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Abstract

Many supervised and unsupervised learning
algorithms are very sensitive to the choice of
an appropriate distance metric. While classi-
fication tasks can make use of class label in-
formation for metric learning, such informa-
tion is generally unavailable in conventional
clustering tasks. Some recent research sought
to address a variant of the conventional clus-
tering problem called semi-supervised clus-

tering, which performs clustering in the pres-
ence of some background knowledge or super-
visory information expressed as pairwise sim-
ilarity or dissimilarity constraints. However,
existing metric learning methods for semi-
supervised clustering mostly perform global
metric learning through a linear transforma-
tion. In this paper, we propose a new met-
ric learning method which performs nonlin-
ear transformation globally but linear trans-
formation locally. In particular, we formu-
late the learning problem as an optimiza-
tion problem and present two methods for
solving it. Through some toy data sets, we
show empirically that our locally linear met-

ric adaptation (LLMA) method can handle
some difficult cases that cannot be handled
satisfactorily by previous methods. We also
demonstrate the effectiveness of our method
on some real data sets.

1. Introduction

Many machine learning and pattern recognition algo-
rithms rely on a distance metric. Some commonly used
methods are nearest neighbor classifiers, radial basis
function networks and support vector machines for
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classification tasks and the k-means algorithm for clus-
tering tasks. The performance of these methods often
depends critically on the choice of an appropriate met-
ric. Instead of choosing the metric manually, a promis-
ing approach is to learn the metric from data automat-
ically. This idea can be dated back to some early work
on optimizing the metric for k-nearest neighbor den-
sity estimation (Fukunaga & Hostetler, 1973). More
recent research along this line continued to develop
various locally adaptive metrics for nearest neighbor
classifiers, e.g., (Domeniconi et al., 2002; Friedman,
1994; Hastie & Tibshirani, 1996; Lowe, 1995; Peng
et al., 2002). Besides nearest neighbor classifiers, there
are other methods that also perform metric learning
based on nearest neighbors, e.g., radial basis function
networks and variants (Poggio & Girosi, 1990).

While class label information is available for metric
learning in classification tasks, such information is gen-
erally unavailable in conventional clustering tasks. To
adapt the metric appropriately to improve the clus-
tering results, some additional background knowledge
or supervisory information should be made available.
This learning paradigm between the supervised and
unsupervised learning extremes is referred to as semi-

supervised clustering, as contrasted to another type of
semi-supervised learning tasks called semi-supervised

classification which solves the classification problem
with the aid of additional unlabeled data.

One type of supervisory information is in the form
of limited labeled data.1 Based on such information,
Sinkkonen and Kaski (2002) proposed a local metric
learning method to improve clustering and visualiza-
tion results. Basu et al. (2002) explored using labeled
data to generate initial seed clusters for the k-means
clustering algorithm. Also, Zhang et al. (2003) pro-
posed a parametric distance metric learning method
for both classification and clustering tasks.

1Semi-supervised clustering with the aid of labeled data
is essentially the same as semi-supervised classification
with the aid of unlabeled data.



Another type of supervisory information is in the form
of pairwise similarity or dissimilarity constraints. This
type of supervisory information is weaker than the
first type, in that pairwise constraints can be de-
rived from labeled data but not vice versa. Wagstaff
and Cardie (2000) and Wagstaff et al. (2001) pro-
posed using such pairwise constraints to improve clus-
tering results. Klein et al. (2002) introduced spa-
tial generalizations to pairwise constraints, so that
the pairwise constraints can also have influence on
the neighboring data points. However, both methods
do not incorporate metric learning into the cluster-
ing algorithms. Xing et al. (2003) proposed using
pairwise side information in a novel way to learn a
global Mahalanobis metric before performing cluster-
ing with constraints. Both Klein et al.’s and Xing et
al.’s methods generally outperform Wagstaff et al.’s
method in the experiments reported. Instead of us-
ing an iterative algorithm as in (Xing et al., 2003),
Bar-Hillel et al. (2003) devised a more efficient, non-
iterative algorithm called relevant component analy-
sis (RCA) for learning a global Mahalanobis metric.
However, their method can only incorporate similarity
constraints. Shental et al. (2004) extended the work
of (Bar-Hillel et al., 2003) by incorporating both pair-
wise similarity and dissimilarity constraints into the
expectation-maximization (EM) algorithm for model-
based clustering based on Gaussian mixture models.
Kwok and Tsang (2003) established the relationship
between metric learning and kernel matrix adaptation.

To summarize, we can categorize metric learning meth-
ods according to two different dimensions. The first
dimension is concerned with whether (supervised) clas-
sification or (unsupervised) clustering is performed.
Most methods were proposed for classification tasks,
but some recent methods extended metric learning
to clustering tasks under the semi-supervised learning
paradigm. Supervisory information may be in the form
of class label information or pairwise (dis)similarity
information. The second dimension categorizes met-
ric learning methods into global and local ones. Pro-
vided that sufficient data are available, local metric
learning is generally preferred as it is more flexible in
allowing different local metrics at different locations
of the input space. In this paper, we propose a new
metric learning method for semi-supervised clustering
with pairwise similarity side information. While our
method is local in the sense that it performs met-
ric learning through locally linear transformation, it
also achieves global consistency through interaction
between adjacent local neighborhoods.

The rest of this paper is organized as follows. In Sec-
tion 2, we present our metric learning method based

on locally linear transformation. We also formulate
the learning problem as an optimization problem. In
Section 3, we present two methods for solving this op-
timization problem. Experimental results on both toy
and real data are presented in Section 4, comparing our
method with some previous methods. Finally, some
concluding remarks are given in the last section.

2. Locally Linear Metric Adaptation

2.1. Basic Ideas

Let us denote a set of n data points in a d-dimensional
input space by X = {x1,x2, . . . ,xn}. As in (Bar-Hillel
et al., 2003), we only consider pairwise similarity con-
straints which are given in the form of a set S0 of simi-
lar point pairs. Intuitively, we want to transform the n
data points to a new space in which the points in each
similar pair will get closer to each other. To preserve
the topological relationships between data points, we
move not only the points involved in the similar pairs
but also other points. For computational efficiency,
we resort to linear transformation. One promising ap-
proach is to apply locally linear transformation so that
the overall transformation of all points in X is linear lo-
cally but nonlinear globally, generalizing previous met-
ric learning methods based on applying linear trans-
formation globally (Bar-Hillel et al., 2003; Xing et al.,
2003). We call this new metric learning method locally

linear metric adaptation (LLMA). However, caution
should be taken when applying linear transformation
to reduce the distance between similar points, as a
degenerate transformation will simply map all points
to the same location so that all inter-point distances
vanish (and hence become the smallest possible). Ob-
viously this degenerate case is undesirable and should
be avoided.

2.2. Metric Adaptation as an Optimization

Problem

We now proceed to devise the metric learning algo-
rithm more formally. We first generate the transitive
and reflective closure S from S0. For each point pair
(xr,xs) ∈ S, we apply a linear transformation to the
vector (xs−xr) to give Ar(xs−xr)+cr for some d×d
matrix Ar and d-dimensional vector cr. If a data point
is involved in more than one point pair, we consider the
transformation for each pair separately. The same lin-
ear transformation is also applied to every data point
xi in the neighborhood set Nr of xr. In other words,
every data point xi ∈ Nr is transformed to

yi = Ar(xi − xr) + cr + xr

= xi + (Ar − I)xi + br,



where br = (I − Ar)xr + cr is the translation vector
for all points xi’s in Nr.

However, a data point xi may belong to multiple
neighborhood sets corresponding to different point
pairs in S. Thus, the new location yi of xi is the
overall transformation effected by possibly all similar
point pairs (and hence neighborhood sets):

yi = xi +
∑

(xr,xs)∈S

πri[(Ar − I)xi + br],

where πri = 1 if xi ∈ Nr and 0 otherwise.

Let m denote the number of point pairs in S. Thus
a total of m different transformations have to be es-
timated from the point pairs in S, requiring O(md2)
transformation parameters in {Ar} and {br}. When
m is small compared with the dimensionality d, we
cannot estimate the O(md2) transformation parame-
ters accurately. One way to get around this problem is
to focus on a more restrictive set of linear transforma-
tions. The simplest case is to allow only translation,
which can be described by md parameters. Obviously,
translating all data points in a neighborhood set by the
same amount leads to no change in the inter-point dis-
tances. Although some data points may fall into mul-
tiple neighborhood sets and hence this phenomenon
does not hold, we want to incorporate an extra de-
gree of freedom by changing the neighborhood sets to
Gaussian neighborhood functions. More specifically,
we set Ar to the identity matrix I and express the
new location yi of xi as

yi = xi +
∑

(xr,xs)∈S

πribr, (1)

where πri is a Gaussian function defined as

πri = exp

[

−1

2
(xi − xr)

T Σ−1
r (xi − xr)

]

,

with Σr being the covariance matrix. For simplicity,
we use a hyperspherical Gaussian function, meaning
that the covariance matrix is diagonal with all diag-
onal entries being ω2. Thus πri can be rewritten as
πri = exp

(

−‖xi − xr‖2/(2ω2
)

). Note that (1) can be
expressed as

yi = xi + Bπi, (2)

where B = [b1,b2, . . . ,bm] is a d×m matrix and
πi = (π1i, π2i, . . . , πmi)

T is an m-dimensional column
vector. For data points that are far away from all
points involved in S (and hence the centers of the
neighborhoods), all πri’s are close to 0 and hence those
points essentially do not move (since yi ≈ xi).

We now formulate the optimization problem for find-
ing the transformation parameters. The optimization
criterion is defined as

J = dS + λP, (3)

where dS is the sum of squared Euclidean distances for
all similar pairs in the transformed space

dS =
∑

(xr,xs)∈S

‖yr − ys‖2,

and P , a penalty term used to constrain the degree of
transformation, is defined as

P =
∑

i

∑

j

Nσ(dij) (qij − dij)
2, (4)

where qij = ‖yi − yj‖ and dij = ‖xi − xj‖ repre-
sent the inter-point Euclidean distances in the trans-
formed and original spaces, respectively. Nσ(dij)
is again in the form of a Gaussian function, as
Nσ(dij) = exp

(

−d2
ij/σ

2
)

, with parameter σ specify-
ing the spread of the Gaussian window. The regular-
ization parameter λ > 0 in (3) determines the rela-
tive significance of the penalty term in the objective
function for the optimization problem. Note that the
optimization criterion in (3) is analogous to objective
functions commonly used in energy minimization mod-
els such as deformable models (Cheung et al., 2002),
with the penalty term P playing the role of an internal
energy term.

2.3. Iterative Metric Adaptation Procedure

The optimization problem formulated above is solved
in an iterative manner, resulting in an iterative met-
ric adaptation procedure. To increase the local speci-
ficity gradually over time to allow global nonlinearity
in the transformation, the Gaussian window parame-
ters ω and σ determining the neighborhood size and
the weights in the penalty term, respectively, should
decrease over time. We apply a simple method of
decreasing the window parameters: ω(t) = β q(t)/

√
t,

σ(t) = γ ω(t), for iteration t = 1, 2, . . ., where q(t) is the
average inter-point Euclidean distance in the trans-
formed space over all point pairs in X (i.e., q(t) =

2
n(n−1)

∑

i<j ‖y
(t)
i − y

(t)
j ‖), and β, γ > 0 are two con-

stant parameters.

At iteration t, given the data point locations {y(t)
i }

and the window parameters ω(t) and σ(t), the overall
optimization criterion in (3) is rewritten as the opti-
mization criterion for iteration t:

J (t)({br}; {y(t)
i }, ω(t), σ(t))

=
∑

(xr,xs)∈S

‖yr − ys‖2 + λ
∑

i

∑

j

Nσ(t)(dij)(qij − dij)
2. (5)



Note that yr, ys and qij depend on {br} and {y(t)
i }.

However, for simplicity, the dependency is not explic-
itly shown on the right-hand side of (5). We seek to
minimize J (t) by finding the optimal values of {br} as

{b(t)
r }, which are then used to compute the location

changes from {y(t)
i } to {y(t+1)

i }.
There are two stopping criteria in our iterative algo-
rithm. The first criterion is based on the ratio ξ(t) of
the average inter-point distance over point pairs in S
to that over all point pairs in X (i.e., q(t)). The pro-
cedure will stop when ξ(t) becomes smaller than some
prespecified threshold ρ. Another stopping criterion
is simply to set a maximum number of iterations T .
The metric learning procedure will stop when either
stopping criterion is satisfied.

We summarize our LLMA algorithm as follows:

1. y
(1)
i = xi, 1 ≤ i ≤ n; t = 1.

2. If ξ(t) < ρ or t = T , then exit.

3. ω(t) = β q(t)/
√

t; σ(t) = γ ω(t).

4. Compute π
(t)
i =

(

π
(t)
1 (y

(t)
i ), . . . , π

(t)
m (y

(t)
i )

)T

, 1 ≤
i ≤ n, based on ω(t).

5. Compute the optimal b
(t)
r , 1 ≤ r ≤ m, by mini-

mizing J (t) in (5) w.r.t. {br}.

6. Update all data points as

y
(t+1)
i = y

(t)
i +

m
∑

r=1

π(t)
r (y

(t)
i )b(t)

r , 1 ≤ i ≤ n.

7. t = t + 1; go to Step 2.

In the algorithm, Step 5 is the key step which solves
the optimization problem for each iteration based on
the criterion in (5). In the next section, we present
two methods for solving this optimization problem.

3. Optimization Methods

We now proceed to solve the optimization problem in
Step 5 of the LLMA algorithm shown above. Two dif-
ferent optimization methods are discussed in the fol-
lowing two subsections.

3.1. Gradient Method

While the first term of J (t) in (5) is quadratic in {br},
the second term is of a more complex form. So we can-
not find a closed-form solution for the optimal values

of {br} simply by solving ∇br
J (t) = 0, 1 ≤ r ≤ m.

However, by using q
(t)
ij to approximate q

(t+1)
ij , we can

obtain an approximate closed-form solution

B(t) = −U1U
+
2 ,

where

U1 =
X

i

X

j

h

sij + λNσ(t)(dij)
“

1 − dij/q
(t)
ij

”i

×

(y
(t)
i − y

(t)
j )(π

(t)
i − π

(t)
j )T

U2 =
X

i

X

j

h

sij + λNσ(t)(dij)
“

1 − dij/q
(t)
ij

”i

×

(π
(t)
i − π

(t)
j )(π

(t)
i − π

(t)
j )T ,

and sij = 1 if (xi,xj) ∈ S and 0 otherwise. U+
2 de-

notes the pseudo-inverse of U2.

3.2. Iterative Majorization

Let us define two d×n matrices Y = [y1,y2, . . . ,yn]
and Z = [z1, z2, . . . , zn] for n data points before and
after transformation, respectively.2 From (2), we have

Z = Y + BΠ = (YΠ+ + B)Π = LΠ,

where Π = [π1,π2, . . . ,πn] is an m×n matrix. The
optimization problem is then equivalent to minimiza-
tion of J(L) with respect to L.

The optimization criterion J(L) can be rewritten as:

J(L) =
X

i,j

sijq
2
ij(L) + λ

X

i,j

Nσ(dij)(qij(L) − dij)
2

=
X

i,j

(sij + λNσ(dij))

„

qij(L) −
λNσ(dij)

sij + λNσ(dij)
dij

«2

+λ
X

i,j

Nσ(dij)

„

1 −
λNσ(dij)

sij + λNσ(dij)

«

d2
ij .

We can omit the second term since it does not depend
on L. The equivalent optimization criterion is

∑

i

∑

j

αij(qij(L) − pij)
2,

where

αij = sij + λNσ(dij)

pij =
λNσ(dij)

sij + λNσ(dij)
dij .

Since this form is the same as that for multidimen-
sional scaling for discriminant analysis (Webb, 1995),

2For notational simplicity, we use Y and Z rather than
Y(t) and Y(t+1) here.



we can solve the optimization problem by iterative ma-

jorization, which can be seen as an EM-like algorithm
for problems with no missing data. We define

C =
∑

i

∑

j

αij(πi − πj)(πi − πj)
T

and

D(L) =
∑

i

∑

j

eij(L) (πi − πj)(πi − πj)
T

with

eij(L) =

{

λNσ(dij) dij

qij(L) qij(L) > 0

0 qij(L) = 0

Then the optimization problem consists of the follow-
ing steps:3

1. Initialize L(0); u = 0.

2. u = u + 1; and compute

L(u) = L(u−1) (D(L(u−1)))T (C−1)T .

3. If converged, then stop; otherwise go to Step 2.

3.3. Other Methods

Recall that the penalty term P in (3) serves to con-
strain the degree of transformation, partly to avoid the
occurrence of a degenerate transformation and partly
to preserve the local topological relationships between
data points. Besides defining the penalty term as in
(4), there also exist other ways to achieve this goal.
One possibility is to preserve the locally linear rela-
tionships between nearest neighbors, as in a nonlinear
dimensionality reduction method called locally linear

embedding (LLE) (Roweis & Saul, 2000). Due to page
limit, details of this method are omitted here.

4. Experimental Results

To assess the efficacy of LLMA, we perform extensive
experiments on toy data as well as real data from the
UCI Machine Learning Repository.4

4.1. Illustrative Examples

Figure 1 demonstrates the power of our LLMA method
by comparing it with the RCA method (Bar-Hillel

3Note that the iteration count u here is different from
t in the LLMA algorithm shown above. This optimization
problem is for Step 5 of each iteration t of the algorithm.

4http://www.ics.uci.edu/~mlearn/MLRepository.html

et al., 2003) on three toy data sets.5 RCA, as a
metric learning method, changes the feature space
by a global linear transformation which assigns large
weights to relevant dimensions and low weights to ir-
relevant dimensions. The relevant dimensions are es-
timated based on connected components composed of
similar patterns. For each data set, we randomly select
10 similar pairs to form S0. While RCA can perform
well on the first data set, its performance is signifi-
cantly worse than LLMA on the second and third data
sets which are much more difficult cases. On the other
hand, LLMA can give satisfactory results for all three
cases. More details about these experiments will be
given in Section 4.3.

4.2. Clustering Algorithms and Performance

Measures for Comparative Study

In order to assess the efficacy of LLMA for semi-
supervised clustering, we compare the clustering re-
sults based on k-means with and without metric learn-
ing. Besides RCA method, we also repeat the ex-
periments using the constrained k-means algorithm
(Wagstaff et al., 2001). Constrained k-means algo-
rithm is based on default Euclidean metric subject to
the constraints that patterns in a pair (xr,xs) ∈ S are
always assigned to the same cluster. More specifically,
the following four clustering algorithms are compared:

1. k-means without metric learning

2. Constrained k-means without metric learning

3. k-means with RCA for metric learning

4. k-means with LLMA for metric learning

The Rand index (Rand, 1971) is used to measure the
clustering quality in our experiments. It reflects the
agreement of the clustering result with the ground
truth. Let ns be the number of point pairs that are as-
signed to the same cluster (i.e., matched pairs) in both
the resultant partition and the ground truth, and nd be
the number of point pairs that are assigned to different
clusters (i.e., mismatched pairs) in both the resultant
partition and the ground truth. The Rand index is
defined as the ratio of (ns + nd) to the total number
of point pairs, i.e., n(n − 1)/2. When there are more
than two clusters, however, the standard Rand index
will favor assigning data points to different clusters.
We modify the Rand index as in (Xing et al., 2003) so
that matched pairs and mismatched pairs are assigned
weights to give them equal chance of occurrence (0.5).

5The MATLAB code for RCA was downloaded from the
web page of an author of (Bar-Hillel et al., 2003).



(a) Toy data set 1 (b) Similar pairs (c)
RCA

(d) LLMA

(e) Toy data set 2 (f) Similar pairs (g) RCA (h) LLMA

(i) Toy data set 3 (j) Similar pairs (k) RCA (l) LLMA

Figure 1. Comparison of LLMA with RCA on three toy data sets. Subfigures in the first column show the data sets each
with two classes, while subfigures in the second column show 10 similar pairs in S0 for each data set. The third and fourth
columns show the data sets after applying RCA and LLMA, respectively, for metric learning.

To see how different algorithms vary their performance
with the background knowledge provided, we use 20
randomly generated S0 sets for each data set. More-
over, we compute the average Rand index over 20 ran-
dom runs of (constrained) k-means for each S0 set.
The results for all four algorithms are then shown as
box-plots using MATLAB.

4.3. Semi-Supervised Clustering on Toy and

UCI Data Sets

In the LLMA algorithm, there are a few parameters
that need to be set before running the experiments.
These parameters are quite easy to set based on their
physical meanings. The two parameters, β and γ, for
the decay functions of the Gaussian windows are set to
[0.1, 3] and (0, 1), respectively. The regularization pa-
rameter λ adjusting the tradeoff between local trans-
formation and geometry preservation is set to [1, 5].
For the stopping criteria, we set ρ to [0.1, 0.2] and T
to 5 (i.e., very few iterations of the LLMA algorithm
are run). All data sets are normalized before applying
the four algorithms. Gradient method is used to ob-
tain the experimental results shown, which are similar
to those obtained using iterative majorization.

Figure 2 shows the clustering results for the three toy
data sets as illustrated in Section 4.1. Obviously, all
the three data sets cannot be clustered well using the
standard and constrained k-means algorithms. Even
RCA can give good result only on the first data set.
On the other hand, LLMA can handle all these cases
and perform particularly well on the second and third
data sets which cannot be handled satisfactorily by the
other methods.

We further conduct experiments on nine UCI data sets.
The number of data points n, the number of features
d, the number of classes c, and the number of ran-
domly selected similar pairs |S0| are shown under each
subfigure in Figure 3. From the clustering results, we
can see that LLMA outperforms the other methods
for most of these data sets. As for the iris, Boston
housing and balance data sets, RCA can improve the
clustering results most.

To summarize, these experimental results on both toy
and real data sets demonstrate the effectiveness of our
LLMA method.
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(a) Toy data set 1
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(b) Toy data set 2
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(c) Toy data set 3

Figure 2. Clustering results for toy data sets shown as box-plots for 20 different S0 sets with |S0| = 10 (the four clustering
algorithms are numbered as in Section 4.2).

5. Concluding Remarks

In this paper, we have proposed a new metric learning
method called LLMA for semi-supervised clustering.
Unlike previous methods which can only perform lin-
ear transformation globally, LLMA performs nonlinear
transformation globally but linear transformation lo-
cally. This generalization makes it more powerful for
solving some difficult clustering tasks as demonstrated
through the toy data sets. To solve the optimization
problem as one step in the LLMA algorithm, we have
presented two methods and hinted some other possi-
bilities, such as a spectral method like that used in
LLE. We have also compared our method with some
previous methods using real data sets.

Note that in LLMA, the original input space and the
transformed space are explicitly related via a mapping,
as Y = LΠ, where Π is a nonlinear function with re-
spect to X. Although it is not necessary for clustering
problems, it is possible for new data points added to
the input space to be mapped onto the transformed
space. This possibility will be explored as we extend
our LLMA method to other applications.

Currently, our method can only utilize similarity con-
straints. A natural question to ask is whether we
can extend LLMA by incorporating dissimilarity con-
straints. In principle this is possible, but the optimiza-
tion criterion has to be modified in order to incorpo-
rate the new constraints. One challenge to face is to
maintain the form of the objective function so that the
optimization problem remains tractable.

Moreover, we have only considered a restrictive form of
locally linear transformation, namely, translation. A
potential direction to pursue is to generalize it to more
general linear transformation types. Other possible re-
search directions include improving the current LLMA
algorithm such as performing globally linear transfor-
mation first and then LLMA only when necessary.
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(e) Ionosphere n = 351, d =
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Figure 3. Clustering results for UCI data sets shown as box-plots for 20 different S0 sets (the four clustering algorithms
are numbered as in Section 4.2).
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