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Abstract. We propose a graph-based semi-supervised symmetric matching
framework that performs dense matching between two uncalibrated wide-baseline
images by exploiting the results of sparse matching as labeled data. Our method
utilizes multiple sources of information including the underlying manifold struc-
ture, matching preference, shapes of the surfaces in the scene, and global epipolar
geometric constraints for occlusion handling. It can give inherent sub-pixel accu-
racy and can be implemented in a parallel fashion on a graphics processing unit
(GPU). Since the graphs are directly learned from the input images without rely-
ing on extra training data, its performance is very stable and hence the method is
applicable under general settings. Our algorithm is robust against outliers in the
initial sparse matching due to our consideration of all matching costs simultane-
ously, and the provision of iterative restarts to reject outliers from the previous
estimate. Some challenging experiments have been conducted to evaluate the ro-
bustness of our method.

1 Introduction

Stereo matching between images is a fundamental problem in computer vision. In this
paper, we focus on matching two wide-baseline images taken from the same static
scene. Unlike many previous methods which require that the input images be either
calibrated [1] or rectified [2], we consider here a more challenging scenario in which
the input contains two images only without any camera information. As a consequence,
our method can be used for more general applications, such as motion estimation from
structure.

1.1 Related Work

Many stereo matching algorithms have been developed. Traditional stereo matching
algorithms [2] were primarily designed for view pairs with a small baseline, and cannot
be extended easily when the epipolar lines are not parallel. On the other hand, existing
wide-baseline methods [3] depend heavily on the epipolar geometry which has to be
provided, often through off-line calibration, while other methods can only recover very
sparse matching [4,5].

Although the epipolar geometry could be estimated on-line, those approaches still
fail frequently for wide-baseline image pairs since the sparse matching result is fragile
and the estimated fundamental matrix often fits only to some parts of the image but not
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the entire image. Region growing based methods [6,7] can achieve denser matching, but
may easily get trapped in local optima. Therefore its matching quality depends heavily
on the result of the initial sparse matching. Also, for image pairs with quite different
pixel scales, it is very difficult to achieve reasonable results due to discrete growing.

Recent research shows that learning techniques can improve the performance of
matching by taking matched pairs as training data or by learning the probabilistic im-
age prior [8] that encodes the smoothness constraint for natural images. However, for
a test image pair, the information learned from other irrelevant images is very weak in
the sense that it is unrelated to the test image pair. Thus the quality of the result greatly
depends on the training data.

1.2 Our Approach

In this work, we explore the dense matching of uncalibrated wide-baseline images by
utilizing all the local, regional and global information simultaneously in an optimization
procedure. We propose a semi-supervised approach to the matching problem requiring
only two input images taken from the same static scene. Since the method does not rely
on any training data, it can handle images from any scene with stable performance.

We consider two data sets, X 1 and X 2, corresponding to the two input images with
n1 = r1 × c1 pixels and n2 = r2 × c2 pixels, respectively. For p = 1, 2,

Xp =
(
xp
1, x

p
2, . . . , x

p
(sp−1)×cp+tp , . . . , x

p
np

)T

, (1)

where xp
(sp−1)×cp+tp represents the pixel located at the coordinate position (sp, tp)

in the p-th image space, sp ∈ {1, · · · , rp}, and tp ∈ {1, · · · , cp}. In this paper,
we define q = 3 − p, meaning that q = 1 when p = 2 and q = 2 when p =
1, and let i = (sp − 1) × cp + tp. For each pixel xp

i , we want to find a match-
ing point located at coordinate position (sq, tq) in the q-th (continuous) image space,
where sq, tq ∈ R. Hence, we can use a label vector to represent the position off-
set from a point in the second image to the corresponding point in the first image:

yp
i = (vp

i , h
p
i )

T =
((
s1, t1

)− (
s2, t2

))T ∈ R2. In this way, our label vector represen-
tation takes real numbers for both elements, thus supporting sub-pixel matching. Let
Yp = (yp

1 , · · · , yp
np )T be the label matrix, and Op = (op

1, · · · , op
np )T be the corre-

sponding visibility vector: op
i ∈ [0, 1] is close to 1 if the 3D point corresponding to

the data point xp
i is visible in the other image, and otherwise close to 0 such as a point

in the occluded region. This notion of visibility may also be interpreted as matching
confidence.

Obviously, nearby pixels are more likely to have similar label vectors. This smooth-
ness constraint, relying on the position of the data points, can be naturally represented
by a graph G = 〈V , E〉 where the node set V represents the data points and the edge
set E represents the affinities between them. In our setting, we have two graphs G1 =〈V1, E1

〉
and G2 =

〈V2, E2
〉

for the two images where V1 =
{
x1

i

}
and V2 =

{
x2

i

}
.

Let N (xp
i ) be the set of data points in the neighborhood of xp

i . The affinities can be
represented by two weight matrices W1 and W2: wp

ij is non-zero iff xp
i and xp

j are
neighbors in Ep.
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In recent years, matching techniques such as SIFT [4] are powerful enough to recover
some sparsely matched pairs. Now, the problem here is, given such matched pairs as
labeled data

〈
X1

l ,Y
1
l

〉
,
〈
X2

l ,Y
2
l

〉
and the affinity matrices W1 and W2, we want to

infer the label matrices for the remaining unlabeled data
〈
X1

u,Y
1
u

〉
,
〈
X2

u,Y
2
u

〉
. For

the sake of clarity of presentation and without loss of generality, we assume that the
indices of the data points are arranged in such a way that the labeled points come before

the unlabeled ones, that is Xp =
(
(Xp

l )
T
, (Xp

u)T )T
. For computation, the index of

the data point can be mapped by multiplying elementary matrices for row-switching
transformations.

In what follows, we formulate in Sec. 2 the matching problem under a graph-based
semi-supervised label propagation framework, and solve the optimization problem via
an iterative cost minimization procedure in Sec. 3. To get reliable affinity matrices for
propagation, in Sec. 4 we learn W1 and W2 directly from the input images which
include color and depth information. The complete procedure of our algorithm is sum-
marized in Alg. 1. More details are given in Sec. 5. Finally, extensive experimental
results are presented in Sec. 6.

2 Semi-supervised Matching Framework

Semi-supervised learning on the graph representation tries to find a label matrix Ŷp

that is consistent with both the initial incomplete label matrix and the geometry of the
data manifold induced by the graph structure. Because the incomplete labels may be
noisy, the estimated label matrix Ŷp

l for the labeled data is allowed to differ from the
given label matrix Yp

l . Given an estimated Ŷp, consistency with the initial labeling can
be measured by

Cp
l

(
Ŷp,Op

)
=

∑
xp

i ∈X p
l

op
i ‖ŷp

i − yp
i ‖2 . (2)

On the other hand, consistency with the geometry of the data in the image space,
which follows from the smooth manifold assumption, motivates a penalty term of the
form

Cp
s

(
Ŷp,Op

)
=

1
2

∑
xp

i ,xp
j∈X p

wp
ijφ

(
op

i , o
p
j

) ∥∥ŷp
i − ŷp

j

∥∥2
, (3)

where φ
(
op

i , o
p
j

)
= 1

2

(
(op

i )
2 +

(
op

j

)2)
. When op

i and op
j are both close to 1, the function

value is also close to 1. This means we penalize rapid changes in Ŷp between points
that are close to each other (as given by the similarity matrix Wp), and only enforce
smoothness within visible regions, i.e., op is large.

2.1 Local Label Preference Cost

Intuitively, two points of a matched pair in the two images should have great similarity
in terms of the features since they are two observations of the same 3D point. Here, we
use a similarity cost function ρp

i (y) to represent the similarity cost between the pixel xp
i

in one image and the corresponding point for the label vector y in the other image space
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(detailed in Subsec. 5.2). On the other hand, if op
i is close to 0, which means that xp

i is
almost invisible and the matching has low confidence, the similarity cost should not be
charged. To avoid the situation when every point tends to have zero visibility to prevent
cost charging, we introduce a penalty term τp

i . When op
i is close to 0, (1− op

i ) τ
p
i will

increase. Also, τp
i should be different for different xp

i . Textureless regions should be
allowed to have lower matching confidence, that is, small confidence penalty, and vice
versa. We use a very simple difference-based confidence measure defined as follows

τp
i = max

xp
j∈N(xp

i)

{∥∥xp
i − xp

j

∥∥}
. (4)

Now, we can define the local cost as

Cp
d

(
Ŷp,Op

)
=

∑
xp

i∈X p

(op
i ρ

p
i (ŷp

i ) + (1− op
i ) τ

p
i ) . (5)

2.2 Regional Surface Shape Cost

The shapes of the 3D objects’ surfaces in the scene are very important cues for match-
ing. An intuitive approach is to use some methods based on two-view geometry to
reconstruct the 3D surfaces. While this is a reasonable choice, it is unstable since the
structure deduced from two-view geometry is not robust especially when the baseline
is not large enough. Instead, we adopt the piecewise planar patch assumption [7]. Since
two data points with high affinity relation are more likely to have similar label vectors,
we assume that the label vector of a data point can be linearly approximated by the
label vectors of its neighbors, as in the manifold learning method called locally linear
embedding (LLE) [9], that is

yp
i =

∑

xp
j∈N(xp

i )
wp

ijy
p
j . (6)

Hence, the reconstruction cost can be defined as

Cr (Yp) =
∑

xp
i∈X p

∥∥∥yp
i −

∑

xp
j∈N(xp

i )
wp

ijy
p
j

∥∥∥
2

= ‖(I−Wp)Yp‖2F . (7)

Let Ap = Wp + (Wp)T −Wp (Wp)T be the adjacency matrix, Dp the diagonal
matrix containing the row sums of the adjacency matrix Ap, and Lp = Dp −Ap the
un-normalized graph Laplacian matrix. Because of the way Wp is defined in Sec. 4, we
have Dp ≈ I. Therefore,

Cr (Yp) ≈ tr
(
(Yp)T LpYp

)
=

∑
xp

i ,xp
j∈X p

ap
ij

∥∥yp
i − yp

j

∥∥2
. (8)

This approximation induces the representation of ap
ij

∥∥yp
i − yp

j

∥∥2
, which makes the

integration of the cost with visibility much easier.
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Now, the data points from each image lie on one 2D manifold (image space). Except
for the occluded parts which cannot be matched, the two 2D manifolds are from the
same 2D manifold of the visible surface of the 3D scene. LLE [10] is used to align the
two 2D manifolds (image spaces) to one 2D manifold (visible surface). The labeled data
(known matched pairs) are accounted for by constraining the mapped coordinates of

matched points to coincide. LetX p
c = X p

l ∪X p
u∪X q

u , Ŷp
c =

((
Ŷp

l

)T
,
(
Ŷp

u

)T
,
(
Ŷq

u

)T )T

and Op
c =

(
(Op

l )
T
, (Op

u)T
, (Oq

u)T )T
. We partition Ap as

Ap =
[

Ap
ll Ap

lu

Ap
ul Ap

uu

]
. (9)

Alignment of the manifold can be done by combining the Laplacian matrix as in [10],
which is equivalent to combining the adjacency matrix:

Ap
c =

⎡
⎣

Ap
ll + Aq

ll Ap
lu Aq

lu

Ap
ul Ap

uu 0
Aq

ul 0 Aq
uu

⎤
⎦ . (10)

Imposing the cost only on the visible data points, the separate LLE cost of each graph
is summed up:

Cp
r

(
Ŷ1, Ŷ2,O1,O2

)
=

∑
xp

i ,xp
j∈X p

c

(ap
c)ij φ

(
(op

c)i , (o
p
c)j

) ∥∥∥(ŷp
c)i − (ŷp

c )j

∥∥∥
2

, (11)

where (ap
c)ij is the element of Ap

c .

2.3 Global Epipolar Geometric Cost

In the epipolar geometry [11], the fundamental matrix F12 = FT
21 encapsulates the

intrinsic projective geometry between two views in the way that, for xp
i at position

(sp, tp) in one image with matching point at position (sq, tq) in the other image, the
matching point (sq, tq) should lie on the line (ap

i , b
p
i , c

p
i ) = (sp, tp, 1)FT

pq . This global
constraint affects every matching pair in the two images. For xp

i , we define dp
i (y) to

be the squared Euclidean distance in the image space of the other image between the
corresponding epipolar line (ap

i , b
p
i , c

p
i ) and the matching point (sq, tq):

dp
i (y) =

(ap
i s

q + bpi t
q + cpi )

2

(ap
i )

2 + (bpi )
2 , (12)

where y = (v, h)T =
((
s1 − s2) , (t1 − t2))T

. The global cost is now the sum of all
squared distances:

Cp
g

(
Ŷp, Op

)
=

∑
xp

i∈X p

op
i d

p
i (ŷp

i ) . (13)
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2.4 Symmetric Visibility Consistency Cost

Assume that xp
i in one image is matched with xq

j in the other image. xq
j should also

have a label vector showing its matching with xp
i in the original image. This symmetric

visibility consistency constraint motivates the following visibility cost

Cp
v

(
Op, Ŷq

)
= β

∑
xp

i∈X p

(
op

i − γp
i

(
Ŷq

))2

+
1
2

∑
xp

i ,xp
j∈X p

wp
ij

(
op

i − op
j

)2
, (14)

where γ
(
Ŷq

)
is a function defined on the p-th image space. For each xp

i , its value via

the γ function indicates whether or not there exist one or more data points that match
a point near xp

i from the other view according to Ŷq . The value at pixel xp
i is close to

0 if there is no point in the other view corresponding to a point near xp
i , and otherwise

close to 1. The parameter β controls the strength of the visibility constraint. The last
term enforces the smoothness of the occlusion that encourages spatial coherence and is
helpful to remove some isolated pixels or small holes of the occlusion.

The γ function can be computed as a voting procedure when Ŷq is available in the

other view. For each point xq
j at position (sq, tq) in X q with label yq

j =
(
vq

j , h
q
j

)T =((
s1, t1

)− (
s2, t2

))T
, equivalent to be matched with a point at position (sp, tp), we

place a 2D Gaussian functionψ (s, t) on the p-th image centered at the matched position
cj = (sp, tp)T . Now, we get a Gaussian mixture model

∑
xq

j
ψcj (s, t) in the voted

image space. Truncating it, we get

γp (s, t) = min
{
1,

∑
xq

j∈X q

ψcj (s, t)
}
. (15)

Our matching framework combines all the costs described above. We now present
our iterative optimization algorithm to minimize the costs.

3 Iterative MV Optimization

It is intractable to minimize the matching and visibility costs simultaneously. There-
fore, our optimization procedure iterates between two steps: 1) the M-step estimates
matching given visibility, and 2) the V-step estimates visibility given matching. Before
each iteration, we estimate the fundamental matrix F by the normalized 8-point algo-
rithm with RANSAC followed by the gold standard algorithm that uses the Levenberg-
Marquardt algorithm to minimize the geometric distance [11]. Then, we use F to reject
the outliers from the matching result of the previous iteration and obtain a set of inliers
as the initial labeled data points. The iterations stop when the cost difference between
two consecutive iterations is smaller than a threshold, which means that the current
matching result is already quite stable. The whole iterative optimization procedure is
summarized in Alg. 1.
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Algorithm 1. The complete procedure
1. Compute the depth and occlusion boundary images and feature vectors (Sec. 5).
2. Compute sparse matching by SIFT and the confidence penalty τ , then interpolate the results

from sparse matching with depth information to obtain an initial solution (Subsec. 5.1).
3. Learn the affinity matrices W1 and W2 (Sec. 4).
4. while (cost change between two iterations ≥ threshold):

(a) Estimate the fundamental matrix F, and reject outliers to get a subset as labeled data
(Sec. 3),

(b) Compute the parameters for the similarity cost function ρ and epipolar cost function d
(Subsec. 5.2 and 2.3),

(c) Estimate matching given visibility (Subsec. 3.1),
(d) Compute the γ map (Subsec. 2.4),
(e) Estimate visibility given matching (Subsec. 3.2).

3.1 M-Step: Estimation of Matching Given Visibility

Actually, the visibility term Cv imposes two kinds of constraints on the matching Ŷ
given the visibility O: First, for each pixel xp

i in the p-th image, it should not match
the invisible (occluded) points in the other image. Second, for each visible pixel in the
q-th image, at least one pixel in the p-th image should match its nearby points. The first
restriction is a local constraint that is easy to satisfy. However, the second constraint is
a global one on the matching of all points, which is implicitly enforced in the matching
process. Therefore, in this step, we approximate the visibility term by considering only
the local constraint [12], which means that some possible values for a label vector,
corresponding to the occluded region, have higher costs than the other possible values.
This variation of the cost can be incorporated into the similarity function ρp

i (y) in Cd.

Let Y =
((

Y1
)T
,
(
Y2

)T )T
. Summing up all the costs and considering the two images

together, our cost function is

CM

(
Ŷ

)
=

∑
p=1,2

(
λlC

p
l + λsC

p
s + λdC

p
d + λrC

p
r + λgC

p
g

)
+ ε

∥∥Ŷ∥∥2
, (16)

where ε
∥∥Ŷ∥∥2

is a small regularization term to avoid reaching degenerate situations.
Fixing O1 and O2, cost minimization is done by setting the derivative with respect to
Ŷ to zero since the second derivative is a positive definite matrix.

3.2 V-Step: Estimation of Visibility Given Matching

After achieving a matching, we can recompute the γ map (Subsec. 2.4). Let O =((
O1

)T
,
(
O2

)T )T
. Then, summing up all the costs and considering the two images

together, our cost function is

CV (O) =
∑

p=1,2

(
λlC

p
l + λsC

p
s + λdC

p
d + λrC

p
r + λgC

p
g + λvC

p
v

)
+ ε ‖O‖2 , (17)
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where ε ‖O‖2 is a small regularization term. Now, for fixed Ŷ1 and Ŷ2, cost mini-
mization is done by setting the derivative with respect to O to zero since the second
derivative is a positive definite matrix.

Since Wp is very sparse, the coefficient matrix of the system of linear equations is
also very sparse in the above two steps. We use a Gauss-Seidel solver or a conjugate
gradient method on GPU [13], which can solve in parallel a large sparse system of linear
equations very efficiently. We can derive that by the way Wp is defined in Sec. 4 and
the cost functions defined in Eq. 16 and Eq. 17, the coefficient matrix is strictly diago-
nally dominant and positive definite. Hence, both Gauss-Seidel and conjugate gradient
converge to the solution of the linear system with theoretical guarantee.

4 Learning the Symmetric Affinity Matrix

We have presented our framework which finds a solution by solving an optimization
problem. Traditionally, for W1 and W2, we can directly define the pairwise affinity
between two data points by normalizing their distance. However, as pointed out by [14],
there exists no reliable approach for model selection if only very few labeled points are
available, since it is very difficult to determine the optimal normalization parameters.
Thus we prefer using a more reliable and stable way to learn the affinity matrices.

Similar to the 3D visible surface manifold of Eq. 6 in Sec. 2.2, we make the smooth
manifold and linear reconstruction assumptions for the manifold in the image space.
We also assume that the label space and image space share the same local linear recon-
struction weights. Then we can obtain the linear reconstruction weight matrix Wp by
minimizing the energy function EWp =

∑
xp
i ∈X p Exp

i
, where

Exp
i

=
∥∥∥xp

i −
∑

xp
j∈N(xp

i )
wp

ijx
p
j

∥∥∥
2

. (18)

This objective function is similar to the one used in LLE [9], in which the low-
dimensional coordinates are assumed to share the same linear reconstruction weights
with the high-dimensional coordinates. The difference here is that we assume the shar-
ing relation to be between the label vectors and the features [15]. Hence, the way we
construct the whole graph is to first shear the whole graph into a series of overlapped
linear patches and then paste them together. To avoid the undesirable contribution of
negative weights, we further enforce the following constraint

∑

xp
j∈N(xp

i )
wp

ij = 1, wp
ij ≥ 0. (19)

From Eq. 18, Exp
i

=
∑

xp
j ,xp

k∈N(xp
i ) w

p
ijG

i
jkw

p
ik, where Gi

jk =
(
xp

i − xp
j

)T (xp
i − xp

k).

Obviously, the more similar is xp
i to xp

j , the larger will wp
ij be. Also, wp

ij andwp
ji should

be the same since they both correspond to the affinity relation between xp
i and xp

j . How-
ever, the above constraints do not either enforce or optimize to have this characteristic,
and the hard constraint wp

ij = wp
ji may result in violation of Eq. 19. Hence, we add a
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soft penalty term
∑

ij

(
wp

ij − wp
ji

)2
to the objective function. Thus the reconstruction

weights of each data point can be obtained by solving the following quadratic program-
ming (QP) problem

min
Wp

∑
xp
i ∈X p

∑

xp
j ,xp

k∈N(xp
i )
wp

ijG
i
jkw

p
ik + κ

∑
ij

(
wp

ij − wp
ji

)2
(20)

s.t. ∀xp
i ∈ X p,

∑

xp
j∈N(xp

i )
wp

ij = 1, wp
ij ≥ 0.

After all the reconstruction weights are computed, two sparse matrices can be con-
structed by Wp =

[
wp

ij

]
while letting wp

ii = 0 for all xp
i . In our experiment, Wp is

almost symmetric and we further update it by Wp ← 1
2

(
(Wp)T + Wp

)
. Since the

soft constraint has made Wp similar to (Wp)T , this update just changes Wp slightly,
and will not lead to unreasonable artifacts. To achieve speedup, we can first partition
the graph into several connected components by the depth information and super-pixel
over-segmentation on the RGB image, and break down the large QP problem into sev-
eral smaller QP problems with one QP for each connected component, then solve them
one by one.

5 More Details

The feature vectors are defined as RGB color. For each image, we recover the occlu-
sion boundaries and depth ordering in the scene. The method in [16] is used to learn
to identify and label occlusion boundaries using the traditional edge and region cues
together with 3D surface and depth cues. Then, from just a single image, we obtain a
depth estimation and the occlusion boundaries of free-standing structures in the scene.
We append the depth value to the feature vector.

5.1 Label Initialization by Depth

We use SIFT [4] and a nearest neighbor classifier to obtain an initial matching. For ro-
bustness, we perform one-to-one cross consistency checking, which matches points of
the first image to the second image, and inversely matches points of the second image
to the first image. Only the best matched pairs consistent in both directions are retained.
To avoid errors on the occlusion boundary due to the similar color of background and
foreground, we filter the sparse matching results and reject all pairs that are too close
to the occlusion boundaries. Taking the remaining as seed points, with the depth in-
formation, region growing is used to achieve an initial dense matching [7]. Then, the
remaining unmatched part is interpolated. Assuming the nearby pixels in the same par-
tition lie on a planar surface, we estimate the homography transformation between two
corresponding regions in the two images. With the estimated homography, the unknown
regions are labeled and the occlusion regions are also estimated.
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5.2 Computing the Similarity Cost Function

As mentioned in Sec. 2.1, the continuous-valued similarity cost function ρp
i (y) rep-

resents the difference between point xp
i and the matching point, characterizing how

suitable it is for xp
i to have label y = (v, h)T . Since our algorithm works with some

labeled data in a semi-supervised manner by the consistent cost Cl, the local cost Cd

just plays a secondary role. Hence, unlike the traditional unsupervised matching [12],
our framework does not heavily rely on the similarity function ρp

i (y). Therefore, for
efficient computation, we just sample some values for some integer combination of

h and v to compute ρp
i (y) = exp(−‖x

p
i−xq

j‖2
2σ2 ). We normalize the largest sampled

value to 1, and then fit ρp
i (y) with a continuous and differentiable quadratic func-

tion ρp
i (y) = (v−vo)2+(h−ho)2

2σ2 , where (vo, ho) and σ are the center and spread of the
parabola for xp

i .

6 Experiments

In all our experiments performed on a desktop PC with Intel Core 2 Duo E6400 CPU
and NVIDIA GeForce 8800 GTX GPU, the number of iterations is always less than 9
before stopping and the computation time is less than 41 seconds for each image pair,
excluding the time spent on estimating the depth for a single image by [16]. We set the
parameters to favor Cl and Cg in the M-step and Cv in the V-step. Since there is no
ground truth in searching for good parameter values, we tune the parameters manually
and then fix them for all experiments. To solve the QP problem for Wp, we first com-
pute a “warm start” without involving the positive constraints using the method in [9],
and then run the active set algorithm on this “warm start”, which converges rapidly in
just a few iterations. We demonstrate our algorithm on various data set in Fig. 2, most
of which have very complex shape with similar color that makes the matching problem
very challenging. Compared with [17], our method can produce more detail, as shown
in Fig. 1. In the figures of the matching results, the intensity value is set to be the norm
of the label vector, that is ‖y‖, and only visible matching with o � 0.5 is shown.

(a) Input image [3] (b) Result from [17] (c) Result of our method

Fig. 1. Comparison with [17]. Attention should be paid to the fine details outlined by red circles.
Also, our method can correctly detect the occluded region and does not lead to block artifacts
that graph cut methods typically give. Subfig. (b) is extracted from Fig. 7 of [17].



Learning Two-View Stereo Matching 25

(a) City Hall Brussels (b) Bookshelf

(c) Valbonne Church

(d) City Hall Leuven (e) Temple (f) Shoe

Fig. 2. Example output on various datasets. In each subfigure, the first row shows the input images
and the second row shows the corresponding outputs by our method.

6.1 Application to 3-View Reconstruction

In our target application, we have no information about the camera. To produce a 3D
reconstruction result, we use three images to recover the motion information. Five ex-
amples are shown in Fig. 3. The proposed method is used to compute the point corre-
spondence between the first and second images, as well as the second and third images.
Taking the second image as the bridge, we can obtain the feature tracks of three views.
As in [18], these feature tracks across three views are used to obtain projective recon-
struction by [19], and are metric upgraded inside a RANSAC framework, followed by
bundle adjustment [11]. Note that the feature tracks with too large reprojection errors
are considered as outliers and are not shown in the 3D reconstruction result in Fig. 3.
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(a) Temple (b) Valbonne Church (c) City Hall Brussels

(d) City Hall Leuven (e) Semper Statue Dresden

Fig. 3. 3D reconstruction from three views. In each subfigure, the first row contains the three
input images and the second row contains two different views of the 3D reconstruction result.
Points are shown without texture color for easy visualization of the reconstruction quality.

7 Conclusion

In this work, we propose a graph-based semi-supervised symmetric matching frame-
work to perform dense matching between two uncalibrated images. Possible future ex-
tensions include more systematic study of the parameters and extension to multi-view
stereo. Moreover, we will also pursue a full GPU implementation of our algorithm
since we suspect that the current running time is mostly spent on data communication
between the CPU and the GPU.
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