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Abstract

Spectral clustering and path-based clustering are two
recently developed clustering approaches that have deliv-
ered impressive results in a number of challenging cluster-
ing tasks. However, they are not robust enough against
noise and outliers in the data. In this paper, based on
M-estimation from robust statistics, we develop a robust
path-based spectral clustering method by defining a robust
path-based similarity measure for spectral clustering. Our
method is significantly more robust than spectral clustering
and path-based clustering. We have performed experiments
based on both synthetic and real-world data, comparing our
method with some other methods. In particular, color im-
ages from the Berkeley Segmentation Dataset and Bench-
mark are used in the image segmentation experiments. Ex-
perimental results show that our method consistently out-
performs other methods due to its higher robustness.

1. Introduction

Clustering has been among the most active research top-
ics in machine learning and pattern recognition. While
many traditional clustering algorithms have been developed
over the past few decades [2, 10], some new clustering algo-
rithms emerged over the last few years give very promising
results on some challenging tasks. Among them are spec-
tral clustering [12, 14, 15, 16] and path-based clustering
[4, 5, 6], which have demonstrated excellent performance
on some clustering tasks involving highly nonlinear and
elongated clusters in addition to compact clusters.

Despite the promising performance demonstrated by
these algorithms, there exist situations when they do not
perform very well. The poor clustering result is due mainly
to the choice of the affinity matrix, which is usually defined
in a way similar to the Gaussian kernel based on inter-point
Euclidean distance in the input space. While the combined
use of path-based clustering and spectral clustering, referred
to as path-based spectral clustering here, seems to be very

effective, we will show later in the paper that this combined
method, like the separate use of spectral clustering or path-
based clustering, is not robust enough against noise and out-
liers which commonly exist in real-world data.

In this paper, based on robust statistical techniques [9],
we propose a novel scheme to make path-based (spectral)
clustering more robust. Our work is built upon the recent
work of Fischer et al. [4, 5, 6]. We devise an M-estimator
and use it to define a robust path-based similarity measure
which takes into account the existence of noise and outliers
in the data and hence brings about robustness in the method.

The rest of this paper is organized as follows. Some re-
lated work is briefly reviewed in Section 2. In Section 3,
we propose a robust path-based similarity measure based
on robust statistics, with which a robust path-based spectral
clustering algorithm can be devised. Experimental results
on synthetic data as well as color image segmentation are
presented in Sections 4 and 5, respectively, comparing our
method with non-robust methods. Finally, some concluding
remarks are given in the last section.

2. Related Work

Some related clustering methods have been proposed in
the literature. Besides spectral clustering and path-based
clustering, there also exist some other methods that are ca-
pable of finding elongated structures. Hierarchical agglom-
erative clustering based on the single linkage algorithm [10]
is efficient and has been widely used, but it is well known
that this method is highly sensitive to outliers. Mean shift
clustering [1] and spectral clustering have shown good per-
formance in some clustering tasks. However, both of them
are sensitive to the preselection of the kernel bandwidth pa-
rameter.

Fischer and Buhmann have a more recent paper which
uses bagging (or bootstrap aggregating) with path-based
clustering to address the robustness issue [3]. Like other
bagging applications, data resampling is used to reduce data
variance so that the results are less sensitive to noise. How-
ever, since many bootstrap samples are involved, efficiency



has to be sacrificed in exchange for effectiveness of the
method. Moreover, some bootstrap samples of the input
data may still contain outliers which can affect the cluster-
ing results.

3. Robust Path-Based Clustering

3.1. Path-Based Similarity Measure

The path-based dissimilarity measure was originally pro-
posed in [6]. Following their formulation, we define a
closely related path-based similarity measure which will be
extended to a robust version in the next two subsections.

We denote the data set of n points by X =
{x1,x2, . . . ,xn}. The data points can be represented as a
fully connected graph with n vertices corresponding to the
n points. Each edge (i, j) in the graph is assigned a weight
s′ij reflecting the original similarity between xi and xj anal-
ogous to the Gaussian kernel:

s′ij =

{
exp

(
−‖xi−xj‖2

2σ2

)
for i �= j

0 for i = j,
(1)

except that s′ii is equal to 0 rather than 1 for i = 1, 2, . . . , n.
Here, the scaling parameter σ controls how fast s′ij falls
off with the Euclidean distance between xi and xj . Recall
that this is actually one common way of defining the affine
matrix in spectral clustering [12], where σ is a somewhat
sensitive parameter. While this parameter is usually pre-
specified, Ng et al. [12] proposed a method for choosing σ
automatically.

Let Pij denote the set of all paths from vertex i to ver-
tex j through the graph. For each path p ∈ Pij , the effective
similarity sp

ij between vertices i and j (or the corresponding
data points xi and xj) is the minimum edge weight along
the path. We define the total similarity sij between vertices
i and j as the maximum among all path-based effective sim-
ilarities sp

ij’s for paths p’s in Pij :

sij = max
p∈Pij

{
min

1≤h<|p|
s′p[h]p[h+1]

}
,

where p[h] denotes the hth vertex along the path p from
vertex i to vertex j and |p| denotes the number of vertices
that p goes through.

From the definition, the similarity between points xi and
xj should be large when the two points belong to the same
cluster, and small when they belong to different clusters.
However, in the latter case, if there exist some outliers be-
tween the two clusters, the similarity between points resid-
ing in different clusters may become much larger than it
should be. In other words, the path-based similarity mea-
sure is very sensitive to noise and outliers.

3.2. Robust Estimator Based on M-Estimation

In this subsection, we devise a robust estimator based on
the concept of M-estimation in robust statistics [9].

Let us regard the neighbors of a data point xi as real-
izations from an estimator of xi. Then the average squared
distance of the neighbors from xi can be seen as the squared
residual error of the estimator on xi. Thus the total squared
error E is given by

E =
n∑

i=1


 1
|Ni|

∑
xj∈Ni

‖xi − xj‖2




=
n∑

i=1

∑
xj∈Ni

(
‖xi − xj‖√|Ni|

)2

,

where Ni denotes the neighborhood of xi and |Ni| denotes
the number of neighbors it contains.

In order to make use of robust estimation techniques, we
express the optimization problem as minimizing the total
weighted squared error

Ew =
n∑

i=1

∑
xj∈Ni

aij

(
‖xi − xj‖√|Ni|

)2

.

Following the ideas of Huber, the least squares estimator is
replaced by a robust estimator that minimizes

Eρ =
n∑

i=1

∑
xj∈Ni

ρ

(
‖xi − xj‖√|Ni|

)
=

n∑
i=1

∑
xj∈Ni

ρ(eij),

where ρ(·) is some convex function and eij is an error
residue. Using the Welsch function

ρ(eij) =
c2

2
[
1 − exp(−(eij/c)2)

]
,

for some parameter c > 0, the weight function can be de-

fined as a(eij) = ρ′(eij)
eij

= exp(−(eij/c)2). Therefore, in
our problem, the weight aij for the jth neighbor of xi is

aij = exp
(
−‖xi − xj‖2

|Ni| c2

)
.

3.3. Robust Path-Based Similarity Measure

By summing up the weights aij’s of all neighbors xj ∈
Ni and setting c =

√
2

|Ni| σ, we obtain a weight w′
i for each

point xi which can be expressed solely based on the original
similarity values:

w′
i =

∑
xj∈Ni

s′ij .



The weight of a data point is large if many data points
are in its vicinity, and small if very few other points are
close to it. Neighborhood can be defined in a number of
different ways. Although some methods may be better than
others, we keep it simple in this paper by using the same
neighborhood size for all points in a data set, so that the
neighborhood is just large enough to include at least two
neighbors in each neighborhood. Note that the justification
for using local neighborhoods is based on the argument that
the weights should depend on the local geometry rather than
the global structure of the whole data set.

To make the weights insensitive to σ, we normalize each
weight as wi = w′

i/maxxi∈X w′
i, so that all weights fall

within the range (0, 1]. While a large value for wi indicates
that xi is likely to be inside a compact cluster, a small value
indicates that xi is an outlier.

Therefore, the robust path-based similarity measure can
be expressed as:

sij = max
p∈Pij

{
min

1≤h<|p|
wp[h]wp[h+1]s

′
p[h]p[h+1]

}
. (2)

This measure can reflect the genuine similarity between xi

and xj even when outliers exist. If there exists a path from
xi to xj going through only points with high values of
wp[h]’s and s′p[h]p[h+1]’s, then the total similarity should be
high and hence xi and xj are likely to belong to the same
cluster. On the other hand, if all paths between xi and xj

contain at least one low value of either wp[h] or s′p[h]p[h+1],
then the total similarity should be relatively low, implying
that xi and xj either belong to different clusters or are them-
selves outliers.

We define the robust similarity matrix S = [sij ] and use
it in place of the affinity matrix A = [s′ij ] commonly used
in spectral clustering [12]. Besides its robustness property,
S is no longer sensitive to the parameter σ as pointed out
above and to be illustrated further through sensitivity analy-
sis in Section 4.2. Our robust path-based spectral clustering
algorithm is simply the ordinary spectral clustering algo-
rithm using the robust similarity measure described above
to define the affinity matrix. This seemingly minor modi-
fication is in fact very significant as dramatically improved
clustering results can be obtained.

4. Experiments on Synthetic Data

To assess the efficacy of our algorithm for clustering
tasks, we first perform some experiments on synthetic data.

4.1. Data Sets and Results

Although both standard spectral clustering and path-
based clustering can find the two clusters in the 2-circle
data set as shown in Figure 1(a), they are no longer robust

enough to give satisfactory results if some noise points are
added. Figure 1(b)–(d) compare these two methods with
our robust path-based spectral clustering algorithm when 30
noise points are added. Note that some noise points located
between the two circles end up connecting the two circular
clusters. Figure 1(b) shows that spectral clustering cannot
give good result for this data set.1 Due to the existence of
noise points, the dissimilarity measure used by the original
path-based clustering algorithm gives much lower dissimi-
larity values than they should be to point pairs residing in
different circles. As a consequence, its result as shown in
Figure 1(c) is not satisfactory either. Our method gives very
satisfactory result, as shown in Figure 1(d), that agrees well
with human judgement. This shows that the robust similar-
ity measure is very effective in reducing the influence of the
outliers.

We also conduct some experiments on a 3-cluster data
set. As shown in Figure 2(a), the data set consists of a
circular cluster with an opening near the bottom and two
Gaussian distributed clusters inside. Each cluster contains
100 data points. This data set is similar to the one shown
in Figure 1(b) of [12], except that ours is more difficult.
Unlike the previous example, we do not add artificial noise
points to this data set. However, the Gaussian clusters can
be seen as having Gaussian noise points which tend to con-
nect the clusters together. Figure 2(b) and (c) show that both
spectral clustering and path-based clustering cannot find the
three clusters correctly. Again, our robust path-based spec-
tral clustering algorithm gives much more satisfactory re-
sult, as shown in Figure 2(d). However, some inter-cluster
points are mis-clustered. Our method is successful in as-
signing lower weights to these points (and hence essentially
detecting them as outliers). As a result, they have relatively
lower similarity values to other points within a cluster than
those points closer to the Gaussian centers or on the incom-
plete circle. Spectral clustering will cluster such points in-
correctly, as can also be seen in the 2-circle data set in Fig-
ure 1. If the robust path-based similarity measure is used
with k-means clustering rather than spectral clustering, this
problem actually does not happen and gives better result.
However, in general, spectral clustering gives better results
than k-means and hence is generally a better choice.

We further conduct experiments on a synthetic data set
that can be seen as a simplified version of the image seg-
mentation problem to be studied in the next section. Fig-
ure 3(a) shows a square image consisting of four regions,
contaminated with some random noise points shown as
small color squares of four different hues. Each small
square corresponds to a point in the RGB color space, as
shown in Figure 3(b). The clustering results based on dif-
ferent methods are shown in Figure 3(c)–(e). This again

1The noise level of this data set is higher than that of a similar data set
in Figure 1(g) of [12].



(a) (b) (c) (d)

Figure 1. Clustering results for a noisy 2-circle data set: (a) original data set before noise points
are added; (b) spectral clustering result; (c) path-based spectral clustering result; and (d) robust
path-based spectral clustering result.

(a) (b) (c) (d)

Figure 2. Clustering results for a 3-cluster data set: (a) original data set; (b) spectral clustering result;
(c) path-based spectral clustering result; and (d) robust path-based spectral clustering result.

shows that our method is superior to other methods.

4.2. Sensitivity Analysis of Parameters

Similar to standard spectral clustering, our method also
requires choosing the scaling parameter σ. We argued
above that our method is not sensitive to the setting of σ
while the standard spectral clustering method is. In this sub-
section, we elaborate this point by performing sensitivity
analysis to see how the clustering result varies with σ.

For simplicity, we only report results for the 2-circle
data set, which are representative of the general case. Fig-
ure 4(a)–(c) show three 2-circle data sets of varying noise
levels, with no noise in (a) (same as that in Figure 1(a)), 20
noise points in (b) and 30 noise points in (c) (same as that
in Figure 1(b)–(d)). We compare robust path-based spectral
clustering with standard spectral clustering and path-based
spectral clustering on a range of different σ values. The
clustering quality is measured using the Rand index [13]
with respect to the ground truth clustering partition.

We can see that the standard spectral clustering algo-
rithm is fairly sensitive to the choice of σ. With σ2 ∈
[0.018, 0.096], this method can correctly find the two clus-
ters in the noise-free data set, as the Rand index curve in
Figure 4(d) shows. When noise points are added, the reli-

able range of σ decreases with the increase of noise points
(Figure 4(e) and (f)). For the noisy data set with 30 noise
points, while there exists a very small range of σ values in
which standard spectral clustering can find the correct clus-
ters, this range is so narrow that it is very hard to locate and
hence the method generally fails. As for path-based spectral
clustering, which can give good results (with a wide range
of σ values) for clean data, it is very difficult to get sat-
isfactory results for noisy data sets. On the other hand, our
method can find the correct clusters for a very wide range of
σ values on all three data sets (Figure 4(d)–(f)). It fails only
when σ gets too small. This shows that our method is easier
to use and is more stable than standard spectral clustering.

Another parameter setting of our method that may affect
the clustering results is the way of defining the neighbor-
hoods Ni’s. In our experiments, we use the same neighbor-
hood size for all points in a data set so that the neighborhood
is just large enough to include at least two neighbors in each
neighborhood. This is not the only way to define the neigh-
borhoods though. For example, we may use the mean edge
length of the neighborhood graph derived from a data set to
determine the radius of each neighborhood. The neighbor-
hood graph can be constructed by connecting xi and xj if xi

is one of the K nearest neighbors of xj or if xj is one of the
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Figure 3. Segmentation results for a synthetic image: (a) image with some noise points; (b) feature
vectors in RGB color space; (c) spectral clustering result; (d) path-based spectral clustering result;
and (e) robust path-based spectral clustering result.
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Figure 4. Effect of σ on clustering results: (a) 2-circle data set without noise points; (b) 2-circle data
set with 20 noise points; (c) 2-circle data set with 30 noise points; (d)–(f) spectral clustering results
(blue dash line), path-based spectral clustering results (red dash-dot line) and robust path-based
spectral clustering results (black solid line) on (a)–(c).

K nearest neighbors of xi based on the Euclidean distance.
Under this alternative setting, which we have also tried, our
method gives similar results to those shown above.

5. Experiments on Color Image Segmentation

While the results presented in the previous section are
very promising, we would like to test our robust path-based
spectral clustering algorithm on real-world clustering prob-
lems too. In particular, we study the color image segmenta-
tion problem in this section.

5.1. Color Image Segmentation

Image segmentation tries to parse natural images into ho-
mogeneous tiles corresponding to different surfaces and ob-

jects. Homogeneity is usually defined as pairwise similarity
between pixels or regions. Recent work on pairwise clus-
tering, including spectral clustering [14, 15, 16] and path-
based clustering [4, 3, 6], has demonstrated impressive re-
sults for image segmentation.

In this section, we compare our robust path-based spec-
tral clustering algorithm with several non-robust methods
for image segmentation based on color and spatial features
from the images.

5.2. Experimental Settings

The images used in our experiments are from the Berke-
ley Segmentation Dataset and Benchmark [11]. As in
[4, 3, 6], we formulate image segmentation as a data cluster-
ing problem based on sparse proximity data. For each image
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Figure 5. Image patches from the bottommost
image of Figure 6(a) shown as feature vectors
in the RGB color space.

of 154401 (321 × 481) pixels, we consider 1855 (35 × 53)
overlapping patches with each patch of size 13 × 13 pixels.

Similarity between patches is computed based on color
and spatial features. We use a relatively simple feature rep-
resentation scheme in our experiments. For each image,
the average color of each patch is represented as a point
or feature vector xc

i , i = 1, . . . , 1855 in the RGB color
space. Figure 5 shows all the feature vectors for the bot-
tommost image of Figure 6(a). We can see that the sky, lake
and mountain form three manifolds with elongated struc-
tures. To segment the three regions correctly, a clustering
algorithm should not only find the elongated structures but
should also be sufficiently robust even at the presence of
outliers.

Besides color features, we also include some spatial fea-
tures as in [1]. The spatial features are simply the two
coordinates of each patch in the image lattice, denoted as
xs

i , i = 1, . . . , 1855. The overall feature vector xi for patch
i is the concatenation of the vectors for color and spatial fea-
tures, i.e., xi = ((xc

i )
T , λ(xs

i )
T )T , where the superscript T

denotes vector/matrix transpose and λ > 0 specifies the rel-
ative importance of the spatial information for defining the
similarity measure.

5.3. Image Segmentation Results

Figure 6 shows the segmentation results for four images
on natural scenes. From left to right, the five columns
show the input color images, segmentation results based
on k-means clustering, spectral clustering, path-based spec-
tral clustering, and robust path-based spectral clustering, re-
spectively. The segmentation results are shown with differ-
ent gray levels representing different segments. In these im-
ages, color changes in the sky, water, grass land and moun-
tain form elongated manifold structures, such as the exam-

ple shown in Figure 5. It can be seen that the robust path-
based spectral clustering algorithm outperforms all other
methods. Although path-based clustering can also cluster
elongated structures, it is not robust enough against noise
and outliers. Specifically, the existence of outlier points be-
tween manifolds in the feature space ends up connecting the
corresponding color segments together.

For more quantitative comparison of the different meth-
ods, we make use of the global consistency measure (GCE)
and local consistency measure (LCE) proposed by [11].
These two measures quantify the consistency between dif-
ferent segmentation results and have been validated through
extensive experiments. With these measures, deviation or
refinement from a reference segmentation result (typically
human segmentation result) can be quantified by an error
measure, but not simply regarded as an incorrect result in
the form of a binary decision. Between GCE and LCE,
GCE has more stringent requirements since it requires all
local refinements to be in the same direction while LCE al-
lows refinements in different directions in different parts of
the image.

We perform image segmentation experiments on a sub-
set of 40 color images from the Berkeley segmentation
database.2 Each image has at least five human segmenta-
tion results available in the database. For each image, we
compare the segmentation results based on different clus-
tering methods with each human segmentation result. Fig-
ure 7 depicts the comparison results, where the distributions
of GCE and LCE are shown as histograms. The horizontal
axis of each histogram shows the range of GCE or LCE val-
ues, while the vertical axis indicates the percentage of com-
parisons. From the subfigures, we can see that human seg-
mentation results for the same image are fairly consistent.
The segmentation results using k-means clustering, spectral
clustering and path-based clustering algorithms have much
higher errors. On the other hand, the robust path-based clus-
tering algorithm can give significantly lower errors.

6. Concluding Remarks

In this paper, we have presented a robust path-based
spectral clustering algorithm that makes the combined use
of spectral clustering and path-based clustering more ro-
bust against noise and outliers. We summarize some ma-
jor advantages of our method here. First, it is robust in the
sense that Equation (2) can give a reliable measure of the
inter-point similarity even at the presence of noise and out-
liers. Therefore, based on the robust similarity measure, our
method is much more robust than standard spectral cluster-
ing and path-based clustering on noisy data sets and data
sets involving slighted coupled clusters. Second, it is also

2More segmentation results are available in
http://www.cs.ust.hk/˜hongch/image-segmentation.htm.
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Figure 6. Color image segmentation results: (a) input images; (b) k-means clustering results; (c) spec-
tral clustering results; (d) path-based spectral clustering results; and (e) robust path-based spectral
clustering results.

robust in the sense that the algorithm is not sensitive to the
scaling parameter σ while the standard spectral clustering
algorithm is. The implication of this desirable property is
that our method is easier to use and is more stable, making
it a good candidate as a general clustering method. Third, it
is easy for our method to be extended to the semi-supervised
learning setting, which allows it to handle some even more
challenging cases with the aid of supervisory side informa-
tion. This makes our method even more powerful for solv-
ing some highly challenging clustering problems.

Despite its promising performance, there is still room
for us to further enhance our method. To trade accuracy
for efficiency, we perform our image segmentation exper-
iments on image patches instead of pixels, as was done in
[4, 3, 6]. As a consequence, the segmentation results are rel-
atively crude compared with human segmentation results.
Although some approximation methods have been proposed
[5], we can look for even more efficient approximation
methods for specific clustering tasks. Recently, Fowlkes

et al. [7] proposed an approximation technique based on
sampling to alleviate the computational burden of spectral
grouping. Inspired by their ideas, one possible extension is
to explore the possibility of solving the segmentation prob-
lem for a small subset of pixels first and then extrapolating
this solution to the full set of pixels in the image. Moreover,
image segmentation methods typically make use of com-
bined features, including color, brightness and texture, in
patch or gradient forms [8]. We will consider incorporating
more feature types into our method to further improve its
image segmentation accuracy.
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Figure 7. Histograms of the distribution of
errors (GCE and LCE) for different segmen-
tation methods. Human segmentation re-
sults compared to results based on: (a) hu-
man segmentation; (b) k-means clustering;
(c) standard spectral clustering; (d) path-
based spectral clustering; and (e) robust
path-based spectral clustering.
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