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Abstract. Linear discriminant analysis (LDA) is a commonly used method for
dimensionality reduction. Despite its successes, it has limitations under some
situations, including the small sample size problem, the homoscedasticity as-
sumption that different classes have the same Gaussian distribution, and its in-
ability to produce probabilistic output and handle missing data. In this paper, we
propose a semi-supervised and heteroscedastic extension of probabilistic LDA,
called S2HPLDA, which aims at overcoming all these limitations under a com-
mon principled framework. Moreover, we apply automatic relevance determina-
tion to determine the required dimensionality of the low-dimensional space for
dimensionality reduction. We empirically compare our method with several re-
lated probabilistic subspace methods on some face and object databases. Very
promising results are obtained from the experiments showing the effectiveness of
our proposed method.

1 Introduction

The need for dimensionality reduction is pervasive in many applications of pattern
recognition and machine learning due to the high dimensionality of the data involved.
Dimensionality reduction techniques seek to project high-dimensional data either lin-
early or nonlinearly into a lower-dimensional space according to some criterion so as
to facilitate subsequent processing, such as classification. Classical linear dimensional-
ity reduction methods include principal component analysis (PCA) [1] and linear dis-
criminant analysis (LDA) [2], with the former being an unsupervised technique while
the latter a supervised one that exploits the label information in the labeled data. For
classification applications, LDA generally outperforms PCA because label information
is usually useful for finding a projection to improve class separability in the lower-
dimensional space.

Although LDA is widely used in many applications, the method in its original form
does have limitations under some situations. One of them is a well-known limitation
often referred to as the small sample size (SSS) problem [3], which arises in applica-
tions when the sample size is much smaller than the feature dimensionality and hence
the within-class scatter matrix is singular. A number of methods have been proposed to
address this problem, e.g., PseudoLDA [4], PCA+LDA [5], LDA/QR [6], NullLDA [3],
DCV [7], DualLDA [8] and 2DLDA [9]. The main idea underlying these methods is to

W. Buntine et al. (Eds.): ECML PKDD 2009, Part II, LNAI 5782, pp. 602–616, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Heteroscedastic Probabilistic LDA with Semi-supervised Extension 603

seek a space or subspace in which the within-class scatter matrix is nonsingular and then
perform LDA or its variants there without suffering from the singularity problem. More
recently, another approach has been pursued by some researchers [10,11,12] to alleviate
the SSS problem via semi-supervised learning [13], by utilizing unlabeled data in per-
forming dimensionality reduction in addition to labeled data. Another limitation of LDA
arises from the fact that the solution it gives is optimal only when the classes are ho-
moscedastic with the same Gaussian distribution. However, this requirement is too rigid
in practice and hence it does not hold in many real-world applications. To overcome this
limitation, mixture discriminant analysis [14] and a maximum likelihood approach [15]
have been proposed. Recently, Loog and Duin [16] proposed a heteroscedastic exten-
sion to LDA based on the Chernoff criterion, with a kernel extension proposed later
in [17]. The third limitation of LDA comes from its non-probabilistic nature. As such,
it cannot produce probabilistic output and handle missing data in a principled manner.
While producing probabilistic output can help the subsequent decision-making process
in incorporating uncertainty under a probabilistic framework, the missing data prob-
lem is so commonly encountered in applications that being able to deal with it is very
essential to the success of pattern recognition tools for practical applications. Some
probabilistic LDA models have been proposed, e.g., [18,19,20]. A by-product of most
probabilistic LDA models except the one in [18] is that it imposes no restriction on the
maximum number of reduced dimensions, but the original LDA model can only project
data into at most C − 1 dimensions where C is the number of classes. Nevertheless,
previous research in probabilistic LDA [19,20] did not pay much attention to the issue
of how to determine the reduced dimensionality needed.

While various attempts were made previously to address the above limitations indi-
vidually, mostly one or at most two at a time, we are more aggressive here in trying to
address all of them within a common principled framework. Specifically, in this paper,
we will go through a two-step process in our presentation. First, we propose a het-
eroscedastic probabilistic LDA (HPLDA) model which relaxes the homoscedasticity
assumption in LDA. However, in HPLDA, the parameters for each class can only be
estimated using labeled data from that class. This may lead to poor performance when
labeled data are scarce. Motivated by previous attempts that applied semi-supervised
learning to alleviate the SSS problem, we then extend HPLDA to semi-supervised het-
eroscedastic probabilistic LDA (S2HPLDA) by making use of (usually large quantities
of) unlabeled data in the learning process. In S2HPLDA, each class can have a dif-
ferent class covariance matrix and unlabeled data are modeled by a Gaussian mixture
model in which each mixture component corresponds to one class. We also use auto-
matic relevance determination (ARD) [21] to determine the required dimensionality of
the lower-dimensional space which can be different for different classes and hence is
fairly flexible.

The remainder of this paper is organized as follows. In Section 2, we first briefly
review some previous work on probabilistic LDA. We then present HPLDA in Section 3
and S2HPLDA in Section 4. Section 5 reports some experimental results based on face
and object databases to demonstrate the effectiveness of our proposed method. Finally,
Section 6 concludes the paper.
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2 Related Work

To the best of our knowledge, three variants of probabilistic LDA [18,19,20] were pro-
posed before.

In [18], each class is modeled by a Gaussian distribution with a common covariance
matrix shared by all classes and the mean vectors of different classes are modeled by
another Gaussian distribution whose covariance matrix is similar to the between-class
scatter matrix in LDA. The solution of this probabilistic LDA model is so similar to
that of LDA that it, unfortunately, also inherits some limitations of LDA. For example,
it needs probabilistic PCA (PPCA) to perform (unsupervised) dimensionality reduction
first to alleviate the SSS problem and it can only project data to (C − 1) dimensions.

Yu et al. [19] proposed a supervised extension of probabilistic PCA (PPCA) [22]
called SPPCA. This approach can be viewed as first concatenating each data point
with its class indicator vector and then applying PPCA to this extended form. From
the analysis of [23], the maximum likelihood solution of this approach is identical to
that of LDA. Yu et al. [19] also proposed a semi-supervised extension of SPPCA, called
S2PPCA, which can utilize unlabeled data as well.

The model in [20] is slightly different from others. It directly models the between-
class and within-class variances. So each data point can be described as the aggre-
gation of three parts: the common mean which is the mean of the whole dataset, the
between-class variance which describes the characteristics of different classes, and the
within-class variance which describes the characteristics of each data point. Prince and
Elder [20] also gave some extensions of this model useful for face recognition.

3 HPLDA: Heteroscedastic Probabilistic Linear Discriminant
Analysis

Suppose the whole dataset contains l labeled data points {(xi, yi)}l
i=1 from C classes

Πk (k = 1, . . . , C), where xi ∈ R
D with its label yi ∈ {1, . . . , C} and class Πk con-

tains nk examples. Moreover, all data points {xi}l
i=1 are independent and identically

distributed.
HPLDA is a latent variable model. It can be defined as follows:

xi = Wyiti + μyi
+ εi

ti ∼ N (0, Id)

εi ∼ N (0, τ−1
yi

ID), (1)

where τi specifies the noise level of the ith class, ti ∈ R
d with d < D, ID is the D×D

identity matrix and N (m, Σ) denotes a multivariate Gaussian distribution with mean
m and covariance matrix Σ. So for each class Πk, we have a different Wk. This is
different from the models proposed in [18,19,20] in which different classes share the
same matrix W. The graphical model for HPLDA is shown in Figure 1. From (1), we
can get
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P (xi|ti) = N (Wyiti + μyi
, τ−1

yi
ID)

and
P (xi) = N (μyi

, Φyi),

where Φk = WkWT
k +τ−1

k ID . So the log-likelihood L of the data set can be calculated
as

L = −1
2

C∑

k=1

∑

yi=k

[
(xi − μk)T Φ−1

k (xi − μk) + D ln 2π + ln|Φk|
]
, (2)

where |A| denotes the determinant of a square matrix A. We set the derivative of L
with respect to μk to 0 to obtain the maximum likelihood estimate of μk as

μk = m̄k ≡ 1
nk

∑

yi=k

xi. (3)

Fig. 1. Graphical model for HPLDA

Plugging Eq. (3) into (2), the log-likelihood can be simplified as

L = −1
2

C∑

k=1

nk

[
tr(Φ−1

k Sk) + Dln2π + ln|Φk|
]
, (4)

where Sk = 1
nk

∑
yi=k(xi−m̄k)(xi−m̄k)T is the estimated covariance matrix for the

kth class. Since Wk for different classes are independent, we can estimate each Wk

from the following expression:

Lk = −1
2
nk

[
tr(Φ−1

k Sk) + Dln2π + ln|Φk|
]
, (5)
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which is similar to the log-likelihood in PPCA. So, following the analysis in [22], we
can obtain the maximum likelihood estimate of Wk as the eigenvectors of Sk cor-
responding to the largest eigenvalues and τ−1

k is equal to the mean of the discarded
eigenvalues.

3.1 Discussion

If all Wk and τk in (1) are the same, denoted by W and τ , then, from Eq. (4), the
log-likelihood can be expressed as

L = − l

2

[
tr(Φ−1Sw) + Dln2π + ln |Φ|

]
, (6)

where Sw = 1
l

∑C
k=1

∑
yi=k(xi−m̄k)(xi−m̄k)T is the within-class scatter matrix in

LDA and Φ = WWT + τ−1ID . So, also following the analysis in [22], W consists of
the top eigenvectors of Sw and τ−1 is equal to the mean of the discarded eigenvalues.
Then if the data points are whitened by the total scatter matrix, i.e., the total scatter
matrix of the dataset is the identity matrix, the estimated W is just the solution in
traditional LDA.

There are some limitations in our model (1) though. From the above analysis, we
can see that Wk is estimated using the data points from the kth class only. However, in
many applications, labeled data are scarce due to the labeling effort required. So, as a
result, Wk may not be estimated very accurately. On the other hand, unlabeled data are
often available in large quantities at very low cost. It would be desirable if we can also
make use of the unlabeled data in the estimation of Wk. Moreover, the dimensionality
of Wk plays an important role in the performance of our model and it should preferably
be determined automatically. In the next section, we will discuss how to solve these two
problems together.

4 S2HPLDA: Semi-supervised Heteroscedastic Probabilistic
Linear Discriminant Analysis

As in HPLDA, there are l labeled data points {(xi, yi)}l
i=1 from C classes. In addition,

there are u unlabeled data points {xl+1, . . . ,xl+u}, with n = l + u. Each class Πk

contains nk labeled examples. For the labeled data points, we still use (1) to model
them. For the unlabeled data points, we model them using a mixture model in which
each mixture component follows (1) with prior probability p(Πk) = πk . Thus the new
model can be defined as:

xi = Wyiti + μyi
+ εi, for i ≤ l

ti ∼ N (0, Id)

εi ∼ N (0, τ−1
yi

ID)

p(xi) =
C∑

k=1

πkp(xi|Πk), for i > l, (7)
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where ti ∈ R
d. Moreover, we use the ARD method [21] to determinate the dimension-

ality of Wk by introducing a data-dependent prior distribution

p(Wk,j) ∼ N (0, ν−1
kj XLXT ),

where Wk,j is the jth column of Wk, X ∈ R
D×n is the total data matrix including

both labeled and unlabeled data, and L, whose construction will be described later, is the
graph Laplacian matrix defined on X. The graphical model is shown in Figure 2. Using
the data-dependent prior on Wk,j , we are essentially adopting the manifold assump-
tion, which has been widely used in dimensionality reduction [24] and semi-supervised
learning [25]. More specifically, if two points are close with respect to the intrinsic ge-
ometry of the underlying manifold, they should remain close in the embedding space
after dimensionality reduction. The parameter νkj can be viewed as an indicator of the
importance of the corresponding dimension of Wk to determine whether that dimen-
sion should be kept.

Fig. 2. Graphical model for S2HPLDA

We now describe the construction of L. Given the dataset D = {x1, . . . ,xn}, we first
construct a K nearest neighbor graph G = (V, E), with the vertex set V = {1, . . . , n}
corresponding to the labeled and unlabeled data points and the edge set E ⊆ V × V
representing the relationships between data points. Each edge is assigned a weight rij

which reflects the similarity between points xi and xj :

rij =

{
exp

(
− ‖xi−xj‖2

σiσj

)
if xi ∈ NK(xj) or xj ∈ NK(xi)

0 otherwise

where NK(xi) denotes the neighborhood set of the K-nearest neighbors of xi, σi the
distance between xi and its Kth nearest neighbor, and σj the distance between xj and
its Kth nearest neighbor. This way of constructing the nearest neighbor graph is called
local scaling [26]. Then G is the similarity graph with its (i, j)th element being rij , D
is a diagonal matrix whose entries are the column sums of G, and L = D− G.
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Model (7) has parameters {μk}, {τk}, {πk}, {νkj}, {Wk}. We use the expectation
maximization (EM) algorithm [27] to estimate them from data. Here we introduce zi

as a hidden indicator vector for each unlabeled data point xi, with zik being 1 if xi

belongs to the kth class. Since the number of parameters in this model is quite large, we
apply two-fold EM [28] here to speed up convergence. In the E-step of the outer-fold
EM, {zi} are the hidden variables. We estimate p(zik = 1) as:

p(zik = 1) = p(Πk|xi) =
πkp(xi|Πk)

∑C
j=1 πjp(xi|Πj)

where

p(xi|Πk) =
∫

p(xi|ti,Wk, μk, τk)p(ti)dti

= N (xi|μk,WkWT
k + τ−1

k ID).

In the M-step of the outer-fold EM, we aim to estimate {πk} and {μk}. The complete-
data log-likelihood is defined as

LC =
l∑

i=1

ln p(xi|Πyi) +
n∑

i=l+1

C∑

k=1

zik

{
ln

[
πkp(xi|Πk)

]}
.

So the expectation of the complete-data log-likelihood in the M-step of the outer-fold
EM can be calculated as

〈LC〉 =
C∑

k=1

∑

yi=k

{
−1

2
(xi − μk)T Φ−1

k (xi − μk) − 1
2

ln |Φk| − D

2
ln 2π

}
+

C∑

k=1

n∑

i=l+1

〈zik〉
{
−1

2
(xi − μk)T Φ−1

k (xi − μk) − 1
2

ln |Φk| + ln πk − D

2
ln 2π

}
,

where Φk = WkWT
k + τ−1

k ID . We maximize the expectation of the complete-data
log-likelihood with respect to {πi} and {μi}. The update rules are given by

π̃k =

∑n
i=l+1〈zik〉

∑n
i=l+1

∑C
k=1〈zik〉

=
1
u

n∑

i=l+1

〈zik〉

μ̃k =

∑
yi=k xi +

∑n
i=l+1〈zik〉xi

nk +
∑n

i=l+1〈zik〉 ,

where 〈·〉 denotes the expectation of a variable.
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In the E-step of the inner-fold EM, {ti} are the hidden variables. We estimate

p(ti|xi, Πk) = N (ti|Σ−1
k WT

k (xi − μ̃k), τ−1
k Σ−1

k )

〈ti|Πk〉 = Σ−1
k WT

k (xi − μ̃k)

〈titT
i |Πk〉 = τ−1

k Σ−1
k + 〈ti|Πk〉〈ti|Πk〉T ,

with Σk = τ−1
k Id + WT

k Wk.

In the M-step of the inner-fold EM, we aim to estimate {Wk}, {νkj} and {τk}. The
complete-data log-likelihood can be calculated as

L̃C =
l∑

i=1

ln p(xi, ti|Πyi) +
C∑

k=1

d∑

j=1

p(Wk,j) +
n∑

i=l+1

C∑

k=1

〈zik〉 ln{πkp(xi, ti|Πk)}.

The expectation of the complete-data log-likelihood can be calculated as

〈L̃C〉 =

C∑

i=1

∑

yj=i

{
D

2
ln τi − 1

2
tr(〈tjt

T
j |Ci〉) − τi

2
‖xj − μ̃i‖2+

τi〈tj |Ci〉T WT
i (xj − μ̃i) −

τi

2
tr(WT

i Wi〈tjt
T
j |Ci〉)

}
+

C∑

i=1

n∑

j=l+1

〈zji〉
{

D

2
ln τi − 1

2
tr(〈tjt

T
j |Ci〉) − τi

2
‖xj − μ̃i‖2+

τi〈tj |Ci〉T WT
i (xj − μ̃i) −

τi

2
tr(WT

i Wi〈tjt
T
j |Ci〉) + ln π̃i

}
+

C∑

i=1

d∑

j=1

{
D

2
ln νij − 1

2
νijW

T
i,jL

−1
� Wi,j

}
,

where L� = XLXT . Maximization of the expected complete-data log-likelihood with
respect to Wk, τk and νkj gives the following update rules:

W̃k = (τkSkWk − L−1
� WkΛkΣk)(ñkId + τkΣ−1

k WT
k SkWk)−1

τ̃k =
Dñk

tr
{
(ID − WkΣ−1

k WT
k )2Sk + ñkτ−1

k WkΣ−1
k WT

k

}

ν̃kj =
D

W̃T
k,jL

−1
� W̃k,j

,

where L� = XLXT , Λk = diag(νk1, . . . , νkM ) is a diagonal matrix with the (j, j)th
element being νkj , ñk = nk + uπ̃k, and Sk =

∑
yi=k(xi − μ̃k)(xi − μ̃k)T +∑n

i=l+1〈zik〉(xi − μ̃k)(xi − μ̃k)T .
After estimating the parameters, we can use νkj to determinate the dimensionality of

Wk. We can set a threshold η and discard the Wk,j whose corresponding νkj is larger
than η. In our experiments, we set η to be 10000.

For a test data point xtest, we classify it to class Πk where k = argmaxj p(Πj |xtest).
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4.1 Discussion

Our S2HPLDA model has advantages over existing probabilistic subspace methods. In
our method, each class is modeled by a Gaussian distribution with a possibly different
covariance matrix, giving our model higher expressive power than existing methods.
Moreover, our model, being a semi-supervised method, can utilize unlabeled data but
most other probabilistic LDA models cannot, except S2PPCA.

There exist several variants of LDA [10,11,12] which also utilize unlabeled data
to alleviate the SSS problem. Cai et al. [10] and Zhang and Yeung [11] used unlabeled
data to define a regularization term to incorporate the manifold and cluster assumptions,
which are two widely adopted assumptions in semi-supervised learning. Zhang and Ye-
ung [12] used unlabeled data to maximize the criterion of LDA and estimate the labels
simultaneously, in a way similar to the idea behind transductive SVM (TSVM) [29,30].
Unlike these methods, our method works in a different way. We use a Gaussian mixture
model to model the unlabeled data with each component corresponding to one class.
From previous research in semi-supervised learning, unlabeled data are more suitable
for generative models since unlabeled data can help to estimate the data density [13]
and our method also follows this strategy.

According to [31], integrating out all parameters is better than performing point es-
timation in terms of the generalization performance. In our future research, we plan to
propose a fully Bayesian extension of S2HPLDA by placing priors on the parameters
of S2HPLDA. For example, we can add a Dirichlet prior to (π1, . . . , πC), a Gaussian
prior to μk, and Gamma priors to τk and νkj :

(π1, . . . , πC) ∼ Dir(α0, . . . , α0)
μk ∼ N (μ0, β0ID)
τk ∼ Gamma(a0, b0)

νkj ∼ Gamma(c0, d0).

Since direct inference is intractable, we may resort to the variational approximation
approach [32].

5 Experiments

In this section, we report experimental results based on two face databases and one
object database to evaluate the performance of our method and compare it with some
related probabilistic subspace methods.

5.1 Experimental Setup

Subspace methods are widely used in face recognition and object recognition appli-
cations. Previous research found that face and object images usually lie in a low-
dimensional subspace of the ambient image space. Eigenface [33] (based on PCA) and
Fisherface [5] (based on LDA) are two representative subspace methods. Many variants
have also been proposed in recent years. These subspace methods use different dimen-
sionality reduction techniques to obtain a low-dimensional subspace and then perform
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classification in the subspace using some classifier. Some researchers also proposed
probabilistic versions of these subspace methods, with PPCA [22] and SPPCA [19]
being two popular ones. From the analysis in [22], the maximum likelihood solution
to PPCA is identical to that to PCA. Since the models proposed in [19] and [23] are
identical, then from the analysis in [23], the maximum likelihood solution to SPPCA
is also the same as that to LDA. Moreover, PPCA and SPPCA can deal with missing
data using the EM algorithm, but PCA and LDA cannot. In our experiments, we study
our method empirically and compare it with several probabilistic subspace methods,
including PLDA [20], SPPCA [19] and S2PPCA [19]. Note that PLDA and SPPCA are
supervised, but S2PPCA and our method S2HPLDA are semi-supervised in nature. For
SPPCA and S2PPCA, we use a simple nearest-neighbor classifier to perform classifica-
tion after dimensionality reduction.

5.2 Face Recognition

We use the ORL face database [5] for the first experiment. The ORL face database con-
tains 400 face images of 40 persons, each having 10 images. These face images contain
significant variations in pose and scale. Some images from the database are shown in
Figure 3. We randomly select seven images for each person to form the training set and
the rest for the test set. Of the seven images for each person, p ∈ {2, 3} images are ran-
domly selected and labeled while the other images remain unlabeled. We perform 10
random splits and report the average results across the 10 trials. Table 1 reports the error
rates of different methods evaluated on the unlabeled training data and the test data sep-
arately. For each setting, the lowest classification error is shown in bold. Since S2PPCA
exploits the structure of unlabeled data, we can see that its performance is better than
PLDA and SPPCA. Moreover, S2HPLDA relaxes the homoscedasticity assumption and
so it achieves better performance than its homoscedastic counterpart S2PPCA in our
settings. From Table 1, we can see that the performance of PLDA is very bad, proba-
bly because it gets trapped in an unsatisfactory local optimum when running the EM
algorithm.

The PIE database [34] is used in our second experiment. This database contains
41,368 face images from 68 individuals and these images have large variations in pose,
illumination and expression conditions. For our experiments, we select the frontal pose

Fig. 3. Some images for one person in the ORL database
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Table 1. Recognition error rates (in mean±std-dev) on ORL for two different p values. 1ST

TABLE: p = 2; 2ND TABLE: p = 3.

Method Error rate (unlabeled) Error rate (test)

PLDA 0.7141±0.0803 0.7016±0.0640
SPPCA 0.4562±0.1219 0.4578±0.0710
S2PPCA 0.2703±0.0332 0.2422±0.0366
S2HPLDA 0.1406±0.0231 0.1781±0.0308

Method Error rate (unlabeled) Error rate (test)

PLDA 0.5156±0.0744 0.5042±0.0603
SPPCA 0.4359±0.0713 0.4604±0.0322
S2PPCA 0.2625±0.0595 0.2000±0.0245
S2HPLDA 0.1375±0.0135 0.1562±0.0336

Fig. 4. Some images for one person in the PIE database

(C27)1 with varying lighting and illumination conditions and there are about 49 images
for each subject. Some images from the database are shown in Figure 4. The experi-
mental setting is almost the same as that of the first experiment. The only difference is
that we use 22 images to form the training set. Of these 22 images, we randomly select
p ∈ {3, 4, 5, 6} images and label them, leaving the remaining images unlabeled. Each
setting is also repeated 10 times. Table 2 reports the average results over the 10 trials.
From the results, we can see that our method again gives the best performance.

5.3 Object Recognition

We use the COIL database [35] for our object recognition experiment. This database
contains 1,440 grayscale images with black background for 20 objects. For each object,
the camera moves around it in pan at intervals of 5 degrees and takes a total of 72 differ-
ent images. These objects exhibit a wide variety of complex geometric and reflectance
characteristics. Some sample images for the 20 objects are shown in Figure 5. We use
22 images from each object to form the training set. Of the 22 images, p ∈ {3, 4, 5, 6}
images are randomly selected as labeled data and the rest as unlabeled data. We perform
10 random splits on each configuration and Table 3 reports the average results. From
the results, our method also outperforms other methods under all four settings.

1 This face database can be downloaded from
http://www.cs.uiuc.edu/homes/dengcai2/Data/FaceData.html
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Table 2. Recognition error rates (in mean±std-dev) on PIE for four different p values.
1ST TABLE: p = 3; 2ND TABLE: p = 4; 3RD TABLE: p = 5; 4TH TABLE: p = 6.

Method Error rate (unlabeled) Error rate (test)

PLDA 0.8421±0.0142 0.8492±0.0212
SPPCA 0.4509±0.0487 0.4798±0.0590
S2PPCA 0.3367±0.0088 0.3639±0.0139
S2HPLDA 0.3066±0.0131 0.3109±0.0397

Method Error rate (unlabeled) Error rate (test)

PLDA 0.7549±0.0451 0.7469±0.0532
SPPCA 0.2741±0.0202 0.2654±0.0073
S2PPCA 0.2545±0.0110 0.2520±0.0046
S2HPLDA 0.2096±0.0324 0.2225±0.0066

Method Error rate (unlabeled) Error rate (test)

PLDA 0.7029±0.0018 0.7201±0.0154
SPPCA 0.2080±0.0153 0.2409±0.0120
S2PPCA 0.2011±0.0055 0.2330±0.0046
S2HPLDA 0.1743±0.0177 0.1933±0.0108

Method Error rate (unlabeled) Error rate (test)

PLDA 0.7096±0.0351 0.7215±0.0420
SPPCA 0.1875±0.0104 0.2119±0.0143
S2PPCA 0.1590±0.0390 0.1724±0.0347
S2HPLDA 0.1220±0.0149 0.1450±0.0204

Fig. 5. Some images for different objects in the COIL database
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Table 3. Recognition error rates (in mean±std-dev) on COIL for four different p values. 1ST

TABLE: p = 3; 2ND TABLE: p = 4; 3RD TABLE: p = 5; 4TH TABLE: p = 6.

Method Error rate (unlabeled) Error rate (test)

PLDA 0.4026±0.0112 0.4000±0.0311
SPPCA 0.7303±0.1172 0.7195±0.1393
S2PPCA 0.3303±0.0428 0.3270±0.0410
S2HPLDA 0.3145±0.0651 0.3015±0.0474

Method Error rate (unlabeled) Error rate (test)

PLDA 0.3694±0.0118 0.3850±0.0156
SPPCA 0.6958±0.0727 0.7075±0.0658
S2PPCA 0.3500±0.0039 0.3195±0.0021
S2HPLDA 0.3167±0.0314 0.3005±0.0375

Method Error rate (unlabeled) Error rate (test)

PLDA 0.3471±0.0208 0.3290±0.0792
SPPCA 0.7691±0.0769 0.7815±0.0884
S2PPCA 0.3221±0.0062 0.2865±0.0346
S2HPLDA 0.2438±0.0265 0.2670±0.0566

Method Error rate (unlabeled) Error rate (test)

PLDA 0.3156±0.0707 0.3085±0.0559
SPPCA 0.7844±0.0398 0.7840±0.0226
S2PPCA 0.3391±0.0420 0.3270±0.0028
S2HPLDA 0.2250±0.0312 0.2200±0.0354

6 Conclusion

In this paper, we have presented a new probabilistic LDA model. This semi-supervised,
heteroscedastic extension allows it to overcome some serious limitations of LDA. As
said earlier in the paper, one natural extension is a fully Bayesian extension to boost the
generalization performance of the probabilistic model. Another possibility is to apply
the kernel trick to introduce nonlinearity into the model using techniques such as that
in [36].
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