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Abstract. Many linear discriminant analysis (LDA) and kernel Fisher
discriminant analysis (KFD) methods are based on the restrictive as-
sumption that the data are homoscedastic. In this paper, we propose
a new KFD method called heteroscedastic kernel weighted discriminant
analysis (HKWDA) which has several appealing characteristics. First,
like all kernel methods, it can handle nonlinearity efficiently in a disci-
plined manner. Second, by incorporating a weighting function that can
capture heteroscedastic data distributions into the discriminant criterion,
it can work under more realistic situations and hence can further enhance
the classification accuracy in many real-world applications. Moreover, it
can effectively deal with the small sample size problem. We have per-
formed some face recognition experiments to compare HKWDA with
several linear and nonlinear dimensionality reduction methods, showing
that HKWDA consistently gives the best results.

1 Introduction

In many classification applications in machine learning and pattern recognition,
dimensionality reduction of the input space often plays an important role in re-
ducing the complexity of the classification model and possibly leading to higher
classification accuracy in the lower-dimensional feature space. This process is
typically referred to as feature extraction or feature selection1. Linear discrim-
inant analysis (LDA) is a classical linear dimensionality reduction method for
feature extraction that has been used successfully for many classification appli-
cations. However, traditional LDA suffers from at least two limitations. First,
the solution of LDA is optimal only when the data distributions for different
classes are homoscedastic. In particular, the probability density functions of all
classes are assumed to be Gaussian with identical covariance matrix. Second, for
multi-class problems involving more than two classes, the linear transformation
of traditional LDA tends to preserve the inter-class distances of well-separated
classes in the input space at the expense of classes that are close to each other
leading to significant overlap between them, so the overall discrimination ability
is further degraded. To overcome the first limitation, the maximum likelihood
1 Feature selection may be regarded as a special case of feature extraction in which

each feature is either selected or not selected as a binary decision.
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approach [1] and mixture discriminant analysis [2] have been proposed. More
recently, Loog et al. [3] proposed a heteroscedastic extension to LDA based on
the Chernoff criterion. Some methods have also been proposed to overcome the
second limitation. For example, [4, 5, 6] proposed using a monotonically decreas-
ing weighting function based on Euclidean distance to balance the contribution
of different class pairs to the total optimization criterion. Loog et al. [7] pro-
posed an approximate pairwise accuracy criterion which defines the weighting
function based on Bayesian error information of the class pairs. More recently,
Qin et al. [8] proposed the weighted pairwise Chernoff criterion which combines
the strengths of the earlier works of Loog et al. [3, 7] while it overcomes the
two limitations above simultaneously. In fact, the methods in [4, 5, 6, 7] may be
regarded as special cases of [8].

On the other hand, those LDA-based algorithms generally suffer from the so-
called small sample size problem which arises in many real-world applications
when the number of examples is smaller than the input dimensionality, i.e., the
data are undersampled. A traditional solution to this problem is to apply PCA
in conjunction with LDA, as was done for example in Fisherfaces [9]. Recently,
more effective solutions, sometimes referred to as direct LDA (DLDA) methods,
have been proposed [10, 11, 12, 13, 14]. All DLDA methods focus on exploiting the
discriminatory information in the null space of the within-class scatter matrix
where most discriminatory information that is crucial for classification exists.

While LDA-based methods perform well for many classification applications,
their performance is unsatisfactory for many other classification problems in
which nonlinear decision boundaries are necessary. Motivated by kernel machines
such as support vector machine (SVM) and kernel principal component analysis
(KPCA) [15], nonlinear extension of LDA called kernel Fisher discriminant anal-
ysis (KFD) by applying the “kernel trick” has been shown to improve over LDA
for many applications [16, 17, 18, 19, 20, 21, 22, 23, 24]. The basic idea of KFD is
to map each input data point x via a nonlinear mapping φ implicitly to a feature
space F and then perform LDA there. Mika et al. [16] first proposed a two-class
KFD algorithm which was later generalized by Baudat and Anouar [17] to give
the generalized discriminant analysis (GDA) algorithm for multi-class problems.
Subsequently, a number of KFD algorithms [18, 19, 20, 21, 22, 23, 24] have been
developed. However, these KFD-based algorithms suffer from the small sample
size problem a lot more than the LDA-based ones since the kernel-induced fea-
ture space is typically of very high or even infinite dimensionality. Many methods
have been proposed to address this problem. Mike et al. [16] proposed adding a
small multiple of the identity matrix to make the inner product matrix invert-
ible. Baudat and Anouar [17] and Xiong et al. [18] used QR decomposition to
avoid the singularity of the inner product matrix. Park et al. [19] proposed the
KFD/GSVD algorithm by employing generalized singular value decomposition
(GSVD). Yang [20] adopted the technique introduced in Fisherfaces [9], i.e., ker-
nel Fisherfaces. Lu et al. [21] proposed the kernel direct discriminant analysis
(KDDA) algorithm based on generalization of the LDA algorithm in [11]. Re-
cently, [22, 23] presented a further enhanced method called the kernel generalized
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nonlinear discriminant analysis (KGNDA) algorithm which is based on the theo-
retical foundation established in [24]. More specifically, it attempts to exploit the
crucial discriminatory information in the null space of the within-class scatter
matrix in the feature space F .

Similar to traditional LDA, however, most existing KFD-based algorithms,
including KGNDA, are not optimal under the multi-class case as they tend to
overemphasize the classes that are more separable and at the same time they
are incapable of dealing with heteroscedastic data that are commonly found in
real-world applications. In this paper, based on the idea of weighted pairwise
Chernoff criterion proposed in [8], we further improve the overall discrimination
ability of KGNDA by proposing a novel KFD algorithm called heteroscedastic
kernel weighted discriminant analysis (HKWDA). We study the combination of
the weighted pairwise Chernoff criterion and nonlinear techniques based on KFD
directly, as the linear case can simply be seen as a special case when the mapping
is linear, i.e., φ(x) = x. Our method mainly focuses on improvement of the
discriminatory information in the null space of the within-class scatter matrix, for
two main reasons. First, this discriminatory information is crucial for improving
the classification accuracy. Second, improving this discriminatory information is
also the focus of other related works [10, 11, 12, 13, 14, 21, 22, 23, 24]. As a result,
our proposed method has several appealing characteristics. First, like all kernel
methods, it can handle nonlinearity efficiently in a disciplined manner. Second,
by incorporating a weighting function that can capture heteroscedastic data
distributions into the discriminant criterion, it can work under more realistic
situations and hence can further enhance the classification accuracy in many
real-world applications. Moreover, it can effectively deal with the small sample
size problem. To demonstrate the efficacy of HKWDA, we compare it with several
existing dimensionality reduction methods on face recognition where both the
nonlinearity problem and the small sample size problem generally exist.

2 Existing Kernel Fisher Discriminant Analysis
Algorithms

As discussed above, KFD algorithms essentially perform LDA in the feature
space F . Computation of the inner product of two vectors in F does not require
applying the nonlinear mapping φ explicitly when the kernel trick is applied
through using a kernel function k(x,y) = φ(x)T φ(y). We regard a matrix as
an operator in the feature space F which is a Hilbert space. Moreover, for any
operator A in a Hilbert space H (which may be the feature space F), we let
A(0) denote the null space of A, i.e., A(0) = {x|Ax = 0}, and A⊥(0) denote
the orthogonal complement space of A(0), i.e., A(0)

⊕
A⊥(0) = H.

Let xi (i = 1, . . . , N) denote N points in the training set X . We partition
X into c disjoint subsets Xi, i.e., X =

⋃c
i=1 Xi, where Xi consists of Ni points

that belong to class i with N =
∑c

i=1 Ni. The between-class scatter opera-
tor Sb, within-class scatter operator Sw, and population scatter operator St

can be expressed as follows [24]: Sb = 1
N

∑c
i=1 Ni(mi − m)(mi − m)T , Sw =
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1
N

∑c
i=1

∑
xj∈Xi

(φ(xj)−mi)(φ(xj)−mi)T , and St = Sb+Sw = 1
N

∑N
i=1(φ(xi)−

m)(φ(xi)−m)T , where mi = 1
Ni

∑
xj∈Xi

φ(xj) denotes the sample mean of class

i in F and m = 1
N

∑N
i=1 φ(xi) denotes the sample mean of all N points in F .

We maximize the following criterion function to find the optimal coefficients w
for the discriminants:

J(w) =
wT Sbw
wT Sww

. (1)

However, many algorithms [16, 17, 18, 19, 20, 21] presented for KFD have not ef-
fectively solved the small sample size problem with respect to (5) and they gen-
erally discard the intersection space Sw(0)

⋂
S⊥

b (0) which potentially contains
useful discriminatory information that can help to improve the classification ac-
curacy. Recently, KGNDA was proposed to solve this problem [22, 23, 24]. To
prevent the loss of crucial discriminatory information, the procedure of comput-
ing optimal discriminant coefficients in F , which essentially can be considered as
a nonlinear extension of DLDA [10, 12, 13, 14], is applied in KGNDA. KGNDA
is based on the assumption that discriminatory information in F can be ob-
tained from the intersection space Sw(0)

⋂
S⊥

t (0), since the intersection space
Sw(0)

⋂
S⊥

t (0) is equivalent to the intersection space Sw(0)
⋂

S⊥
b (0) in practice.

To obtain Sw(0)
⋂

S⊥
t (0), KGNDA first computes S⊥

t (0) by the eigenanalysis of
St in F (which essentially performs KPCA), and then obtains this intersection
space by the eigenanalysis of the projection of Sw in S⊥

t (0). Since Sw(0)
⋂

S⊥
t (0)

can be obtained, KGNDA computes the discriminant coefficients in this inter-
section space without discarding the useful discriminatory information there.
Besides this crucial discriminatory information in Sw(0)

⋂
S⊥

t (0), KGNDA also
obtains some other discriminatory information in S⊥

w(0)
⋂

S⊥
t (0) at the same

time. More details can be found in [22, 23, 24]. Since it is generally believed that
the subspace Sw(0)

⋂
S⊥

b (0) or Sw(0)
⋂

S⊥
t (0) contains most discriminatory in-

formation for classification, many recently developed discriminant analysis algo-
rithms [10, 11, 12, 13, 14, 21, 22, 23, 24, 25] actually mainly focus on this subspace.

3 Our Heteroscedastic Kernel Weighted Discriminant
Analysis Algorithm

Since KFD is essentially LDA in the feature space F , the two limitations of
traditional LDA, i.e., data homoscedasticity assumption and overemphasis on
well-separated classes, as discussed in Section 1 are still applicable here. In this
section, we present our HKWDA algorithm based on the weighted pairwise Cher-
noff criterion, by incorporating into the discriminant criterion in F a weighting
function that does not rely on the restrictive homoscedasticity assumption. The
theoretical results outlined in this section can be proved by applying tools from
functional analysis in the Hilbert space, but their proofs are omitted here due
to space limitation.

Based on the multi-class Chernoff criterion presented in [3], we replace the con-
ventional between-class scatter operator Sb by a positive semi-definite between-
class operator So as defined below:
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So =
1

N2

c∑

i=1

c∑

j=i+1

NiNjS1/2
w {(S−1/2

w Si,jS−1/2
w )−1/2S−1/2

w (mi − mj) ×

(mi − mj)T S−1/2
w (S−1/2

w Si,jS−1/2
w )−1/2 +

1
πiπj

[log(S−1/2
w Si,jS−1/2

w ) −

πi log(S−1/2
w SiS−1/2

w ) − πj log(S−1/2
w SjS−1/2

w )]}S1/2
w , (2)

where πi = Ni/(Ni + Nj) and πj = Nj/(Ni + Nj) are the prior probabilities of
classes i and j, respectively, Si,j = πiSi + πjSj , and Si and Sj the covariance
operators of classes i and j, respectively. The detailed derivation is omitted here
but can be found in [3].

Although the multi-class Chernoff criterion can effectively handle heterosceda-
stic data, it still cannot overcome the second limitation mentioned above. More-
over, direct computation of So in F is inconvenient or even computationally
infeasible. To overcome the second limitation, we introduce a weighting func-
tion to the discriminant criterion as in [4, 5, 7], where a weighted between-class
scatter operator is defined to replace the conventional between-class scatter op-
erator. To overcome both limitations and make the computation in F tractable
simultaneously, we define a weighted between-class scatter operator SB on the
Chernoff distance measure in F based on the previous work in [3, 4, 5, 7, 8]:

SB =
1

N2

c−1∑

i=1

c∑

j=i+1

NiNjw(di,j)(mi − mj)(mi − mj)T , (3)

with the weighting function defined as w(di,j) = 1
2d2

i,j
erf( di,j

2
√

2
), where erf(z) =

2√
π

∫ z

0 e−t2dt is the pairwise approximated Bayesian accuracy and di,j =
πiπj

2 (mi − mj)S−1
i,j (mi − mj) + 1

2 (log |Si,j | − πi log |Si| − πj log |Sj |) is the
pairwise Chernoff distance measure between the means of classes i and j in
F . From the definition of the weighting function w(di,j), it can be seen that
classes that are closer together in the feature space and thus can potentially
impair the classification performance should be more heavily weighted in the
input space. In addition, by considering the pairwise Chernoff distance, the het-
eroscedastic characteristic can be explicitly taken into account. One method for
computing the Chernoff distance between two classes in the feature space has
been presented in [26], which is based on the kernel extension of the probabilistic
principal component analysis [27].

Based on the weighted between-class scatter operator SB defined in (3), we
define a new population scatter operator ST = SB +Sw. Same as the traditional
scatter operators, the new scatter operators satisfy the following properties.

Lemma 1. Both the operators SB and ST are

1. bounded,
2. compact,
3. self-adjoint (symmetric), and
4. positive on the Hilbert space F .
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From Lemma 1 and [24], we define our new kernel discriminant criterion as
follows.

Definition 1. The weighted pairwise Chernoff criterion in F is defined as

J1(w) =
wT SBw
wT Sww

or J2(w) =
wT SBw
wT ST w

. (4)

From [21], both criteria are equivalent in that they should lead to the same
solution. According to Lemma 1, Definition 1 and the recent work in [22, 23, 24],
we assume the crucial discriminatory information with respect to J1(w) or J2(w)
only exists in the intersection space Sw(0)

⋂
S⊥

B(0).

Lemma 2. The space Sw(0)
⋂

S⊥
B(0) is equivalent to the space Sw(0)

⋂
S⊥

T (0).

From Lemma 2, the crucial discriminatory information can also be obtained from
the intersection space Sw(0)

⋂
S⊥

T (0).2 However, it is intractable to compute this
intersection space for two reasons. First, it is intractable to compute Sw(0) since
the dimensionality of F may be arbitrarily large or even infinite. Second, it is
intractable to compute S⊥

T (0) by the eigenanalysis of ST , since ST = SB + Sw.
Fortunately, we note the following two lemmas.

Lemma 3. The discriminant vectors with respect to J1(w) and J2(w) can be
computed in the space S⊥

T (0) without any loss of the discriminatory information.

Lemma 4. The space S⊥
T (0) is equivalent to the space S⊥

t (0).

According to Lemma 3, it is more reasonable to first compute S⊥
T (0). Moreover,

from Lemma 4, we can use Sw(0)
⋂

S⊥
t (0) in place of Sw(0)

⋂
S⊥

T (0).
From KGNDA [22, 23, 24], we can compute the intersection space Sw(0)

⋂
S⊥

t (0)
by the eigenanalysis of St and Sw in F , as follows:

– Eigenanalysis of St in F :
To obtain S⊥

t (0), we need to compute the orthonormal basis of S⊥
t (0) which

can be obtained by applying KPCA. Then, St in (4) can be rewritten as:

St =
N∑

i=1

φ̄(xi)φ̄(xi)T = ΦtΦ
T
t , (5)

where φ̄(xi) =
√

1/N(φ(xi)−m) and Φt = [φ̄(x1), . . . , φ̄(xN )]. It is generally
believed that direct computation of the orthonormal basis is intractable,
since the order of the operator St is arbitrarily large or even infinite in F .
One solution is to compute the eigenvectors and eigenvalues of N ×N matrix
ΦT

t Φt [22, 23, 24, 26].
For all training examples {φ(xi)}N

i=1 in F , we can define an N ×N kernel
matrix K as K = [kij ]N×N , where kij = φ(xi)T φ(xj). Hence, by the kernel
trick, ΦT

t Φt can be expressed as
2 In fact, direct computation of S⊥

B(0) will lead to some loss of the crucial discrimina-
tory information. See [23, 25] for analysis of KDDA [21].
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ΦT
t Φt =

1
N

[

K − 1
N

(K1N×N + 1N×NK) +
1

N2 1N×NK1N×N

]

, (6)

where 1N×N is an N×N matrix with all terms being one. Let λi and
ei (i = 1, . . . , m) be the ith positive eigenvalue and the corresponding eigen-
vector of ΦT

t Φt, respectively. According to [22, 23, 24, 26], it is clear that
vi = Φteiλ

−1/2
i (i = 1, . . . , m) constitute the orthonormal basis of S⊥

t (0).

– Eigenanalysis of Sw in F :
Projecting Sw onto the subspace spanned by vi = Φteiλ

−1/2
i (i = 1, . . . , m),

it is clear that the projection S̄w of Sw in this subspace can be expanded as

S̄w = VT SwV = ET ΞT ΞE. (7)

Here, V = [v1, . . . ,vm], E = [e1λ
−1/2
1 , . . . , emλ

−1/2
m ], and Ξ = K/N −

1N×NK/N2 − AN×NK/N + 1N×NKAN×N/N2, where AN×N = diag(A1,
. . . ,Am) is a block-diagonal matrix with Ai being an Ni × Ni matrix with
all its terms equal to 1/Ni.

Let P = [γ1, . . . , γl] be the corresponding eigenvectors of the zero eigen-
values of S̄w. So it is clear that Sw(0)

⋂
S⊥

T (0) can be spanned by VP.
Then, the optimal discriminant vectors with respect to J1(w) or J2(w) can
be computed in Sw(0)

⋂
S⊥

T (0) without the loss of crucial discriminatory in-
formation. From [22, 23, 24], since the between-class distance is equal to zero
in Sw(0)

⋂
S⊥

T (0), the weighted pairwise Chernoff criterion in (9) can be re-
placed by Ĵ(w) = PT VT SBPV. By the kernel trick, it can be expanded as:

Ĵ(w) = PT VT SBVP = PT ET

⎡

⎣
c−1∑

i=1

c∑

j=i+1

(√
NiNj

N3/2 w(di,j)ZT
i,jZi,j

)⎤

⎦EP,

(8)
where P = [γ1, . . . , γl], V = [v1, . . . ,vm], E = [e1λ

−1/2
1 , . . . , emλ

−1/2
m ],

Zi,j = KLi + HKLj − KLj − HKLi, H is an N × N matrix with all
terms being 1/N , Li is an N × 1 matrix where the terms corresponding to
class i are 1/Ni and the remaining terms are zero. It is clear that the matrix
PT VT SBVP is a tractable l× l matrix. Let zi (i = 1, . . . , l) be the eigenvec-
tors of PT VT SBVP, sorted in descending order of the corresponding eigen-
values λi. According to [22, 23, 24], it is clear that Yi = VPzi (i = 1, . . . , l)
constitute the optimal discriminant vectors with respect to the weighted
pairwise Chernoff criterion (4) in F .

This gives the new HKWDA algorithm. For an input pattern x, its projec-
tion onto the subspace spanned by Θ = [Y1, . . . ,Yl] can be computed as
z = ΘT φ(x). This expression can be rewritten via the kernel trick as follows:

z =
√

1
N (z1, . . . , zl)T PT ET kx, where kx = (K(x,x1) − 1

N

∑N
i=1 K(x,xi), . . . ,

K(x,xN ) − 1
N

∑N
i=1 K(x,xi))T .
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Thus, HKWDA can give a low-dimensional representation with enhanced dis-
criminating power on the whole. Moreover, this method also effectively addresses
the nonlinearity problem and the small sample size problem.

4 Experimental Results

To assess the performance of the HKWDA algorithm proposed in this paper,
we conduct some face recognition experiments to compare HKWDA with other
dimensionality reduction methods. Note that typical face recognition applica-
tions suffer from the small sample size problem and require nonlinear methods,
which are particularly suitable for demonstrating the strengths of HKWDA.
In addition, real-world face image databases seldom satisfy the restrictive ho-
moscedasticity assumption.

Our experiments are performed on two different data sets:

1. Mixed data set of 1545 images from 117 subjects which are obtained from
four different image sources:
– 47 subjects from the FERET database, with each subject contributing

10 gray-scale images.
– 40 subjects from the ORL database, with each subject contributing 10

gray-scale images.
– 20 subjects from the UMIST database, with a total of 575 gray-scale

images.
– 10 subjects from the YaleB database, with each subject contributing 10

gray-scale images.
2. A subset of the FERET database: 200 subjects each with four different

images.

The gray-level and spatial resolution of all images in both data sets are 256
and 92×112, respectively. Since there exist large variations in illumination, facial
expression and pose in both data sets, the distribution of the face image patterns
is highly nonlinear, complex, and heteroscedastic.

Both data sets are randomly partitioned into two disjoint sets for training
and testing, respectively. For the mixed data set, five images per subject are
randomly chosen for training while the rest for testing; for the subset of the
FERET database, three images per subject are randomly chosen from the four
images available for each subject for training while the rest for testing. For each
feature representation obtained by a dimensionality reduction method, we use
a simple minimum distance classifier [24] with Euclidean distance measure to
assess the classification accuracy. Each experiment is repeated 10 times and the
average classification rates are reported. For the kernel methods, we use the RBF
kernel function k(z1, z2) = exp(‖z1 − z2‖2/σ) and polynomial kernel function
k(z1, z2) = (zT

1 z2/σ + 1)2 where σ = 109.
To reveal the fact that HKWDA can better utilize the crucial discrimina-

tory information in the null space of the within-class scatter operator, our
first experiment compares HKWDA with the corresponding part of KGNDA
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[22, 23, 24] and a special case of HKWDA, referred to as Euclidean KWDA
(EKWDA), which can be seen as HKWDA where the weighting function is
defined based on the Euclidean distance instead of the Chernoff distance in
the feature space. It is obvious that EKWDA is based on the homoscedasticity
assumption. In addition, to show the effectiveness of the nonlinear extension,
we also compare the corresponding part of the DLDA method [10, 12, 13, 14]
which may be seen as the linear special case of KGNDA. The experimental re-
sults shown in Fig. 1 reveal that, as expected, HKWDA outperforms KGNDA,
EKWDA and DLDA for both kernel functions on the two different data sets.
From the results of paired t-test with significance level 0.05, we can conclude
that the results of HKWDA are significantly better than those of the other
three methods. Since DLDA is a linear method, it cannot effectively extract
nonlinear features and hence the classification rate is very low. Comparing HK-
WDA and EKWDA, we can see that relaxing the homoscedasticity assumption
of the face image data can result in significant improvement in classification
performance.
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Fig. 1. Comparative performance of HKWDA, EKWDA, KGNDA and DLDA.
(a) Polynomial kernel on the mixed data set; (b) RBF kernel on the mixed data
set; (c) Polynomial kernel on the subset of FERET; (d) RBF kernel on the subset
of FERET.
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The second experiment compares HKWDA with several other kernel-based
nonlinear dimensionality reduction methods, including KPCA [15], GDA [17],
kernel Fisherfaces [20], KFD/QR [18], KFD/GSVD [19], and KDDA [21]. Pre-
vious works [22, 23, 24] also compare KGNDA with most of these methods in
detail. Fig. 2 shows the classification rates for different methods based on the
RBF kernel on both data sets. It can be seen that HKWDA is better than KPCA,
GDA, kernel Fisherfaces, KFD/QR, KFD/GSVD and KDDA. In addition, we
also compare different methods based on the average error percentage, which was
originally proposed in [21] and can successfully evaluate the overall effectiveness
of the proposed method compared with other methods. Specifically, in our exper-
imental setting, the average percentage of the error rate of HKWDA over that of
another method can be computed as the average of (1−αi)/(1−βi) (i = 6, . . . , J),
where αi and βi are the recognition rates of HKWDA and another method,
respectively, when i features are used. Using less than six features is not in-
cluded in computing the average error percentages because the recognition rates
are very low for all algorithms. Moreover, the value of J is set to 116 and 199,
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Fig. 2. Comparative performance of HKWDA and several other kernel methods based
on the RBF kernel. (a) Mixed data set; (b) Subset of FERET.

Table 1. Average error percentages for different methods when compared with
HKWDA

Mixed data set Subset of FERET
Algorithm Poly. RBF Poly. RBF
DLDA [10, 12, 13, 14] 76.05% 67.85% 86.47% 82.31%
KPCA [15] 50.33% 45.19% 27.58% 26.38%
GDA [17] 71.17% 86.05% 33.13% 34.76%
Kernel Fisherfaces [20] 51.97% 53.01% 49.93% 27.80%
KFD/QR [18] 45.23% 39.98% 32.87% 58.79%
KFD/GSVD [19] 51.99% 51.87% 52.84% 58.79%
KDDA [21] 85.48% 81.63% 64.48% 63.35%
KGNDA [22, 23, 24] 90.57% 90.81% 91.11% 90.83%
EKWDA 93.39% 93.26% 91.42% 91.95%
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respectively, for the mixed data set and the subset of FERET. The average er-
ror percentages for different methods are summarized in Table 1, showing that
HKWDA is more effective than all other methods. We have performed more
experiments but their results are not included in this paper due to space limita-
tion. For example, we have performed similar experiments on another data set
of 120 subjects selected from the AR database with each subject contributing 7
gray-scale images. All results consistently show that HKWDA outperforms other
competing methods.

5 Conclusion

We have presented a new kernel Fisher discriminant analysis algorithm, called
HKWDA, that performs nonlinear feature extraction for classification appli-
cations. By incorporating an appropriately chosen weighting function into the
discriminant criterion, it can not only handle heteroscedastic data that are com-
monly found in real-world applications, but it can also put emphasis on classes
that are close together for multi-class problems. Experimental results on face
recognition are very encouraging, showing that HKWDA can consistently out-
perform other linear and nonlinear dimensionality reduction methods. Besides
face recognition, we plan to apply HKWDA to other classification applications,
including content-based image indexing and retrieval as well as video and audio
classification.
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