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ABSTRACT

This paper proposes a novel facial expression recognition approach
based on two sets of features extracted from the face images: texture
features and global appearance features. The first set is obtained by
using the extended local binary patterns in both intensity and gra-
dient maps and computing the Tsallis entropy of the Gabor filtered
responses. The second set of features is obtained by performing null-
space based linear discriminant analysis on the training face images.
The proposed method is evaluated by extensive experiments on the
JAFFE database, and compared with two widely used facial expres-
sion recognition approaches. Experimental results show that the pro-
posed approach maintains high recognition rate in a wide range of
resolution levels and outperforms the other alternative methods.
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1. INTRODUCTION

Within the last couple of years, automatic facial expression recog-
nition (AFER) has gained an increasing interest in building natural
human-computer interaction (HCI) systems. This task poses a sig-
nificant challenge to the pattern recognition and computer vision
research communities for the non-rigid deformations of different
human expression styles as well as their large inter-personal vari-
ations. In this paper, we propose a novel approach to facial expres-
sion recognition from static images using elegantly extracted fea-
tures which cover both textual and appearance characteristics of dif-
ferent expression patterns.

Two main strategies have been recently exploited by different
AFER approaches [1]. Frame-based approaches use only the cur-
rent frame with or without a reference image (in most cases corre-
sponding to the neutral expression) to recognize the expression of
the frame. On the other hand, sequence-based approaches use the
temporal information to recognize various expressions for the short
video clips. However, they are limited to the fact that the timing of
facial actions of different expressions may be unstable when com-
pared with their appearance configurations in each individual frame.

Frame-based AFER methods do not use temporal information
for the recognition task but treat each input image as an independent
sample of some fixed but unknown distributions. The key to their
success lies on the extraction of expressive and discriminating image
features which could be either obtained by certain predefined models
or learned from large volume of training samples. Turk and Pentland
[2] use Principle Component Analysis (PCA) to construct eigenfaces

and represent face images as projection coefficients along these ba-
sis directions. Gabor-wavelet features [3] and lower frequency 2-D
DCT coefficients [4] are also explored in the literature. Apart from
these widely used features, Local Binary Pattern (LBP) [6] as a novel
low-cost image descriptor for texture classification has also been in-
troduced to the field of facial expression analysis.

Although the conventional LBP approach [7] efficiently encodes
the texture features of micro-pattern information in the face image,
it only considers the uniform patterns. Our empirical findings show
that the dominant patterns (i.e. the patterns with the largest propor-
tion in the image) of some kinds of facial expressions are not uni-
form. In this case, the conventional LBP approach may not be able
to reliably reflect the major structural information in the face im-
ages. Moreover, since the conventional LBP approach only extracts
the high-frequency texture characteristics (i.e., pixel-wise relation)
of the face images, the low- and mid-frequency texture features are
therefore not effectively captured. Apart from the textural level in-
formation, the face images also contain appearance level features
such as global facial motions, which could be well captured by lin-
ear subspace modeling (e.g., PCA and LDA).

Based on the above observations, we explore various feature
extraction techniques for effectively characterizing different facial
expression patterns. The main contributions of this paper are: (1)
The conventional LBP approach is extended to the advanced LBP
(ALBP) [8] in both intensity and gradient maps to ensure reliable
acquisition of the major pattern information; (2) The Tsallis entropy
[9] is used to extract the low- and mid-frequency texture features of
the face image; (3) Discriminating global appearance features are
extracted by null-space based LDA (NLDA) [10]. Then these three
kinds of features are combined to represent the characteristics of the
face image. The proposed method is evaluated by performing fa-
cial expression recognition using the JAFFE database [11] compared
with two widely used methods. To observe its performance under
low-resolution conditions, we also perform recognition experiments
by reducing the resolution level of the original input images.

2. ADVANCED LOCAL BINARY PATTERNS

2.1. Advanced LBP in Intensity and Gradient Maps

In the conventional LBP approach [7], the image pixels are first
labelled as a binary class by thresholding the difference between
the center pixel and its neighbors using the step function u(x) (i.e.
u(x) = 1 when x≥0 and u(x) = 0 otherwise). The concatenation



of the neighboring labels is then used as a unique descriptor for each
pattern. Figure 1 gives a simple example. The patterns are uniform
if the transitions between “0” and “1” are less than or equal to two.
For example, 01100000 and 11011111 are uniform patterns. The
histogram of the uniform patterns in the whole image is used as the
feature vector [7]. It has been proven to be effective for both face
recognition and facial expression recognition applications [12] [6].

Fig. 1. An example of LBP operator

Multiresolution analysis can be achieved by choosing different
values of m and R, where m denotes the number of neighboring
pixels with respect to the center pixel, and R represents the distance
from the center pixel to each of the neighboring pixels. Figure 2
illustrates circularly symmetric neighbor sets for different values of
m and R.

Fig. 2. Circularly symmetric neighbor sets for different values
of m and R.

However, it is observed that in some facial expressions, the dom-
inant patterns are not always uniform. The proportions of uniform
patterns in some samples from the JAFFE database are shown in Ta-
ble 1 with different values of m and R. Discarding the information
of all non-uniform patterns may result in losing useful micro-pattern
structural features in the face images.

Face Images m=8,R=1 m=16,R=2 m=24,R=3
KA.FE2.46 62.04 52.84 43.25
KM.HA1.4 52.17 45.24 36.38
KM.HA4.7 48.72 35.81 28.92
YM.FE2.68 54.72 42.04 30.52

Table 1. Proportions (%) of “uniform LBP” for some sam-
ples from the JAFFE database. It implies that the dominant
patterns are not mainly the “uniform LBP” in some face im-
ages.

In order to fully describe the dominant patterns contained in the
face images, we extend the conventional LBP to ALBP. Each pattern

in the image is assigned a unique label by the following equation [7]

LBP (m, R) =

p−1X
i=0

u(ti − tc)2
i. (1)

where tc is the intensity of the center pixel, ti is the intensity of the
neighbor i, and u(x) is the step function. It is clear that the LBP
defined in Equation 1 is not rotation-invariant as the intensity value
of ti changes when the circle is rotated by a specific angle. Two
patterns should be treated as the same type if one can be obtained
from the other through rotating by a certain angle. Therefore, the
ALBP pattern group is defined as:

ALBP s(m, R) = min(Cir(LBP (m, R), n)), (2)

where n = 0, 1, ..., p−1, Cir(x, n) performs a circular anti-clockwise
bitwise shift on the p-bit number by n times.

The histogram of the ALBP group is computed from the image
and sorted in a descending order. Therefore, the first several entries
of the histogram are guaranteed to be the dominant patterns from the
image. Our experiments show that around 80% of the patterns in the
image are sufficient for representing the information of the dominant
patterns, and the 16 leading entries are enough to cover 80% of the
whole ALBP histogram in the face image.

To further characterize the energy variation of the intensity mag-
nitude in different local regions, we also apply the ALBP method to
the gradient maps. The gradient of each pixel in the face image is
defined as: ∇f = ( ∂f

∂x
, ∂f

∂y
)T . We construct the ALBP histogram of

the gradient magnitude map |∇f | of the face image, following the
same procedure of constructing the ALBP histogram in the intensity
maps.

2.2. Decomposition of Face Images

In facial expression recognition, it is expected that some face re-
gions (e.g. eyes, mouth) provide more important information than
others. Therefore, each face image is partitioned into eight regions
R0, R1, ..., R7 as shown in Figure 3. Each region is assigned a
weight. The larger a weight is, the more important is the region. The
ALBP histograms for both intensity and gradient maps are extracted
from each region. Then the feature vector is normalized to the range
of [−1, 1]. Finally, the normalized feature vector is multiplied by its
corresponding weight to obtain the region feature vector. As such,
the region feature vector encodes the texture information in each lo-
cal region. By concatenating all the region feature vectors together,
global information of the entire face image can be obtained.

Fig. 3. (a) An example of facial expression image divided into
eight regions; (b) The weights set for different regions: black
regions indicate weight 1.00, gray regions 2.00, and white
regions 4.00.



3. TSALLIS ENTROPY OF GABOR FILTERED
RESPONSES

The ALBP features describe the high-frequency texture characteris-
tics of the face image as they are computed by pixel-wise intensity
differences. To effectively capture the low- and mid-frequency tex-
ture information, the Tsallis entropy is computed from the histogram
of the Gabor filtered responses. The Tsallis entropy [9] is defined as:

Sq =
1−

Pm−1
j=0 hq

j

q − 1
, (3)

where q is a continuous parameter, m denotes the maximum num-
ber of histogram bins, and hj is the value of histogram entry i. The
physical meaning of Tsallis entropy [9] is that it reflects the distrib-
ution characteristics of a histogram. Therefore, it can capture more
detailed information with respect to the histogram distribution than
the average magnitude response (i.e., mean value of the histogram)
which was adopted by most traditional methods.

In this work, 16 (= 4× 4) Gabor filters are used corresponding
to four different frequencies: F1 = 2.0, F2 = 3.17, F3 = 5.04,
and F4 = 8.0, following the Gabor filter design strategy described
in [13]. These filters slightly overlap each other with the Fourier
domain evenly covered. Four different orientations are considered
with respect to each frequency: θ1 = 0◦, θ2 = 45◦, θ3 = 90◦,
θ4 = 135◦. Then for each filtered output, the Tsallis entropy is
computed, and the 16 entropy values are used as the final features.

The Tsallis entropies capture low- and mid-frequency informa-
tion of the face image as the corresponding Gabor filters’ frequencies
are fallen in such frequency range. Therefore, the Tsallis entropy
features can complement the ALBP features well.

4. DISCRIMINATING APPEARANCE FEATURES

The extracted features above put more emphasis on low-level tex-
tural information of the face region rather than its global appearance.
To better utilize the class information of the training data, we should
also incorporate discriminating global appearance characteristics in
the feature representation.

In typical appearance-based methods, m×n face images are of-
ten represented by points in an mn-dimensional space. However,
coherent structure in the appearance of human faces leads to strong
correlation between them, generating observations that lie on a low-
dimensional subspace. The most widely used LDA approach [14]
seeks an optimal projection Wopt = arg maxW

|W T SbW |
|W T SwW | from the

input space onto a lower-dimensional feature space. This maximizes
the ratio of the between-class scatter to the within-class scatter. Here,
we use an extended version of LDA, called null-space based LDA
(NLDA) [10], to fully extract the discriminating appearance features
for different facial expression categories. The number of NLDA fea-
tures is set to c− 1, where c is the number of categories [14].

Up to now, we have collected three different types of features:
ALBP in both intensity and gradient maps, Tsallis entropy of Ga-
bor filtered responses, and null-space based LDA projection coeffi-
cients, which in turn capture the local intensity and energy variation
patterns, the global low- and mid-frequency domain distributions,
and the discriminating appearance characteristics of the face image.
As human facial expressions are complex visual stimuli, we believe
the combination of all three complementary features will lead to en-
hanced recognition performance.

5. EXPERIMENTAL RESULTS

The JAFFE database [11] is used to evaluate the facial expression
recognition performance of the proposed method. In the JAFFE
database, there are 10 persons. Each person has seven types of facial
expressions: angry, disgust, fear, happy, neutral, sadness, and sur-
prise (see Figure 4 for some examples in the database). There are
three samples corresponding to each facial expression of each per-
son. All the face images are resized to a fixed size of 64×64 pixels.
Histogram equalization is performed to remove the illumination ef-
fects in the images. The support vector machine (SVM) [15] with an
RBF kernel is used as the classifier in our work. In the experiments,
two samples of each facial expression for each person are used to
form the training set, and the remaining samples are used for test-
ing. Each face image is partitioned into eight regions as shown in
Figure 3. The proposed method is compared with two widely used
approaches:

• Uniform Local Binary Patterns (LBP) [7]: The histogram
of the uniform patterns in the face images, using m = 8 and
R = 2 which is the same setting as in [6].

• Average Magnitude of Gabor Filtered Responses (AMGFR)
[16]: The traditional Gabor filtered features, the average mag-
nitude responses of the Gabor filtered outputs [16].

Fig. 4. Some sample images from the JAFFE database

5.1. Experiment on JAFFE Database with Original Resolution

In our first experiment, classification is performed using the original
face images with resolution level 64×64 to evaluate the effectiveness
of different approaches. Their classification accuracies are shown in
Table 2, with the features of the proposed method listed in the last
four rows: ALBP, Tsallis entropy (Tsallis), and NLDA in intensity
images (NLDAI).

Features Classification Accuracy %
AMGFR [16] 82.46

LBP [7] 85.57
ALBP 88.26
Tsallis 85.36

ALBP + Tsallis 91.89
ALBP + Tsallis + NLDAI 94.59

Table 2. Performance comparison of different approaches
with resolution level 64×64 for the images from the JAFFE
database

The classification accuracies summarized in Table 2 show that
the Tsallis entropy outperforms the average magnitude response fea-



tures computed from the Gabor filters. This is because the Tsal-
lis entropy describes the whole histogram distribution information
of the filtered images, while the average magnitude response only
computes the mean value of the histogram. The ALBP features
outperform the conventional LBP as the ALBP histogram can al-
ways represent the most essential and dominant patterns in the face
images. Moreover, the ALBP and Tsallis entropy features com-
plement well with each other as discussed in Section 3, which is
empirically reflected by the high classification accuracy of 91.89%.
The dimensionality-reduced projections of the intensity image onto
a low-dimensional subspace using NLDA produce the discriminat-
ing features of the global facial appearance. Therefore, the NLDA
features (i.e., global appearance features) can further complement
the ALBP and Tsallis entropy features (i.e., texture features), which
is also reflected by the highest classification accuracy of 94.59% in
the experiment.

5.2. Experiment on JAFFE Database with Lower Resolution

In many real-world applications, the resolution of face images is
usually low due to various factors such as surrounding environment
and imaging equipment. Therefore, it is important to evaluate the
recognition performance of the proposed approach also under low-
resolution conditions. In the second experiment, the resolution level
of the original images (64×64) is downsampled to 48×48, 32×32
and 16×16, respectively, to observe the relationship between the
classification accuracy and the resolution level of the face images.
The classification accuracies for different methods are listed in Ta-
ble 3.

Classification accuracy (%)
Features 48×48 32×32 16×16

AMGFR [16] 78.13 67.83 56.35
LBP [7] 81.44 77.28 68.02
ALBP 84.27 82.74 75.39
Tsallis 79.25 71.04 63.81

ALBP + Tsallis 87.31 85.73 80.40
ALBP + Tsallis + NLDAI 90.54 88.82 84.62

Table 3. Performance comparison of different approaches
with resolution levels 48×48, 32×32 and 16×16 for the im-
ages from the JAFFE database

It is observed that the ALBP approach is more effective and sta-
ble than the conventional LBP when the resolution of the input face
images is low. The Tsallis entropy features still outperform the tra-
ditional Gabor filtered features under all three low resolution levels.
Combining the ALBP and Tsallis entropy features produces accept-
able classification accuracy (80.40%) even at the lowest resolution
level (16×16). The proposed method listed in the last row gives the
highest classification accuracies under all three resolution levels.

6. CONCLUSION

This paper describes a novel approach to the automatic recognition
of facial expressions. Motivated by our recent exploration of effec-
tive image features for the task of texture recognition and face recog-

nition, we combine advanced LBP and Tsallis entropy information
with discriminating appearance features to characterize seven facial
expression styles. Experimental results based on the JAFFE database
demonstrate the effectiveness and flexibility of our proposed method
when compared with two widely used methods in the literature.
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