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Abstract

An unsupervised nonparametric approach is proposed
to automatically extract representative face samples (exem-
plars) from a video sequence or an image set for multiple-
shot face recognition. Motivated by a nonlinear dimen-
sionality reduction algorithm called Isomap, we use local
neighborhood information to approximate the geodesic dis-
tances between face images. A hierarchical agglomerative
clustering (HAC) algorithm is then applied to group simi-
lar faces together based on the estimated geodesic distances
which approximate their locations on the appearance mani-
fold. We define the exemplars as cluster centers for template
matching at the subsequent testing stage. The final recogni-
tion is the outcome of a majority voting scheme which com-
bines the decisions from all the individual frames in the test
set. Experimental results on a 40-subject video database
demonstrate the effectiveness and flexibility of our proposed
method.

1. Introduction

The majority of the state-of-the-art face recognition al-
gorithms [17] put emphasis on scenarios based on single-
shot still images. Although these dominating approaches
[14, 2, 6] have achieved a certain level of success under re-
strictive conditions (such as mugshot matching), they often
fail to yield satisfactory performance when confronted with
significant facial variations. A typical scenario is recogni-
tion in the context of visual surveillance and multimedia
retrieval applications, where the appearance of a face may
bear large pose, illumination and expression variations. In
this paper, we propose a face recognition method that is es-
pecially tolerant of these factors, using hierarchically ex-
tracted exemplars or templates from multiple shots residing
on a nonlinear face manifold.

Recently, there has been a significant trend in perform-
ing automatic face recognition based on multiple images
[18,9, 7, 16, 12, 8]. The underlying assumption is that a
sequence or set of images can provide information about
the variability in the appearance of the face that can be uti-
lized to achieve more robust recognition. Two main strate-
gies have been exploited by algorithms along this direction.
Methods based on image sequences take consecutive video
frames as input and then utilize visual dynamics or tem-
poral consistency to enhance the recognition performance.
On the other hand, methods based on image sets assume
independence between face images in a set. This relaxed
assumption allows them to be applicable even to sparse or
unordered observations, rather than image sequences.

Some recent psychological and neural studies [10] indi-
cate that the information for identifying a human face can
be found both in the invariant structure of features and in id-
iosyncratic movements and gestures. However, most works
in the computer vision literature simply combine the two
cues in an ad hoc manner. Furthermore, they often assume
continuous extraction of face regions in each video frame,
which is a formidable challenge even to some state-of-the-
art face detectors. This may explain why video sequences in
FRVT 2002 did not improve the performance of the recog-
nition task.

We believe the most essential features for face recog-
nition still lie on the static facial configurations which are
more stable and discriminating than the dynamic informa-
tion. One possible approach for achieving video-based face
recognition is to extract representative exemplars covering
the dominant structural variability in the face appearance,
and categorization for a single test sample can be readily
performed via certain baseline method (e.g. PCA [14], LDA
[2]) or simply through template matching. To determine the
identity of a test set, we use the majority voting scheme
over all frames in the set. The main contribution of this
paper is to introduce a method for automatic acquisition of



representative exemplars from the training set. Motivated
by the well-known nonlinear dimensionality reduction algo-
rithm called Isomap [13], we use local neighborhood infor-
mation to approximate the geodesic distances between face
images, i.e., distances along the face manifold from which
the face images are sampled. Using the dissimilarity matrix
based on geodesic distances, we then apply a hierarchical
agglomerative clustering (HAC) algorithm [4] to group sim-
ilar face images according to their approximate locations on
the appearance manifold and define the exemplars as cluster
centers. Experimental results conducted on a medium-scale
video database well support our assumptions and show high
superiority of the newly developed method to its traditional
counterparts based on image sets.

This paper is organized as follows. In section 2, we
give a brief introduction to some recent video-based face
recognition algorithms based on image sequences or image
sets. Section 3 describes the problem setting of the pro-
posed method and its implementation in detail. Experimen-
tal results and some further discussions are presented in sec-
tion 4, followed by a conclusion in section 5.

2. Previous Work

An extensive survey of the face recognition literature can
be found in [17]. In this section, we only briefly review
some face recognition methods that are based on a set or a
sequence of images.

Image sequence-based approaches use both spatial and
temporal information simultaneously to enhance the recog-
nition performance. In [18], Zhou et al. characterize the
kinematics and identity using a motion vector and an iden-
tity variable, respectively, in a probabilistic framework.
The sequential importance sampling (SIS) algorithm is de-
veloped to estimate the joint posterior distribution, and
marginalization over the motion vector yields a robust es-
timate of the posterior distribution of the identity variable.
Recently, hidden Markov models (HMM) [9] and proba-
bilistic appearance manifolds [7] are both used to learn the
transition probabilities among several viewing states em-
bedded in the observation space.

Although facial dynamics, if properly modeled, are tol-
erate of appearance variations induced by changes in head
pose orientation and expressions, they are not stable and
discriminating enough for a real-world recognition system.
In this paper, we are interested in a general scenario, in
which the set of images may come from independent ob-
servations over an extended period of time and under dif-
ferent viewing conditions. It is often difficult to exploit
temporal coherence in such isolated inputs. Two previous
approaches to this problem are the mutual subspace method
(MSM) [16] and the probabilistic modeling method in [12].
These methods propose rather simplistic modeling of face

pattern variations, essentially representing the face space as
a single linear subspace with a Gaussian density. This Gaus-
sian assumption limits the kind of variability along the input
sequence which can be effectively tolerated. The manifold
density divergence method [1] takes a step further in mod-
eling these densities as Gaussian mixture models (GMM)
defined on low-dimensional nonlinear manifolds embedded
in the image space, and evaluates the similarity between
the estimated densities via the Kullback-Leibler divergence.
Apart from these parametric approaches, Hadid et al. [5]
first represent the face manifold using the locally linear em-
bedding (LLE) [11] algorithm and then perform k-means
clustering, setting the face models as the cluster centers.

Our work bears some resemblance to [5] in the sense that
both methods utilize selected exemplars as local manifold
models for video-based face recognition. However, in this
paper, we do not explicitly calculate the low-dimensional
embedding of all the training images to avoid the loss of in-
formation and the computational bottleneck with respect to
the eigendecomposition problem in manifold learning. Es-
sentially, only the geodesic distances between face images
are estimated for the construction of the similarity matrix re-
quired by the subsequent hierarchical clustering algorithm.
Another motivation is the benefit of the global embedding
approach (Isomap [13]) in that it tends to give a more faith-
ful representation of the global structure of the data, as op-
posed to local approaches (e.g., LLE [11], Laplacian Eigen-
map [3]) which attempt to preserve only the local geometry
of the data. In the following section, we describe the prob-
lem setting of the proposed method and its implementation
in detail.

3. Proposed Method
3.1. Problem Setting

The problem that we focus on in this paper can be for-
mulated as follows. Given a training face image sequence

G:{glag2a"'7gN}a (1)

we are interested in selecting the most representative sam-
ples

E:{el,eg,--~7eK}, K < N, 2)
so that they can be considered as models for appearance-
based face recognition. The desirable samples are those
which summarize the content of the face sequence G. In
other words, they should capture the within-class variability
due to changes in illumination, pose, facial expression and
other factors. With these selected samples as models, there
is no need to compare all pairs of images exhaustively.



3.2. Geodesic Distance Estimation

In typical appearance-based methods, mxn face im-
ages are often represented by points in an mn-dimensional
space. However, coherent structure in the appearance of hu-
man faces leads to strong correlation between them, gener-
ating observations that lie on or close to a low-dimensional
manifold. When the face images are extracted from video
sequences, it is reasonable to assume that the manifold is
smooth and well-sampled. Figure 1 shows the first three
principal components of a training set and a test set of im-
ages for one moving face, which are automatically detected
from two short video clips. Notice the clear overlap be-
tween the two sets, and that the perceptually meaningful
structure of the nonlinear face manifold has very limited in-
dependent degrees of freedom.
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Figure 1. The first three principal compo-
nents of a training set (blue dots) and a test
set (red stars) of images for one moving face,
which are automatically detected from two
short video clips.

Unlike traditional linear dimensionality reduction tech-
niques (e.g., PCA [14] and LDA [2]) which often overes-
timate the true degrees of freedom of the face data set, re-
cently proposed nonlinear dimensionality reduction meth-
ods (e.g., Isomap [13] and LLE [11]) can effectively dis-
cover an underlying low-dimensional embedding of the
manifold. As Euclidean distance between data points in the
high-dimensional input space cannot reflect the true low-
dimensional geometry of the manifold, we use the geodesic
(“shortest path”) distance instead, which is a key idea used
in Isomap.

Given the Euclidean distances dx (4,j) between point
pairs for n points (corresponding to n training face images
of a particular person) in the input image space X .

1. Construct a neighborhood graph:

- Define a graph G over all n data points by connecting
points ¢ and j if their distance dx (4, j) is closer than e
(e-Isomap) or if 4 is one of the k nearest neighbors of j
or vice versa (k-Isomap).

- Set the edge lengths equal to dx (7, 5).

2. Compute the shortest paths:

- Initialize d(i,7) = dx(i,7) if i and j are linked by
an edge and d¢ (i, j) = oo otherwise.

- Foreach k = 1,-- -, n, replace all entries dg (¢, j) by
min(de (i, 7), dc (i, k) + d(k, j)). (Da = [da (i, j)]
contains the shortest-path distances between all point
pairs in G.)!

The underlying assumption of step 2 is that, for neigh-
boring points, Euclidean distance in the input space pro-
vides a good approximation of the geodesic distance, whilst
for faraway points, the geodesic distance can be approx-
imated by adding up a sequence of short hops between
neighboring points based on Euclidean distance. Here
we do not perform the final step of Isomap which con-
structs a low-dimensional embedding of the original data
by performing multidimensional scaling (MDS) based on
the matrix of geodesic distances, since it requires perform-
ing eigendecomposition and it can lead to some loss of in-
formation. One side product of this embedding step is a
reasonable estimation of the intrinsic dimensionality of the
face manifold using the residual variance. Figure 2 illus-
trates the difference between PCA and Isomap in estimating
the intrinsic dimensionality of a training image set (Figure 6
or blue dots in Figure 1) corresponding to one person arbi-
trarily rotating his head in all directions. Notice that Isomap
successfully discovers the three degrees of freedom in the
rigid rotation by looking for the ‘elbow’ of the curve while
PCA tends to overestimate it.

Having estimated the geodesic distances between face
images in the training set, an affinity matrix can be easily
computed with certain transformation, e.g., Gaussian radial
basis function (RBF) kernel W (i, ;) = e~dc(@ie;)/207,
with o being a free parameter. One may then use this
affinity matrix to perform spectral clustering by performing
eigendecomposition on W to find meaningful clusters. In
this paper, however, we apply HAC on the geodesic distance
matrix directly without performing any transformation and
eigendecomposition.

3.3. Hierarchical Agglomerative Clustering

Hierarchical clustering is a way to investigate grouping
in the data set, simultaneously over a variety of scales, by

I'This procedure, known as Floyd’s algorithm, requires O(n?3) opera-
tions. More efficient alternatives exist, such as Dijkstra’s algorithm (with
Fibonacci heaps) which requires O(kn? log n) operations.
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Figure 2. The residual variance of PCA (red
line) and Isomap (blue line) on a training im-
age set (Figure 6 or blue dots in Figure 1) cor-
responding to one person arbitrarily rotating
his head in all directions.

creating a cluster tree called dendrogram. The tree does not
represent a single set of clusters, but rather a multi-level hi-
erarchy where clusters at one level are joined together as
clusters at the next higher level. This allows one to de-
cide what level or scale of clustering is most appropriate to
the specific application at hand. Unlike k-means clustering
which is sensitive to the initial seeds and may get trapped
in local minima, HAC algorithm is more stable to the input
data set.

To perform hierarchical cluster analysis on a data set us-
ing a certain distance measure, one can follow the following
procedure:

- Initialize a set of clusters C;,7 = 1,2, ..., c. One may
either assign each data point as a distinct cluster or
form some small initial clusters for seeding.

- Find the nearest clusters, say, C; and C';. Merge them
into a new cluster and then repeat. The following mea-
sures are commonly used for the distance between C;
and C; [4]:

dmin(cia CJ) = IGCIEEIGCJ' da (.23, xl)
rmaz (Cza CJ) = 1:661‘?2;(66']' da (.23, xl)
1
d(wg(Ci7 Cj) = ﬁ Z Z dG(LE, xl)
Y zeC;a'ec;
dmean(cia0j> = ||”nZ _mJ”

where n;,n; are the numbers of points in C; and C},
respectively, and m;, m; are their cluster means.

- This procedure terminates when the specified number
of clusters has been reached. The clusters are returned

as sets of points. The mean or representative exemplar
for each cluster can be computed as the average of the
corresponding data points.

Through the above procedure, one actually gets a se-
quence of partitions of the n samples into c clusters, ¢ =
1,2,...,n. Whenever two samples are in the same cluster
at level k, they remain together at all higher levels. Figure 3
shows a dendrogram for a small data set containing eight
samples.
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Figure 3. Dendrogram for a small data set
with eight samples.

Given a training data set G = {g1,92, -, 9N}, We
first initialize all the face images as singleton clusters. We
then merge the two nearest clusters at each iteration using
UPGMA (Unweighted Pair-Group Method with Arithmetic
Mean) dg.4(C;, C;), which computes the average distance
between all pairs of objects in cluster ¢ and cluster j. The
procedure terminates when it reaches the number of clusters
K specified beforehand by considering the length of the se-
quence. In our experiments, we set K = 5 ~ 9 based on the
number of frames in the corresponding video clips (ranging
from 250 to 800). The cluster centers £ = {ej,eq, -+, ex}
can be calculated as the representative exemplars summa-
rizing the original data set. Since these exemplars are mean
vectors, in general they may not correspond to real face im-
ages in the data set. An alternative is to find the image in
the data set that is nearest to the cluster mean as exemplar.
Figure 4 shows five exemplars extracted from the set of 250
training images based on the above two strategies (see Fig-
ure 6 for the original images and Figure 1 (blue dots) for
the low-dimensional embedding). They seem to represent
different head poses in the set, and we get almost the same
recognition performance in the subsequent experiments us-
ing both strategies.
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Figure 4. Five exemplars extracted from the
set of 250 training images in Figure 1 (blue
dots) corresponding to the cluster centers
(first row) or nearest samples to their respec-
tive cluster centers (second row).

4. Experiments

To demonstrate the effectiveness of the proposed
method, extensive experiments have been performed on a
40-subject video data set which bears large pose variation
and moderate differences in expression and illumination.
Each person is represented by one training clip and one
testing clip, both captured using a CCD camera at 30fps
for about 15-30 seconds. The faces are automatically de-
tected from all frames using Viola and Jones’ ‘AdaBoost +
Cascade’ face detector [15]. All the detected faces are then
resized to gray-level images of size 45x40, followed by a
histogram equalization step to eliminate the lighting effects.
The examples shown in Figure 5 are representative of the
amount of variation in the data set.

Figure 5. Representative images of two sub-
jects from the data set used in our experi-
ments.

Since the focus of this paper is the automatic acquisi-
tion of exemplars, we simply build appearance-based face
recognition systems based on a nearest neighbor criterion
by template matching in the original image space or us-
ing traditional subspace methods, including PCA, LDA,
and null space-based LDA (NLDA) [6]). For all the im-
plemented methods, majority voting is adopted to combine
the outputs from different frames in the test set. For a c-
class problem (wq,ws, -, w.), the test sequence contains
K frames. If the kth frame is decided to belong to the ith
class, denoted by the Kronecker delta ¢;, the final recogni-
tion resultis h = arg max;_; > & Oik, 1.€., the test sequence
belongs to class wy,.

L

Figure 6. Original images from the set of 250
training faces in Figure 1 (blue dots).

To demonstrate the effectiveness of the new method, we
compare it with some traditional methods based on image
sets, such as random selection of exemplars, applying k-
means in the high-dimensional image space or in the PCA
subspace. we also implement the ‘LLE + k-means cluster-
ing’ algorithm in [5] which has the same problem setting as
ours. In the following experiments, the training video clip
of each person is sent to different exemplar extraction pro-
cedures which result in 5-9 exemplars depending on the se-
quence length. The test set is constructed by randomly sam-
pling from its corresponding testing video clip for 10 times
with each set consisting of 30 independently and identically
distributed (i.i.d.) samples. The recognition rates shown in
Table 1 are the average results over all runs.

Table 1. Recognition rates (%) of different
methods for selecting exemplars.

y | Original | PCA [ LDA [ NLDA |

Random selection 65.62 63.21 | 74.62 78.24
k-means 80.00 79.02 | 84.90 88.71
PCA + k-means 74.02 75.26 | 88.29 89.86
LLE + k-means 88.33 86.76 | 92.43 95.52
Isomap + k-means 87.14 84.71 | 93.91 96.38
Our method 89.74 88.10 | 94.14 96.52

The results clearly show that the approaches based on
manifold learning (LLE + k-means, Isomap + k-means, and
our method) can select better (more representative) exem-
plars than the traditional approaches (random selection, k-
means, and PCA + k-means) since they yield better recog-
nition rates. This observation is not unexpected as methods
based on manifold learning can reveal the meaningful hid-
den structure in the nonlinear face manifold.

Another interesting finding is that our method slightly
outperforms LLE and Isomap which are based on explicit
embedding of the data. For the purpose of clustering (ex-



emplar selection), in fact there is no need to perform the
last step (embedding) in LLE or Isomap. Doing so will not
only require solving an eigendecomposition problem which
is expensive for large data sets, but it can also lead to a
certain degree of information loss. The reason we prefer a
global embedding method (Isomap) to its local alternatives
(LLE, Laplacian eigenmap) lies in its appealing property
of explicitly preserving the global structure of a data set
within a single coordinate system. As proved in the orig-
inal paper, the estimated graph-based distance in Isomap
asymptotically converges to the true geodesic structure of
the manifold given sufficient data.

In summary, the success of our approach compared to
other traditional methods (see Table 1) lies in the use of an
elegant method (Isomap) for estimating geodesic distance
and the subsequent direct transfer to the HAC clustering
procedure without performing explicit embedding first.

5. Conclusion

This paper presents a novel method for selecting rep-
resentative exemplars from video sequences or image sets
and then uses it for building appearance-based face recog-
nition systems. Our method consists of two main steps.
First, based on local neighborhood information, geodesic
distances between face images are estimated. Second, based
on the geodesic distances estimated, distance-based cluster-
ing using the HAC algorithm is performed to group similar
images to form clusters. The cluster centers are then iden-
tified as exemplars. When presented with a test face video
sequence or image set, the final recognition result is ob-
tained via a majority voting scheme by combining the deci-
sions for the individual images in the test set. Experimental
results on a medium-scale video database demonstrate the
effectiveness of our proposed method.

Exemplar-based representation, as a reduced model, may
not fully characterize the whole image set. In our future
work, we will consider more flexible models (e.g., fitting
a linear subspace to each cluster) and perform discriminant
analysis on the local neighborhood of the face manifold.
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