
Solution Path for Semi-Supervised Classification with Manifold
Regularization∗

Gang Wang Tao Chen Dit-Yan Yeung Frederick H. Lochovsky
Department of Computer Science and Engineering,

The Hong Kong University of Science and Technology,
Clear Water Bay, Kowloon, Hong Kong, China

Abstract

With very low extra computational cost, the en-
tire solution path can be computed for various learn-
ing algorithms like support vector classification (SVC)
and support vector regression (SVR). In this paper,
we extend this promising approach to semi-supervised
learning algorithms. In particular, we consider find-
ing the solution path for the Laplacian support vector
machine (LapSVM) which is a semi-supervised classi-
fication model based on manifold regularization. One
advantage of the this algorithm is that the coefficient
path is piecewise linear with respect to the regulariza-
tion parameter, hence its computational complexity is
quadratic in the number of labeled examples.

1 Background

Traditional learning algorithms for classification are
based on the supervised learning paradigm in which
classifiers are trained on labeled examples only. How-
ever, in many applications, labeled examples are dif-
ficult or expensive to obtain since they need substan-
tial labeling efforts from humans. On the other hand,
large quantities of unlabeled examples are often read-
ily available and are easy to obtain. Semi-supervised
learning provides an appealing alternative by augment-
ing traditional supervised learning with a large amount
of unlabeled data to build better classifiers. In so do-
ing, we only need a small number of labeled examples
for classifier training. In recent years, semi-supervised
learning has aroused a great deal of research inter-
est and has demonstrated impressive performance im-
provement in practice. Manifold regularization [2] is
a family of graph-based learning algorithms based on
the regularization theory. Besides the usual regulariza-

∗This research is supported by Competitive Earmarked Re-
search Grant (CERG) 621706 from the Research Grants Council
(RGC) of the Hong Kong Special Administrative Region, China.

tion term that controls the classifier complexity in the
ambient space, this approach uses an additional regu-
larization term that controls the classifier complexity
in the intrinsic geometry of the data distribution. As
a result, the underlying manifold structure is incor-
porated into the regularization framework. This data-
dependent geometric regularization approach naturally
integrates labeled and unlabeled data into a general-
purpose learner.

Laplacian support vector machine (LapSVM) [2] is a
specific realization of manifold regularization for semi-
supervised classification problems. Suppose we are
given a set of l labeled examples DL = {(xi, yi)}l

i=1

and a set of u unlabeled examples DU = {xj}l+u
j=l+1.

Here xi and xj are drawn from the input space X and
yi ∈ {−1,+1} is the class label. In practice, u is al-
ways much larger than l. LapSVM seeks to solve the
following optimization problem:

f∗ = arg inf
f∈HK

(
l∑

i=1

ξi + λA‖f‖2
K + λI‖f‖2

I

)
(1)

subject to
{

yif(xi) ≥ 1 − ξi

ξi ≥ 0 i = 1, 2, . . . , l. (2)

Unlike many regularization problems, the penalty part
here consists of two regularization terms, where ‖f‖K

is the norm in the RKHS defined by kernel function K,
and ‖f‖I reflects the intrinsic structure of the data dis-
tribution. Specifically, ‖f‖I forces the values of f(xi)
and f(xj) to be close if xi and xj are close to each
other with respect to the intrinsic data distribution.
λA and λI are the regularization parameters that con-
trol the degrees of regularization in the ambient space
and the intrinsic geometry of the data distribution, re-
spectively. The values of the regularization parameters
λA and λI have to be specified in advance by the user.
In practice, some default values are usually chosen for
them even though these values are by no means opti-
mal. Extensive exploration of the optimal parameter

1

values is seldom pursued since re-training the model
many times under different parameter settings is com-
putationally demanding.

Recently, a novel approach has emerged that seeks to
explore the entire solution path for all parameter values
without having to re-train the model multiple times.
By estimating the generalization errors under different
parameter values, the optimal parameter value can be
found with a low extra computational cost. Efron et al.
[3] developed the LARS algorithm which fits the coeffi-
cient path for the linear least square regression problem
regularized with the L1 norm. This is probably the first
work that explores the correspondence between every
regularization parameter value and the solution. An
important finding is that the coefficient path is piece-
wise linear and hence it is efficient to explore the entire
solution path by monitoring the breakpoints only. In-
spired by this pioneering work, Zhu et al. [7] proposed
an algorithm to compute the entire solution path for
the L1-norm SVC and Hastie et al. [4] proposed one
for the standard L2-norm SVC. More generally, Rosset
and Zhu [5] showed that any model with an L1 regular-
ization and a quadratic, piecewise quadratic, piecewise
linear, or linear loss function has a piecewise linear coef-
ficient path. Besides for the regularization parameters,
our recent work shows that this approach can also be
used for finding the entire solution path for some other
parameter [6].

In this paper, we apply the solution path algorithm
to LapSVM. Since the solution path is not piecewise
linear with respect to either λA or λI , we transform
the problem into a formulation with which a piecewise
linear path can be obtained. We use a kernel defined
in the intrinsic manifold space. This overcomes the
difficulty of balancing between the ambient space and
the geometric space, leading to further reduction of
user efforts. After the graph Laplacian is constructed,
the computational cost of this solution path algorithm
depends only on the number of labeled examples, which
is typically a small number compared with the total
training set size. Hence, the optimal solution can be
found very efficiently.

2 Problem Setup

A new representer theorem for LapSVM was proved
in [2]. The minimizer of the optimization problem (1)
admits an expansion

f∗(x) =
l+u∑
i=1

β∗
i K(xi,x) (3)

in terms of both the labeled and unlabeled examples,
where β∗

i are the optimal values of coefficients βi ∈ R in

the expansion. Note that the parameter dimensionality
is l + u which is usually a very large number.

A bias term is often added to the decision func-
tion. Let us denote β = (β1, . . . , βl+u)T and k(x) =
(K(x1,x), . . . , K(xl+u,x))T . Thus the decision func-
tion can be expressed as

f(x) = βT k(x) + β0. (4)

Substituting (4) into (1), we can rewrite the primal
optimization problem for LapSVM as

min
β,β0

l∑
i=1

ξi +
λ

2
βT (ρK + KLK)β (5)

subject to
{

yif(xi) ≥ 1 − ξi

ξi ≥ 0 i = 1, 2, . . . , l (6)

where λ and ρ replace λA and λI as the parameters, K
is the (l+u)×(l+u) kernel matrix over all labeled and
unlabeled data, and L is the graph Laplacian [1] given
by L = D−W where Wij in W are the edge weights in
the adjacency graph and D is a diagonal matrix with
diagonal entries Dii=

∑l+u
j=1 Wij . Since computing W

needs to examine every pair of labeled and unlabeled
examples, its computational complexity is O((l + u)2).

LapSVM is particularly useful for problems in which
the data exhibit strong manifold structure. In order
that the regularization term for the intrinsic structure
of the data distribution takes effect, we typically set λI

to be much larger than λA. Equivalently, in (5), ρ is
set to a small number.

By introducing Lagrange multipliers α =
(α1, . . . , αl)T and ζ = (ζ1, . . . , ζl)T , we can ob-
tain the Lagrangian LP (β, β0, ξ;α, ζ). Setting the
corresponding derivatives to zero, we have

∂LP

∂β
: β =

1
λ

(ρI + LK)−1JT Yα, (7)

∂LP

∂β0
:

l∑
i=1

yiαi = 0, (8)

∂LP

∂ξi
: αi = 1 − ζi, (9)

where I is the (l+u)×(l+u) identity matrix, J =
[Il×l,0l×u] is an l×(l+u) matrix with Il×l being the
l×l identity matrix, and Y = diag(y1, . . . , yl) is a diag-
onal matrix. Note that LK is always not of full rank
and hence is singular. However, adding the term ρI to
it can make it invertible. For notational simplicity, let
P = (ρI + LK)−1JT Y and hence β = 1

λPα.
Substituting (7)–(9) into LP (β, β0, ξ;α, ζ), we have

LD(α) =
l∑

i=1

αi − 1
2λ

αT YJK(ρI + LK)−1JT Yα,

(10)

2

eliminating all the primal variables. It follows from the
Karush-Kuhn-Tucker (KKT) conditions that

yif(xi) > 1 ⇒ αi = 0,

yif(xi) = 1 ⇒ αi ∈ [0, 1],
yif(xi) < 1 ⇒ αi = 1.

Thus we arrive at the following dual optimization prob-
lem:

max
α∈Rl

l∑
i=1

αi − 1
2λ

αT Qα, (11)

subject to
{ ∑l

i=1 yiαi = 0
0 ≤ αi ≤ 1

i = 1, 2, . . . , l,(12)

where Q = YJK(ρI+LK)−1JT Y is a positive definite
matrix with size l × l. As we can see, the optimization
problem for LapSVM is a convex optimization problem
that can be solved using a standard SVM solver. The
decision function is thus given by

f(x) =
1
λ

αT PT k(x) + β0. (13)

The dimensionality of α in the dual problem is l, which
is much smaller than the dimensionality of α in the
primal problem. P is a translating matrix that can be
computed in advance. Through P, we can map any α
value with dimensionality l to its corresponding para-
meter β with dimensionality l+u. Since the parameter
α is related to the labeled examples only, the solution
path algorithm can focus on the labeled examples. The
manifold information characterized by the unlabeled
examples is incorporated into the translating matrix.

Let I+ denote the set of indices of the points with
yi = +1 and l+ the cardinality of I+. Likewise, I− and
l− are defined for the points with yi = −1. We define
the following sets of points:

E = {i : yif(xi) = 1, 0 ≤ αi ≤ 1}
L = {i : yif(xi) < 1, αi = 1}
R = {i : yif(xi) > 1, αi = 0}

These three point sets refer to points lying at, inside
and outside the margin, respectively. As we change the
λ value, the margin will change and some events may
occur during this process. An event is said to occur
when a point enters or leaves the elbow, causing some
point sets to change. We categorize these events as
follows:

• A point enters the elbow:
– from L to E with αi = 1

– from R to E with αi = 0

• A point leaves the elbow:
– from E to L with αi = 1

– from E to R with αi = 0
For the points not at the elbow, i.e., in R ∪ L, their
αi values remain fixed until an event occurs. Hence, it
is sufficient to focus on the points at the elbow. As a
point passes through E , its αi value will change from 0
to 1 or from 1 to 0.

3 Finding the Solution Path

3.1 Initialization
The solution path algorithm explores the correspon-

dence between every λ value and the corresponding
solution α(λ). When λ tends to +∞, the initializa-
tion becomes simpler. The objective degenerates to
maximizing

∑l
i=1 αi subject to the constraints (12).

The initial values α0 and β0
0 depend on whether or not

l+ = l−.

Lemma 1 Suppose l+ = l−. For λ sufficiently large,
all the α0

i = 1 and β0
0 ∈ [−1, 1]. The loss is

∑l
i=1 ξi =

l+ + l− for any β0
0 .

In view of Lemma 1, the initial solution α0 is
(1, . . . , 1)T and thus β0 = 1

λPα0. As λ decreases, in
order to satisfy the constraints (12), all αi’s remain un-
changed until one positive example xi+ and one nega-
tive example xi− reach the elbow simultaneously. To
find xi+ and xi− , note that yif(xi) ≤ 1 for i = 1, . . . , l.
Among all the positive examples, xi+ is the first one
that reaches the elbow. Similarly, among all the neg-
ative examples, xi− is the first one that reaches the
elbow. Therefore

i+ = arg max
i∈I+

f(xi) = arg max
i∈I+

(
(α0)T PT k(xi)

)
(14)

i− = arg min
i∈I−

f(xi) = arg min
i∈I−

(
(α0)T PT k(xi)

)
. (15)

When xi+ and xi− both hit the elbow, the two equa-
tions yi+f(xi+) = 1 and yi−f(xi−) = 1 must hold. It
then follows that the initial solutions λ0 and β0

0 are

λ0 =
(α0)T PT

(
k(xi+) − k(xi−)

)
2

(16)

β0
0 =

−(α0)T PT
(
k(xi+) + k(xi−)

)
(α0)T PT

(
k(xi+) − k(xi−)

) . (17)

We next consider the initialization setting when the
two classes are unbalanced, i.e., l+ 	= l−. Without loss
of generality, we assume that l+ > l−. As λ tends to
+∞, β tends to the zero vector 0 due to (7). The
optimal choice of β0

0 is 1 and thus the loss is
∑l

i=1 ξi =
l−. The initial solution α0 can be obtained by solving
a quadratic programming (QP) problem.

3

Lemma 2 Suppose l+ > l−. For λ sufficiently large,
the initial solution α0 can be obtained as

α0 = arg min
α∈Rl

αT Qα

subject to
{

αi = 1 ∀i ∈ I−
αi ∈ [0, 1] ∀i ∈ I+

and
∑
i∈I+

αi = l−.

There are two possible cases in which xi+ should be
distinctively decided:

1. There are two or more elements in I+ with 0 <
α0

i < 1, or
2. α0

i is either 0 or 1 for all i in I+.

For the first case, xi+ is chosen such that α0
i+

∈ (0, 1)
(at the elbow). For the second case, let I1

+ denote
the set of points in I+ with α0

i = 1. This set is
comparable with I+ in the balanced case. Therefore,
i+ = arg maxi∈I1

+
(α0)T PT k(xi). Since both xi+ and

xi− lie at the elbow, λ0 and β0
0 are identical in form to

(16) and (17).

3.2 Solution Path
In this subsection, we consider the period between

the lth event (with λ = λl) and the (l+1)th event (with
λ = λl+1). The set E is stable during this period.
Suppose E contains m indices which are represented
as an m-tuple (E(1), · · · , E(m)) such that E(i) < E(j)
for i < j, where m, which is typically a very small
number m ≤ l, is the number of points at the elbows.
We trace the solution path of αi for each i ∈ E . For
the convenience of derivation, we define α0 = λβ0. It
follows that f(x) = 1

λ (αT PT k(x) + α0).
We first introduce some notations. Let pi be the ith

column of P. Then PE = [pE(1),pE(2), . . . ,pE(m)] is an
(l+u)×m matrix. Moreover, yE = (yE(1), . . . , yE(m))T

is an m × 1 vector and KE =
[
k(xE1), . . . ,k(xEm

)
]T is

an m× (l +u) matrix. We have the following theorem.

Theorem 1 Suppose the solutions to {αi} and α0 are
{αl

i} and αl
0 when λ = λl. Then when λl+1 < λ < λl,

1. If i ∈ L ∪ R, αi = αl
i is fixed at 0 or 1 which is

independent of λ.
2. The solutions to {αE(i)} and α0 are given by




α0

αE(1)

.

.

.
αE(m)




=




αl
0

αl
E(1)

.

.

.
αl
E(m)




+ (λ − λl)A−1
E ya,

(18)

where AE =
[

0 yT
E

1 KEPE

]
,ya =

[
0
yE

]
.

We do not give the proof in this paper due to the
tight page limit, and the derivation is similar to that
in [4]. From Theorem 1, we can see that the solutions
to {αE(i)} and α0 are linear in λ while those to oth-
ers remain unchanged. As λ decreases, the algorithm
monitors the occurrence of any of the following events:

• One of the αE(i) for i = 1, . . . , m reaches 0 or 1.

• A point i /∈ E hits the elbow, i.e., yif(xi) = 1.

The λ values for the first type of events can be calcu-
lated directly from (18). Plugging the updating rule
(18) into the regression function (13), we can calculate
the λ values in which the second type of events occur.
Hence, by monitoring the occurrence of these events,
we choose the largest λ < λl for which an event occurs.
This λ value is a breakpoint and is denoted by λl+1.
We then update the point sets and continue until λ
tends to zero.

Through this process, we can explore the entire solu-
tion path by updating the parameters iteratively. As λ
changes from a large value towards 0, most labeled ex-
amples pass through the elbow from inside the margin
to outside. It is possible that a point passes through the
elbow multiple times. In each update, a set of linear
equations is solved with O(m3) where m is typically
quite small. Moreover, scanning through the labeled
examples to evaluate the next move has O(l) time com-
plexity. Since it needs O(l) iterations to explore the en-
tire path, the overall time complexity is O(l2 + l×m3).
Remember that the complexity for the Laplacian ma-
trix is O((l + u)2), and the computation of P requires
the inversion of a matrix with size (l + u) × (l + u),
which costs O((l +u)3). Since u is usually much larger
than l, the solution path algorithm only takes a very
small portion of the total computation for LapSVM.

4 Experiments

The behavior of the solution path algorithm can best
be illustrated using video, and we have prepared some
illustrative examples as video at http://www.cse.
ust.hk/~wanggang/sol_path/manifold_path.html.

In our experiments, we consider one synthetic and
one real datasets. We partition each dataset into a
training set and a test set. In the training set, we ran-
domly select a small number of points as labeled exam-
ples and keep the rest unlabeled. We then compute the
graph Laplacian and explore the solution path based on
the training set. We select the same number of labeled
points from each class to simplify the initialization step.
To evaluate the classification performance for differ-
ent solutions along the path, out-of-sample classifica-
tion accuracy is measured based on the separate test

4

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0

0

0

0

0

(a) Two moons

Figure 1. Two moons dataset with strong
manifold structure. The decision boundary in
the figure is the LapSVM solution when only
one positive and one negative points are la-
beled.

set. In the experiments, all the points are normalized
between [−1, 1] before the process, and the Guassian
RBF kernel k(xi,xj) = exp(‖xi −xj‖2/σ) is used with
σ = 0.1. We set ρ = 0.001 and use the k-nearest neigh-
bors method to compute the graph Laplacian where k
is set to 6.

4.1 Two Moons Dataset

Figure 1 shows the two moons dataset which has
strong manifold structure. The dataset contains 200
points. When only one positive and one negative points
are selected as labeled examples, the decision function
remains the same along the entire solution path since
no event occurs until λ decreases to 0.

We randomly select 70%, 50% and 30% of the points
from the two moons dataset for training while keeping
the rest for testing. In Figure 2(a), since 70% of the
points are used for training, the manifold structure is
preserved well. As a result, only two labeled points are
sufficient to give a good decision boundary achieving
100% classification accuracy. Labeling more points is
not necessary and hence the four curves correspond-
ing to different numbers of labeled points overlap com-
pletely. In Figure 2(b) when 50% of the points are used
for training, the manifold structure becomes weaker.
Thus, having only two labeled training points cannot
achieve very high classification accuracy. Better classi-
fication accuracy can be obtained when more training
points are labeled. We also notice that the decision
function changes dramatically for different λ values.
Figure 3 shows a typical example. When λ = 2, the
decision function splits the points from one class into
two parts leading to very low classification accuracy.
As λ decreases, the optimal solutions for different λ are
obtained. When only 30% of the points are used for

training, as shown in Figure 2(c), the manifold struc-
ture degenerates to a number of small clusters. This
case may be more similar to the real datasets we use
in practice. For this case, having more labeled points
is essential for identifying the class labels of these clus-
ters. Since the solution path algorithm explores the
solutions for all λ values, the solution which general-
izes best on the test set can be identified easily.

4.2 USPS Dataset

In this experiment, we consider the problem of clas-
sifying handwritten digits. The dataset we use is
the USPS handwritten digit dataset, where each digit
is represented as an 8-level gray-scale image of size
16 × 16. There are 1100 images for each digit. For
each digit dataset, we partition it into a training set
of 600 images and a test set of 500 images. The im-
ages for each digit form a manifold in the image space.
However, since the images for each digit possess large
variations due to rotation, thickness and style, the
corresponding manifold structure may not be contin-
uous. We consider three two-class classification prob-
lems, i.e., digits 2 vs. 3, 5 vs. 6, and 8 vs. 9.

Different labeled point sets will induce different solu-
tion paths especially when the number of labeled points
is very small. To reduce the effect due to random sam-
pling, we perform multiple runs on different labeled
point sets for each given number of labeled points. The
best accuracies obtained on the test set along the entire
path are then used to compute the average classifica-
tion accuracy for the corresponding number of labeled
points. Table 1 summarizes the results. When the
number of labeled points is small, the accuracies ob-
tained from different solution paths vary significantly,
leading to relatively large standard deviation. This
seems to indicate that the images from one digit class
do not form a single compact manifold but possibly
multiple clusters. Thus, as more points are labeled,
the labels for the clusters can be identified correctly.
We notice that the standard deviations are quite small
when the size of the labeled set is 16 or 32. The ac-
curacies obtained from the optimal solutions for dif-
ferent solution paths are stable enough. Therefore, the
Laplacian SVM can learn a good classifier when a small
labeled set get the help from unlabeled points.

5 Conclusion

We have proposed an efficient algorithm for com-
puting the solution path for Laplacian SVM. The solu-
tion path is piecewise linear with respect to a regular-
ization parameter, and the computational requirement
depends on the number of labeled examples only. The
optimal solution can be found very efficiently.

5

0.5 3 10
0.6

0.7

0.8

0.9

1

1.1

1.2

λ

ou
t−

of
−

sa
m

pl
e

cl
as

si
fic

at
io

n
ac

cu
ra

cy

70% for training

16 labeled

8 labeled

4 labeled

2 labeled

0.2 1 2
0.7

0.8

0.9

1

1.1

λ

ou
t−

of
−

sa
m

pl
e

cl
as

si
fic

at
io

n
ac

cu
ra

cy

50% for training

16 labeled

8 labeled

4 labeled

2 labeled

20.50.2
0.6

0.7

0.8

0.9

1

1.1

λ

ou
t−

of
−

sa
m

pl
e

cl
as

si
fic

at
io

n
ac

cu
ra

cy

30% training

16 labeled

8 labeled

4 labeled

2 labeled

(a) (b) (c)

Figure 2. Out-of-sample classification accuracy along the entire solution path. (a) 70% points for
training; (b) 50% points for training; (c) 30% points for training. The horizontal axis is in log scale.

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0

0

0

λ = 2

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2 0 0

0

00

0

0

0

λ = 0.78706

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
0

0

0
0

0

0

0 0

0

0

λ = 0.4556

(a) (b) (c)

Figure 3. 50% of the points are chosen for training while four points are labeled and the others are
unlabeled. The decision functions are shown for different λ values. (a) λ = 2; (b) λ = 0.8; (c) λ = 0.2.

% 2 labeled 4 labeled 8 labeled 16 labeled 32 labeled
2 vs. 3 58.4 (15.6) 79.1 (12.6) 95.7 (3.4) 97.9 (0.6) 98.4 (0.4)
5 vs. 6 61.7 (15.5) 83.9 (10.8) 95.3 (3.6) 98.6 (1.0) 99.0 (0.3)
8 vs. 9 63.4 (16.7) 73.8 (13.5) 88.5 (7.9) 95.7 (3.4) 97.1 (0.3)

Table 1. Average classification accuracies for the optimal solutions with different numbers of labeled
points. The corresponding standard deviations are shown inside brackets.

References

[1] M. Belkin and P. Niyogi. Laplacian eigenmaps and
spectral techniques for embedding and clustering. In
Advances in Neural Information Processing Systems 14
(NIPS-01), 2001.

[2] M. Belkin, P. Niyogi, and V. Sindhwani. Manifold reg-
ularization: a geometric framework for learning from
examples (tr-2004-06). Technical report, Department
of Computer Science, University of Chicago, 2004.

[3] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani.
Least angle regression. Technical report, Stanford Uni-
versity, 2002.

[4] T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu. The
entire regularization path for the support vector ma-
chine. Journal of Machine Learning Research, 5:1391–
1415, 2004.

[5] S. Rosset and J. Zhu. Piecewise linear regularized solu-
tion paths. Technical report, Stanford University, 2003.

[6] G. Wang, D. Yeung, and F. Lochovsky. Two-
dimensional solution path for support vector regression.
In Proceedings of the 23th International Conference on
Machine Learning (ICML-06)., 2006.

[7] J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani. 1-
norm support vector machines. In Advances in Neural
Information Processing Systems 16 (NIPS-03), 2003.

6

