−} denote the

set of alln+ positive andn− negative training bags. For
each bagBi, its bag label isyi ∈ {+1,−1}. All the in-
stances are represented as feature vectors of the same di-
mensionality. Furthermore, in CBIR, a bag refers to an im-
age and an instance corresponds to a region in some image.

2.2. Evidence Instance Identification

According to the MIL problem formulation, a bag is la-
beled positive if at least one of its instances is positive; oth-
erwise, the bag is labeled negative. Because whether or not
there exist positive instances in a bag providesevidencefor
supporting the bag’s label, we call the positive instancesev-
idence instances. If a bag refers to an image, evidence in-
stances are also referred to asevidence regions.

2.2.1 Evidence Instance Identification Algorithm

Theevidence confidenceEC(Bgh), which is used to repre-
sent the confidence (or likelihood) for the instanceBgh to
be an evidence instance, is defined as follows:

EC(Bgh) =
n+∏
i=1

Pr(Bgh |B+
i )

n−∏
i=1

Pr(Bgh |B−
i ), (1)

where Pr(Bgh |Bi) is estimated based on the noisy-OR
model [8]:

Pr(Bgh |B+
i ) ∝

1−
∏
j

[
1 − Pr(Bgh |B+

ij)
](2)

Pr(Bgh |B−
i ) ∝

∏
j

[
1− Pr(Bgh |B−

ij)
]
. (3)



Here,Pr(Bgh |Bij) is estimated as follows:

Pr(Bgh |Bij) ∝ exp
{
−

∑
k(Bijk −Bghk)2

σ2

}
, (4)

whereσ is a scaling parameter,k ranges over all the fea-
tures, andBijk andBghk refer to thekth features of the
corresponding feature vectors.

The noisy-OR model conforms well to the MIL formu-
lation. From (2), we can see that as long as one instance in
B+

i is close toBgh, Pr(Bgh |B+
i ) will be high. From (3),

we can see that only if all the instances inB−
i are far away

fromBgh, Pr(Bgh |B−
i ) will be high. Hence, if every pos-

itive bag contains at least one instance close toBgh and
simultaneously all the instances in the negative bags are far
away fromBgh, EC(Bgh) will be high. Therefore,EC(·)
actually reflects theconfidencefor the instance to be an evi-
dence instance. The larger the EC value of the instance, the
more likely this instance will be an evidence instance.

The definition of EC “looks” similar to that of DD [8].
However, except that both EC and DD use the noisy-OR
model to compute the corresponding probability, the ratio-
nales for EC and DD are in fact very different. This will be
demonstrated in detail in the following subsection.

From the MIL definition, we know that evidence in-
stances only exist in the positive bags and each positive bag
contains at least one evidence instance. Hence, we just need
to compute the EC values for all instances from the positive
bags and then select those instances with the largest EC val-
ues from each positive bag to be our evidence instances.

Another issue about the above evidence instance identifi-
cation method is how many evidence instances should be se-
lected from each positive bag. This may be determined from
prior knowledge. More specifically, for localized CBIR, this
parameter can be completely observed from the given train-
ing images. For example, for the SIVAL image set [12, 13]
used in our experiment, since from the training images we
observe that the target object occupies about 15% of the im-
age area for most images and each image (bag) contains 32
instances, it is very reasonable to set this parameter to 5
which is about15.6% (5/32) of the number of all instances
in a bag.

Algorithm 1 summarizes the evidence instance identifi-
cation procedure presented above.

2.2.2 Comparison with DD

The DD method [8] tries to find thetarget point2 by maxi-
mizing the following objective function:

arg max
c

n+∏
i=1

Pr(c |B+
i )

n−∏
i=1

Pr(c |B−
i ), (5)

2This target point is not necessarily an observed instance in the training
setB. We must search for it in the whole instance space which may be a
continuous space containing infinitely many instances.

Algorithm 1 Evidence Instance Identification for MIL

Input: All training bagsB+
1 , . . . , B

+
n+ , B

−
1 , . . . , B

−
n− ;

Parameterm indicating how many evidence instances
should be identified from each positive bag.
Initialize: E∗ = φ
for g = 1 to n+ do

for h = 1 to |B+
g | do

ComputeEC(B+
gh) according to (1)

end for
Selectm instances with the largest EC values from
B+

g , and add the selected instances toE∗

end for
Output: E∗, a set of identified evidence instances.

wherec ∈ C andC is the space of all possible instances,
including both the observed training instances inB and the
(possibly infinite number of) unobserved ones.

Pr(c |Bi) is also estimated based on the noisy-OR
model [8]. However, unlike our EC definition,Pr(c |Bij)
in DD is estimated as follows:

Pr(c |Bij) ∝ exp

{
−

∑
k

(
sk(Bijk − c·k)2

)}
, (6)

wherec corresponds to a feature vector, which might not be
an observed instance, in the input instance space,k ranges
over all the features,sk is a scaling coefficient for thekth
feature, andBijk and c·k refer to thekth features of the
corresponding feature vectors.

The main difference between EC and DD can be easily
seen from the difference between (1) and (5), where the EC
value, which is defined only for theobservedinstances in
B, can be directly computed from the training data, while
DD tries tomaximizean objective function, i.e., to search
for the target point, overC which is a continuous space with
infinitely many members. The flow charts of EC computa-
tion and DD are illustrated in Figure1 and Figure2, respec-
tively. In Figure1, thedirect computationstep is based on
(1) without the need for any optimization procedure. In Fig-
ure2, however, anoptimization procedure, such as gradient
ascent in [8], should be firstly applied to find the target point
ct by maximizing the objective function in (5). Then, based
on ct, a value, such as the distance betweenBgh andct in
[8], is computed by thefurther computationstep for further
processing.

Training
Data

Bgh

Direct Computation EC(Bgh)

Figure 1. Flow chart for the evidence confidence (EC) computa-
tion.



Training
Data

Bgh

Optimization
Procedure

ct Further
Computation

Figure 2. Flow chart for the diverse density (DD) method.

From (5), it is not difficult to realize that theoptimiza-
tion procedurein DD is very sensitive to labeling noise. For
example, if we mislabel just a single positive bagB̂ as a
negative bag, thenPr(ct | B̂) computed based on (3) for the
true target pointct will decrease exponentially. As a result,
the objective function value onct is likely to be very small.
Hence, in this case, the computed target point will be rel-
atively far away from the true target point. This problem
has been validated by the experiments in [3, 4]. Moreover,
the DD landscape typically contains local maxima. Search-
ing for the true target point by applying gradient-ascent or
EM does not guarantee global optimality. With no prior
knowledge for a good initialization point, multiple restarts
are generally needed and hence high computation cost is
incurred.

Another difference between EC and DD comes from the
difference between (4) and (6). In (4), all the features (in-
dexed byk) have the same scaling parameterσ. In (6), each
feature (k) has its specific scaling parametersk. The adop-
tion of (4) for EC computation is motivated by MILES [3].
In MILES, they use the same scaling parameter for all the
features, but the performance of MILES is still better than
DD-SVM [4] which adopts a scaling vector to weight the
features. The computation cost for the EC value based on
(4) will be dramatically decreased because we do not have
to search through a huge space of possible scaling coeffi-
cient values. Moreover, the meaning ofPr(Bgh |Bij) in (4)
is much more obvious, which is just a kernel density esti-
mate withBij .

Our evidence instance identification method based on
EC computationtotally avoids the two disadvantages of
DD-based methods, which are high computation cost and
high sensitivity to labeling noise. The advantages of our
method are summarized as follows:

• The EC value of eachobserved instanceis directly
computed from the training set. The parameterm in
Algorithm 1 can be obtained from prior knowledge or
observed directly from the training data for image re-
trieval. In our experiments, we just setσ to 1 if the
data are normalized, and the performance is still very
promising. Hence, our method essentially has no pa-
rameters to tune, making it several orders of magnitude
faster than DD-based methods.

• Because our evidence instance identification method
constrains the search scope for identifying evidence
instances to be within a bag, it is also very robust to-
wards labeling noise. To illustrate this, let us assume

thatx+ is a true positive instance from a positive train-
ing bag andx− is a negative instance (false positive
instance) from the same bag. Without labeling noise,
most (or even all) terms,Pr(x+|B+

i ) andPr(x+|B−
i ),

should be expected to be larger than their counterparts,
Pr(x−|B+

i ) andPr(x−|B−
i ), in (1). Hence,EC(x+)

should be much larger thanEC(x−). Even if a por-
tion of the training bags are mislabeled to makesome
terms,Pr(x−|B+

i ) andPr(x−|B−
i ), larger than their

counterparts,Pr(x+|B+
i ) and Pr(x+|B−

i ), EC(x+)
will still be larger thanEC(x−) as long as the num-
ber of these terms is not too large. Even ifEC(x+)
will decrease in this case, it will not affect the evidence
instance identification result because only therelative
EC values, rather than the absolute EC values, for the
instances in a specific bag will affect the result in Al-
gorithm 1.

2.3. Feature Representation Scheme

Based on the identified evidence instances, we propose
a feature mapping to map every bagBi to a pointψ(Bi) in
the evidence instance based feature space:

ψ(Bi) =
(
d(e∗1, Bi), d(e∗2, Bi), . . . , d(e∗|E∗|, Bi)

)T

, (7)

wheree∗k ∈ E∗, E∗ is the set of identified evidence in-
stances in Algorithm 1, andd(e,Bi) is defined as follows:

d(e,Bi) = min
Bij∈Bi

(‖e−Bij‖2), (8)

which means the distance between an instance and a bag is
simply equal to the distance between the instance and the
nearest instance in the bag.

This feature mapping is very meaningful because gen-
erally the distance between two evidence instances is ex-
pected to be smaller than the distance between one evidence
instance and a non-evidence instance from the background.
Because positive bags contain evidence instances, the dis-
tance from one evidence instance to a positive bag is ex-
pected to be smaller than the distance from this evidence
instance to a negative bag. Hence, the features in (7) are ex-
pected to have strong discrimination ability. Furthermore,
for a specific bag, different instances in it will be selected as
the nearest instances to compute the distance in (8) for dif-
ferente∗k. Hence, the feature vector in (7) actually implic-
itly contains the inter-dependency between the instances in
a bag, the effectiveness of which has been validated by [9].

3. Single Instance Formulation for MIL

After the feature mapping defined in (7), the MIL prob-
lem is converted into a standard SIL problem and hence any
conventional classification method can easily be adapted for
the MIL problem.



In this paper, we adapt SVM for MIL because it can
deliver promising generalization performance via margin
maximization. The resulting method is called EC-SVM.
Since SVM has become a mature technique which has been
widely used in many applications, we do not introduce it
in detail here. We refer the readers to the related literature,
such as LIBSVM [2] and its documentation.

4. Relation to Existing Work

From the formulation point of view, EC “looks” similar
to DD. However, EC’s modification to DD makes EC-SVM
ingeniously integrate the advantages of both MILES and
DD-SVM, and simultaneously overcome their shortcom-
ings. From MILES, we can see that using the instances from
the training bags to construct the feature representation is
sufficient for good performance. Hence, the optimization
procedure in DD for finding local optima, which is both
time-consuming and noise sensitive, is unnecessary. From
DD-SVM, we can see that the most discriminative features
might be those constructed based on evidence instances.
Hence, the features constructed based on negative instances,
which are adopted by MILES, might be useless, or even
harmful (cf. Figure7 and the discussion). EC-SVM con-
structs only those discriminative features corresponding to
evidence instances without any time-consuming optimiza-
tion procedure. Hence, EC’s modification to DD makes
EC-SVM much more effective than MILES and DD-SVM.

5. Performance Evaluation

We evaluate EC-SVM based on two publicly available
image data sets: the SIVAL (Spatially Independent, Vari-
ably Area, and Lighting) image set [12, 13] and the COREL
image set [3]. As for SVM training, the Gaussian kernel
κ(x, y) = exp−r‖x−y‖2

is used for our method in all the
experiments. We use LIBSVM [2] to train all the SVM clas-
sifiers.

Note that the motivation of our paper is to design an ef-
fective feature representation scheme to describe the bags.
Hence, among all the proposed MIL methods, MILES and
DD-SVM are the most related methods. Because previous
work [3] has shown that MILES outperforms DD-SVM,
MILES is adopted as the baseline for EC-SVM. We only
compare EC-SVM with DD-SVM in terms of computa-
tional cost and noise sensitivity to verify the claims in Sec-
tion 2.2.2.

5.1. Accuracy Evaluation

5.1.1 Evaluation on SIVAL Data Set

The SIVAL data set contains 1,500 images of 25 cate-
gories, with 60 images for each category. Category 1
to category 25 are: “AjaxOrange”, “Apple”, “Banana”,

“BlueScrunge”, “CandleWithHolder”, “CardboardBox”,
“CheckeredScarf”, “CokeCan”, “DataMiningBook”,
“DirtyRunningShoe”, “DirtyWorkGloves”, “Fabric-
SoftenerBox”, “FeltFlowerRug”, “GlazedWoodPot”,
“GoldMedal”, “GreenTeaBox”, “JuliesPot”, “Large-
Spoon”, “RapBook”, “SmileyFaceDoll”, “SpriteCan”,
“StripedNoteBook”, “TranslucentBowl”, “WD40Can”, and
“WoodRollingPin”. Figure3 shows some sample images
from the SIVAL image set. We use the same preprocessing
method as that in [10, 12] to generate the bags. Hence,
each image is represented as a bag of 32 30-dimensional
instances.

CheckeredScarfFabricSoftenerBox Apple

FabricSoftenerBox CheckeredScarf SpriteCan

Figure 3. Sample images from the SIVAL image set.

We compare the performance of EC-SVM with sev-
eral related methods on this data set. Note that for fair
comparison, we just list the results of the methods that
adopt the same bag generation method. For example, for
MI-Winnow [5], there are two bag generation methods,
called “Neighbors” and “No Neighbors” respectively. The
“Neighbors” method is the same as that introduced in this
paper. We just list the results of MI-Winnow with the
“Neighbors” bag generation method.

We adopt the same experimental settings as those used
by related methods. For each category, we use the “one-
versus-the-rest” strategy to evaluate the performance. We
randomly select eight positive and eight negative images
to form the training set and the remaining 1,484 images to
form the test set. Unless stated otherwise, the results are re-
ported based on 30 rounds of independent test. Because the
target object occupies about 15% of the image area for most
images, we simply set the parameterm in Algorithm 1 to 5
which is about15.6% (5/32) of the number of all instances
in a bag. The parameterC and Gaussian kernel parameter
r for SVM in LIBSVM [ 2] are simply set to 1 and2−4 re-
spectively. Better performance might be expected if a more
sophisticated method, such as cross-validation on the train-
ing data, is used to set these parameters. For the parameters
in MILES [3], we find thatλ = 0.2 andσ2 = 1 give the
besttest performancefor the SIVAL data set. Hence, we fix
λ = 0.2 andσ2 = 1 for MILES in all the following exper-



iments. The average AUC (area under the ROC curve) val-
ues with 95% confidence interval for the 25 categories are
reported in Table1, in which ACCIO! is introduced in [12].
We can see that EC-SVM achieves the best performance for
most categories.

Table 1. Average AUC values (in percent) with 95% confidence
interval over 30 rounds of test on the SIVAL image set. The best
performance is shown in bold.

Category ID EC-SVM MILES MI-Winnow ACCIO!

1 93.8± 2.1 90.2 ± 2.3 83.0 ± 3.6 77.0 ± 3.4
2 68.0± 2.6 64.5 ± 2.5 58.5 ± 5.9 63.4 ± 3.4
3 69.1± 2.9 68.1 ± 3.1 59.8 ± 3.1 65.9 ± 3.3
4 74.1± 2.4 72.6 ± 2.5 58.6 ± 5.1 69.5 ± 3.4
5 88.1± 1.1 84.0 ± 2.3 86.1 ± 1.5 68.8 ± 2.3
6 85.6± 1.6 81.2 ± 2.7 72.5 ± 3.8 67.9 ± 2.2
7 96.9± 0.5 93.7 ± 1.2 93.2 ± 1.2 90.8 ± 1.6
8 94.6± 0.8 92.4 ± 0.8 91.9 ± 2.4 81.5 ± 3.5
9 75.0± 2.4 71.1 ± 3.2 74.5 ± 4.5 74.7 ± 3.4
10 90.3± 1.3 85.3 ± 1.7 84.4 ± 1.7 83.7 ± 1.9
11 83.0± 1.3 77.1 ± 3.1 72.0 ± 3.1 65.3 ± 1.5
12 97.9± 0.5 97.1 ± 0.7 95.6 ± 1.1 86.6 ± 3.0
13 94.2± 0.8 93.9 ± 0.7 88.7 ± 1.5 86.9 ± 1.7
14 68.0 ± 2.8 68.2 ± 3.1 58.5 ± 3.0 72.7± 2.3
15 87.5± 1.4 80.7 ± 2.9 74.1 ± 4.9 77.7 ± 2.6
16 86.9 ± 2.2 91.2± 1.7 86.4 ± 3.0 87.3 ± 3.0
17 67.3 ± 3.3 78.7 ± 2.9 72.1 ± 5.8 79.2± 2.6
18 61.3± 1.8 58.2 ± 1.6 52.9 ± 2.5 57.6 ± 2.3
19 68.6± 2.3 61.7 ± 2.4 58.3 ± 3.1 62.8 ± 1.7
20 84.6± 1.9 77.5 ± 2.6 72.4 ± 3.8 77.4 ± 3.3
21 85.4 ± 1.2 80.4 ± 2.0 85.6± 1.8 71.9 ± 2.5
22 75.6± 2.3 68.7 ± 2.4 72.4 ± 3.8 70.2 ± 3.2
23 74.2 ± 3.2 73.2 ± 3.1 70.4 ± 5.3 77.5± 2.3
24 94.3± 0.6 88.1 ± 2.2 90.7 ± 1.4 82.0 ± 2.4
25 66.9± 1.7 62.1 ± 2.5 57.0 ± 2.9 66.7 ± 1.7

Average 81.3 78.4 74.8 74.6

We further test EC-SVM by varying the size of the train-
ing set. The average AUC values for all 25 categories over
30 rounds of test, together with the results reported by other
methods, are listed in Table2, in which the first row shows
the number of training images for each class. For example,
the number “1” refers to the case in which one positive im-
age and one negative image are selected for training and all
other images for testing. We can see that EC-SVM achieves
the best performance for all cases.

Table 2. Average AUC values (in percent) for all 25 categories over
30 rounds of test on the SIVAL image set. N/A denotes the case
in which the corresponding method did not report results for that
setting.

1 2 4 8 12

MISSL [10] N/A N/A N/A 74.8 N/A
MI-Winnow N/A N/A 66.8 74.8 79.4
MILES 58.7 64.5 71.7 78.4 82.0
EC-SVM 66.0 70.1 76.0 81.3 84.2

5.1.2 Evaluation on COREL Data Set

As in MILES [3], we choose 2,000 images from 20 (cate-
gory 0 to category 19) COREL Photo CDs. Each CD con-

tains 100 images representing a different category. The im-
ages are in JPEG format with size384× 256 or 256× 384.
We use the same image segmentation and feature represen-
tation methods in MILES to construct the corresponding
bags and instances. After segmentation, each region in an
image is characterized by a nine-dimensional feature vector
representing the color, texture and shape information from
the region. Figure4 shows one sample image from each of
the 20 categories. The categories are ordered in a row-wise
manner from the upper-leftmost image (category 0) to the
lower-rightmost image (category 19).

Figure 4. Sample images from the 20 categories of the COREL
image set.

Because MILES has achieved better results than many
other methods [3], including both global methods and local
methods, we choose MILES as thebaselinefor comparison.
As in [3], we chooseλ from 0.1 to 0.6 with step size 0.05
andσ2 from 5 to 15 with step size 1. We find thatλ = 0.2
andσ2 = 11 give the besttest performancefor MILES on
the COREL data set. Hence, we fixλ = 0.2 andσ2 = 11
for MILES in all the following experiments.

For each category, we use the “one-versus-the-rest”
strategy to evaluate the performance. In each round,
n ∈ {1, 2, 4} randomly selected positive images andn ran-
domly selected negative images are chosen to form the
training set and the remaining2, 000 − 2n images to form
the test set. The results are reported based on 50 rounds
of independent test. Although the target objects in differ-
ent categories, or the target objects from the same category



but in different images, may be partitioned into different
number of regions, we simply set the parameterm in Algo-
rithm 1 to 3. The parameterC and Gaussian kernel param-
eterr for SVM in LIBSVM [ 2] are set to 1 and2−3 respec-
tively. Table3 lists the results of the average AUC values
(in percent) for all 20 categories with 95% confidence inter-
val over 50 rounds of test. Once again, EC-SVM achieves
better results than MILES.

Table 3. Average AUC values (in percent) for all 20 categories
with 95% confidence interval over 50 rounds of test on the COREL
image set.

n 1 2 4

MILES 64.4± 1.1 72.2± 0.8 79.6± 0.6

EC-SVM 76.4± 0.6 80.0±0.4 83.2±0.3

Figure5 shows the average AUC values with 95% confi-
dence interval for each category whenn = 1.
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Figure 5. Comparison on the COREL data set with one positive
and one negative examples labeled.

5.2. Sensitivity to Labeling Noise

We use the same setting as that in MILES [3] to evaluate
the noise sensitivity on the COREL data set. We addd%
of noise by changing the labels ofd% of positive bags and
d% of negative bags. We compare EC-SVM with DD-SVM
and MILES under different noise levels based on 200 im-
ages from Category 2 (“Historical buildings”) and Category
7 (“Horses”). The training and test sets are of the same size.
The average classification accuracy over five randomly gen-
erated test sets is shown in Figure6. We can see that MILES
and EC-SVM are much more robust than DD-SVM, and the
robustness of EC-SVM is comparable with MILES.

We further test the noise sensitivity of EC-SVM on the
SIVAL data set. We compare EC-SVM with MILES under
different noise levels (n/30, n = 1, . . . , 9), by negating the
labels ofn positive andn negative training images, based on
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Figure 6. Comparison of sensitivity to labeling noise on the
COREL data set.

120 images from Category 7 (“CheckeredScarf”) and Cat-
egory 12 (“FabricSoftenerBox”). The training and test sets
are of the same size. The average classification accuracy
with 95% confidence interval over 30 randomly generated
test sets is shown in Figure7. We can see that EC-SVM is
much more robust than MILES on the SIVAL data set.
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Figure 7. Comparison of sensitivity to labeling noise on the SIVAL
data set.

The SIVAL data set differs from the COREL data set in
many aspects. In COREL, the target object occupies a large
portion of the whole image, while in SIVAL the main part of
an image is the background. Furthermore, the background
of some category in COREL is always specific to that cat-
egory of images. For example, in general, the background
in the images of “Historical buildings” (Category 2) is very
different from the background in the images of “Horses”
(Category 7), which can be easily seen from Figure4. But
for SIVAL, the background for one category can appear for
another category. MILES uses all the instances, from both
positive training bags and negative training bags, as the ba-
sis for feature construction [3]. This will make the effect



of instances from the background dominate the effect of the
evidence instances on SIVAL. Because the background can
appear in either positive or negative bags, the features based
on instances from the background actually have very low
discrimination ability. Hence, the useful features in MILES
are very limited. As a result, MILES will be more easily
affected by noise on the SIVAL data set. This might be the
cause for the phenomenon that MILES is much more sensi-
tive to noise on the SIVAL data set.

5.3. Computation Cost

Table4 lists the training time (on a 2GHz PC with 1G
memory) required by DD-SVM, MILES, and EC-SVM.
“SIVAL” refers to the time for training 25 classifiers for
all the 25 categories when four positive and four negative
images are used as the training set on the SIVAL data set.
“COREL” refers to the time for training 20 classifiers for all
the 20 categories when four positive and four negative im-
ages are used as the training set on the COREL data set. To
test the scalability of EC-SVM, we also evaluate the train-
ing time on the COREL data set based on a training set of
500 images, denoted as “COREL2”, which has been used
for efficiency comparison in MILES [3]. We can see that
EC-SVM is much more efficient.

Table 4. Computation time comparison (in minutes).
SIVAL COREL COREL2

DD-SVM N/A N/A 40
MILES 0.34 0.064 0.85
EC-SVM 0.23 0.005 0.2

6. Conclusion and Future Work

Considering the high computation cost and high noise
sensitivity of DD-SVM, and the very high dimensionality of
the feature vectors used by MILES, the feature representa-
tion scheme proposed in this paper is a much more practical
one to effectively describe the bags in MIL.

Although very promising performance has been
achieved by our method even though we simply use prior
knowledge to determine how many evidence instances
should be identified from each positive bag, a better choice
is to learn this parameter from data. Different positive
bags might have different numbers of evidence instances.
Hence, how to adaptively identify the appropriate number
of evidence instances for each positive bag will be pursued
in our future work.

Furthermore, in CBIR, it is easy to get a large number
of unlabeled images from the image repository. Hence,
semi-supervised learning methods, which can incorporate
unlabeled data into the training process, are very meaning-
ful for CBIR. This will also be pursued in our future work.
For example, we can apply manifold regularization [1] for
semi-supervised localized CBIR.
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