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Abstract

Recently, a very appealing approach was pro-
posed to compute the entire solution path
for support vector classification (SVC) with
very low extra computational cost. This ap-
proach was later extended to a support vector
regression (SVR) model called ε-SVR. How-
ever, the method requires that the error pa-
rameter ε be set a priori, which is only pos-
sible if the desired accuracy of the approxi-
mation can be specified in advance. In this
paper, we show that the solution path for ε-
SVR is also piecewise linear with respect to ε.
We further propose an efficient algorithm for
exploring the two-dimensional solution space
defined by the regularization and error pa-
rameters. As opposed to the algorithm for
SVC, our proposed algorithm for ε-SVR ini-
tializes the number of support vectors to zero
and then increases it gradually as the algo-
rithm proceeds. As such, a good regression
function possessing the sparseness property
can be obtained after only a few iterations.

1. Introduction

In a typical regression problem, we are given a train-
ing set of independent and identically distributed (iid)
data pairs {(xi, yi)}n

i=1 ⊂ R
d × R, where xi and yi

are the input and output, respectively, of the ith
pair. Support vector regression (SVR) (Vapnik, 1995;
Schölkopf & Smola, 2002) is a kernel method that per-
forms nonlinear regression based on the kernel trick.
Essentially, each input xi ∈ R

d is mapped implic-
itly via a nonlinear feature map φ(·) to some kernel-
induced feature space F where linear regression is per-
formed. Specifically, SVR learns the following regres-
sion function by estimating w ∈ F and w0 ∈ R from

Appearing in Proceedings of the 23 rd International Con-
ference on Machine Learning, Pittsburgh, PA, 2006. Copy-
right 2006 by the author(s)/owner(s).

the training data:

f(x) = 〈w, φ(x)〉 + w0, (1)

where 〈·, ·〉 denotes the inner product. It does so by
minimizing some empirical risk measure that is regu-
larized to control the capacity.

In ε-SVR, the so-called ε-insensitive loss function |y −
f(x)|ε = max{0, |y−f(x)|−ε} is used to define an em-
pirical risk functional which exhibits the same sparse-
ness property of the support vectors as that for support
vector classifiers (SVC) using the hinge loss function.
If a point x lies inside the insensitive zone called the
ε-tube, i.e., |y − f(x)| ≤ ε, then it will not incur any
loss. However, the error parameter ε ≥ 0 has to be
chosen a priori by the user. The primal optimization
problem for ε-SVR can be stated as follows:

min
w,ξ(∗)

λ

2
‖w‖2 +

n∑
i=1

(ξi + ξ∗i ) (2)

subject to yi − (〈w, φ(xi)〉 + w0) ≤ ε + ξi (3)
(〈w, φ(xi)〉 + w0) − yi ≤ ε + ξ∗i (4)

ξ
(∗)
i ≥ 0. (5)

Here and below, i = 1, ..., n and (∗) denote both the
variables with and without asterisks. The parameter
λ > 0 is a regularization parameter that controls the
degree of regularization. Like ε, λ also has to be chosen
in advance by the user. The two parameters λ and
ε play different roles in ε-SVR. Figure 1 shows four
different combinations of the parameter values.

In practice, users often use some default values for
λ and ε even though they are by no means optimal
choices. Extensive exploration of the optimal param-
eter values is seldom pursued since this requires re-
training the model many times under different param-
eter settings. To overcome the difficulty of selecting
ε, Schölkopf et al. (2000) proposed the ν-SVR model
which automatically adjusts the width of the tube so
that at most a fraction ν of the data points lie outside
the tube.
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Figure 1. Linear SVR results for four different combinations of values for λ and ε. (a) proper values of λ and ε are
specified; (b) λ = ∞; (c) ε > (ymax − ymin)/2; (d) ε < (ymax − ymin)/2, but all the data points are inside the ε-tube.

More recently, a novel approach has emerged that
seeks to explore the entire solution path for all param-
eter values without having to re-train the model mul-
tiple times. By estimating the generalization errors
under different parameter values, the optimal combi-
nation can be found with a low extra computational
cost. Efron et al. (2002) developed the Least Angle
Regression (LARS) algorithm which fits the coefficient
path for the linear least square regression problem reg-
ularized with the L1 norm. This is probably the first
work that explores the correspondence between every
regularization parameter value and the solution. An
important finding is that the coefficient path is piece-
wise linear and hence it is efficient to explore the entire
solution path by monitoring the breakpoints only. In-
spired by this pioneering work, Rosset et al. (2004)
showed that boosting approximately follows the reg-
ularization path with an appropriate loss and an L1

penalty. Zhu et al. (2003) proposed an algorithm
to compute the entire regularization path for the L1-
norm SVC and Hastie et al. (2004) proposed one for
the standard L2-norm SVC. They are again based on
the property that the regularization paths are piece-
wise linear. More generally, Rosset and Zhu (2003)
showed that any model with an L1 regularization and
a quadratic, piecewise quadratic, piecewise linear, or
linear loss function has a piecewise linear coefficient
path and hence the entire solution path can be com-
puted efficiently.

For SVR, Gunter and Zhu (2005) derived an algorithm
that computes the entire solution path for ε-SVR with
respect to λ when ε is fixed. The algorithm starts from
λ = ∞, with the initial solution obtained by solv-
ing a linear programming problem. As λ decreases,
the algorithm computes the solution for every value of
λ. However, sometimes the solution path cannot be
traced successfully when some points lie at the bound-
aries of the ε-tube. When there exists only one or even
no point at the boundaries, the tube has to move and
rotate until two valid points enter the tube. Since the
search strategy for valid points is random, it is impos-

sible to estimate the number of steps before two such
points are encountered. Therefore, their algorithm for
exploring the λ-path cannot be realized easily in prac-
tice. In this paper, we show that the solution path
for ε-SVR is also piecewise linear with respect to ε, al-
though ε is not a regularization parameter like λ. We
refer to this path as the ε-path. It is important to note
that the ε-path algorithm, unlike the λ-path algorithm,
can always proceed without any difficulty. By integrat-
ing the λ-path and ε-path algorithms, we propose an
efficient algorithm to explore the two-dimensional solu-
tion space for ε-SVR. The width of the tube decreases
from infinity as the algorithm proceeds. Thus, the
points originally lying inside the tube will move out-
side and the Lagrange multipliers will change from 0 to
1. As such, similar to ν-SVR, the number of support
vectors can be controlled exactly. A good regression
function with the desirable sparseness property can be
obtained after only a small number of iterations to de-
crease ε.

The rest of this paper is organized as follows. In Sec-
tion 2, we review the λ-path algorithm and devise the
ε-path algorithm. In Section 3, the two algorithms are
integrated to give a new algorithm for exploring the
two-dimensional solution space for ε-SVR efficiently.
Some experimental results are then presented in Sec-
tion 4, followed by a conclusion of the paper in the last
section.

2. One-Dimensional Solution Paths

2.1. Problem Setup

From the primal optimization problem for ε-SVR, we
can obtain

w =
1
λ

n∑
i=1

(αi − α∗
i )φ(xi). (6)

Applying the method of Lagrange multipliers to the
primal optimization problem, we arrive at the follow-
ing dual optimization problem:
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max
α(∗)

− 1
2λ

n∑
i,j=1

(αi − α∗
i )(αj − α∗

j )K(xi,xj)

−ε
n∑

i=1

(αi + α∗
i ) +

n∑
i=1

(αi − α∗
i )yi (7)

subject to 0 ≤ α
(∗)
i ≤ 1 (8)

n∑
i=1

(αi − α∗
i ) = 0. (9)

Using (6), the regression function in (1) can be rewrit-
ten as:

f(x) = 〈w, φ(x)〉 + w0

=
1
λ

n∑
i=1

(αi − α∗
i )〈φ(xi), φ(x)〉 + w0

=
1
λ

n∑
i=1

(αi − α∗
i )K(xi,x) + w0. (10)

From the Karush-Kuhn-Tucker (KKT) conditions, we
can derive the following relationships:

yi − f(xi) > ε ⇒ αi = 1, α∗
i = 0

yi − f(xi) = ε ⇒ αi ∈ [0, 1], α∗
i = 0

yi − f(xi) ∈ (−ε, ε) ⇒ αi = 0, α∗
i = 0

yi − f(xi) = −ε ⇒ αi = 0, α∗
i ∈ [0, 1]

yi − f(xi) < −ε ⇒ αi = 0, α∗
i = 1

As a consequence, f(x) can be expressed as an expan-
sion in terms of only a subset of data points for which
either αi or α∗

i is nonzero. These points are referred
to as support vectors which, like those for SVC, con-
tribute to the sparseness property of f(x) with repre-
sentational and computational advantages. Following
the convention of (Gunter & Zhu, 2005), we partition
the set of data points into the following five subsets as
illustrated in Figure 2:

• R = {i : yi − f(xi) > ε, αi = 1, α∗
i = 0}

• ER = {i : yi − f(xi) = ε, αi ∈ [0, 1], α∗
i = 0}

• C = {i : |yi − f(xi)| < ε, αi = 0, α∗
i = 0}

• EL = {i : yi − f(xi) = −ε, αi = 0, α∗
i ∈ [0, 1]}

• L = {i : yi − f(xi) < −ε, αi = 0, α∗
i = 1}

As we change the value of λ or ε, the tube will move,
rotate, shrink, expand or remain unchanged. Some
events may occur during this process. An event is
said to occur when a point enters or leaves an elbow,
causing some point sets to change. We categorize these
events as follows:

ε

Right of elbows(R)Center(C)
Left of elbows(L)

Right elbow(ER)

y − f (x)

Loss

Left elbow(EL)

Figure 2. The set of data points is partitioned into five sub-
sets according to the ε-insensitive loss function.

1. A point enters an elbow:
• From C to ER with αi = 0
• From C to EL with α∗

i = 0
• From R to ER with αi = 1
• From L to EL with α∗

i = 1

2. A point leaves an elbow:
• From ER to R with αi = 1
• From ER to C with αi = 0
• From EL to C with α∗

i = 0
• From EL to L with α∗

i = 1

For the points inside or outside the tube, i.e., in R∪C∪
L, their α

(∗)
i values remain fixed until an event occurs.

Hence, it suffices to focus on the points at the elbows,
i.e., in ER ∪ EL. As a point passes through ER or EL,
its αi or α∗

i value will change from 0 to 1 or from 1 to
0.

2.2. λ-Path

The λ-path algorithm explores the correspondence be-
tween every λ value and the corresponding solution
α

(∗)
i (λ) for a fixed ε. The path can start from the solu-

tion of an ε-SVR model for any initial value of λ, since
the values of α

(∗)
i fully determine the sets R, ER, C, EL

and L. However, finding the solution requires solving a
quadratic programming problem (Schölkopf & Smola,
2002) which is computationally demanding. The prob-
lem to solve becomes simpler if we set λ = ∞ initially.
Doing so will make the first term of the objective func-
tion (7) vanish, leaving only the last two terms. Thus
the quadratic programming problem degenerates to a
linear programming problem which is easier to solve.
Similarly, the first term of (10) vanishes so that the
regression function becomes f(x) = w0, which corre-
sponds to the case shown in Figure 1(b). The initial
values of α

(∗)
i , denoted as α

(∗)0
i , are either 0 or 1 if

all the values of yi are distinct (Gunter & Zhu, 2005).
The ε-tube is bounded by the sets R, C and L. The
tube can move around by changing λ and w0, while no
point is allowed to pass through any elbow. Hence the
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invalid

valid

Figure 3. The tube rotates in a clockwise direction as λ
decreases. The one on the left is the initial case. Shown
on the right are three possible rotation results where two
points enter the elbows together. Only the last one is a
valid case.

following constraints are satisfied:

yj − 1
λ

∑
i

(α0
i − α∗0

i )K(xi,xj) − w0 >ε for j ∈ R (11)

∣∣∣yj − 1
λ

∑
i

(α0
i − α∗0

i )K(xi,xj) − w0

∣∣∣<ε for j ∈ C (12)

yj − 1
λ

∑
i

(α0
i − α∗0

i )K(xi,xj) − w0 <−ε for j ∈ L(13)

In order for some parameters in α(∗) to change with re-
spect to λ, at least two points should be at the elbows.
Gunter and Zhu (2005) proposed a strategy for finding
a feasible (λ,w0) combination so that two points enter
the elbows simultaneously. It first moves the tube until
a point enters one elbow through changing w0. Then
it decreases λ until another point also enters an elbow.
Given the sets R, C and L, in fact there exist many
possible combinations of two points that can enter the
elbows simultaneously. However, some combinations
are invalid because the λ-path algorithm focusing on
these points cannot proceed further. This can be ex-
plained by considering the equality constraint in (9).
If two points are at the elbows, then their correspond-
ing parameters in α(∗) have to increase or decrease
together. For example, if a point in R or L wants to
enter one elbow and another point in C wants to en-
ter another elbow simultaneously, α(∗) cannot change
to satisfy (9) due to the constraints (8). Figure 3 de-
picts some possible valid and invalid cases. Since the
algorithm moves the tube randomly to search for two
valid points, it is hard to implement the program and
to estimate the computational requirement of the al-
gorithm. In fact, whenever the elbows contain less
than two points, the algorithm needs to perform such
a random search, making it unappealing in practice.

For convenience, we define α0 = λw0 and rewrite the

regression function in (10) as

f(x) =
1
λ

[ n∑
i=1

(αi − α∗
i )K(xi,x) + α0

]
. (14)

Let α
(∗)l
i , αl

0 and λl denote the parameter values right
after the lth event has occurred and f l(x) is the re-
gression function at this point. As argued above,
there should be at least two points at the elbows, i.e.,
|E l

R| + |E l
L| = p ≥ 2.1

For λ values such that λl+1 < λ < λl, the regression
function can be expressed as

f(x)=
1
λ

[ ∑
i∈El

R

(αi − αl
i)K(xi,x) −

∑
j∈El

L

(α∗
j − α∗l

j )K(xj ,x)

+(α0 − αl
0)

]
+

λl

λ
f l(x). (15)

This is because only those points i ∈ E l
R ∪ E l

L can
change their α

(∗)
i values with λ, while all other points

i ∈ Rl ∪ Cl ∪ Ll have their α
(∗)
i values fixed at 0 or 1.

For notational simplicity, let us denote vi = αi − αl
i,

v∗
j = α∗

j − α∗l
j , and v0 = α0 − αl

0. For the points
lingering at the elbows, from (15), we have

∑
i∈El

R

viK(xi,xk) −
∑
j∈El

L

v∗
j K(xj ,xk) + v0

= (λ − λl)(yk − ε), ∀k ∈ E l
R, (16)∑

i∈El
R

viK(xi,xm) −
∑
j∈El

L

v∗
j K(xj ,xm) + v0

= (λ − λl)(ym + ε), ∀m ∈ E l
L. (17)

From (9), we also have

∑
i∈El

R

vi −
∑
j∈El

L

v∗
j = 0. (18)

Thus, (16)–(18) constitute p + 1 linear equations in
p + 1 unknowns vi, v∗

j and v0. Note that p is usually
very small.

We denote by Kl the p×p kernel sub-matrix for those
points at the elbows, v = (vi) ∀i ∈ E l

R, v∗ = (v∗
j ) ∀j ∈

E l
L, yl

R = (yi − ε) ∀i ∈ E l
R, yl

L = (yj + ε) ∀j ∈ E l
L, and

Al =
[

0 1T

1 Kl

]
,va =

⎡
⎣ v0

v
−v∗

⎤
⎦ ,ya =

⎡
⎣ 0

yl
R

yl
L

⎤
⎦ .

1Whenever p < 2, we face a problem in the initialization
setup and hence need to change λ and w0 to look for valid
points for updating.
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Thus, the p + 1 linear equations can be represented in
matrix form as

Alva = (λ − λl)ya. (19)

If Al is of full rank, then A−1
l exists and we have

α0 = αl
0 + (λ − λl)b0 (20)

αi = αl
i + (λ − λl)bi ∀i ∈ E l

R (21)
α∗

j = α∗l
j − (λ − λl)bj ∀j ∈ E l

L, (22)

where b = (b0, bi (∀i ∈ E l
R), bj (∀j ∈ E l

L))T = A−1
l ya.

Hence, α
(∗)
i (∀i ∈ E l

R ∪ E l
L) proceed linearly in λ. If

A−1
l does not exist, the solution paths for some α

(∗)
i

are not unique. For example, if three points in R are
at the elbows and the linear kernel is applied, their
kernel matrix is not of full rank. Then the λ-path
algorithm has multiple updating possibilities through
choosing any two of the points. In this paper, we do
not consider this case. Rather, we will use a nonlinear
kernel and a ridge term to ensure that A−1

l always
exists.

Plugging (20)–(22) into (15), we can obtain

f(x) =
λl

λ

[
f l(x) − hl(x)

]
+ hl(x), (23)

where

hl(x) =
∑
i∈El

R

biK(xi,x) −
∑
j∈El

L

bjK(xj ,x) + b0. (24)

As λ decreases, the algorithm monitors the occurrence
of any of the following events:

• The αi or α∗
i value of a point i ∈ E l

R ∪ E l
L reaches

0 or 1. The value of λ for which this event occurs
can be calculated from (21) or (22).

• A point i ∈ Rl ∪ Cl ∪ Ll hits an elbow, i.e., |yi −
f(xi)| = ε. The value of λ for which this event
occurs can be calculated from (23).

By monitoring the occurrence of these events, we can
find the largest λ < λl for which an event occurs. This
is the (l+1)st event and the λ value is denoted as λl+1.
The algorithm then updates the point sets and contin-
ues until either p < 2 or λ is close to 0. In each λ-path
update, a set of linear equations is solved with O(p3)
time complexity where p is typically quite small. More-
over, scanning through the training set to evaluate the
next move has O(n) time complexity.

2.3. ε-Path

Similar to the λ-path algorithm, the ε-path algorithm
focuses on the points at the elbows only. If we set

ε = ∞, it is trivial to solve the optimization problem in
(7)–(9). The solution is simply α

(∗)
i = 0 for all i, mean-

ing that all the points are inside the tube (i.e., in C)
and, from (10), f(x) = w0. This is similar to the case
shown in Figure 1(c). Since |yi−f(xi)| < ε for all i, the
initial parameter values are set as ε > (ymax −ymin)/2
and w0 = (ymax + ymin)/2. Compared with the λ-
path algorithm which has to solve a linear program-
ming problem to find the initial parameter values, the
initialization problem for the ε-path algorithm is much
easier to solve.

As before, let εl denote the value of ε right after the
lth event has occurred. We assume that λ is pre-
specified by the user and remains fixed during the
execution of the ε-path algorithm. At this time, we
have |ER| > 0 and |EL| > 0. If this does not hold,
we reduce ε until each elbow contains at least one
point. Let i+ = arg maxi∈C

(
yi − f(xi)

)
and i− =

arg mini∈C
(
yi − f(xi)

)
. Then E l

R = {i+}, E l
L = {i−}

and εl = (yi+ − yi−)/2. This procedure only involves
shrinking the tube to reduce its width without rotat-
ing it. The algorithm still holds even when more than
one point enters an elbow simultaneously.

For ε values such that εl+1 < ε < εl, we can write the
regression function as

f(x)=
1
λ

[ ∑
i∈El

R

(αi − αl
i)K(xi,x) −

∑
j∈El

L

(α∗
j − α∗l

j )K(xj ,x)

+(α0 − αl
0)

]
+ f l(x). (25)

Let 1l
R = (1)|El

R|×1, 1l
L = (1)|El

L|×1, and 1a =⎡
⎣ 0

1R

−1L

⎤
⎦. Using the same procedure as that for the

λ-path algorithm, we can obtain the following system
of p + 1 linear equations:

Alva = λ(εl − ε)1a. (26)

If A−1
l exists, then we let c = A−1

l 1a and we have

α0 = αl
0 + λ(εl − ε)c0 (27)

αi = αl
i + λ(εl − ε)ci ∀i ∈ E l

R (28)
α∗

j = α∗l
j − λ(εl − ε)cj ∀j ∈ E l

L. (29)

Hence, α
(∗)
i (∀i ∈ E l

R ∪ E l
L) also proceeds linearly in ε.

We can obtain the regression function as

f(x) = (εl − ε)hl(x) + f l(x), (30)

where

hl(x) =
∑
i∈El

R

ciK(xi,x) −
∑
j∈El

L

cjK(xj ,x) + c0. (31)
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Similar to the λ-path algorithm, as ε decreases, the La-
grange multipliers change until either one more point
enters an elbow or an existing point at an elbow leaves.
We find the largest ε < εl for which an event occurs,
and then assign it as εl+1 and update the point sets.
This process can be understood geometrically in the
linear space. If d = 1 and each elbow contains one
point, then decreasing ε will rotate the tube with the
two points at the two elbows as centers of rotation.
Figure 1(d) shows one such example. The resulting
rotation causes the width of the tube to decrease while
the two elbow points remain at the elbows. The com-
putational cost of the ε-path update is similar to that
of the λ-path update.

Considering further the above example, the ε-path al-
gorithm cannot proceed if a new point enters an elbow,
i.e., |E l

R| + |E l
L| > 2, |E l

R| ≥ 1 and |E l
L| ≥ 1. In the

d = 1 linear space, the width of the tube will be fixed
by these elbow points and hence the tube can neither
rotate nor shrink. As a result, ε cannot decrease. This
problem always occurs in the linear space. If the di-
mensionality of the linear space is d, the rank of Kl

is at most d no matter how many points are involved.
Thus, A−1

l in (26) does not exist when the elbows con-
tain more than d + 1 points. This problem can also
be overcome by using a nonlinear kernel and a ridge
term. For example, if the Gaussian kernel is used,
we can always execute the ε-path algorithm no matter
how many points are at the elbows.

3. Two-Dimensional Solution Path

The ε-path algorithm can overcome the limitations of
the λ-path algorithm. Specifically, when the λ-path
algorithm needs to move the tube to look for valid
points, we can shrink the tube by reducing ε until some
points inside the tube enter the elbows. Since the ε-
path algorithm can always proceed when a nonlinear
kernel is used, we can explore the two-dimensional so-
lution space of ε-SVR by executing the ε-path algo-
rithm several times with different λ values. Starting
from ε = ∞, most points move from inside the tube to
outside as the width of the tube decreases. However,
some points may re-enter the tube after leaving it and
pass through the elbows multiple times as ε approaches
0.

Enumerating the λ values and executing the ε-path
algorithm many times is computationally unappeal-
ing. The λ-path algorithm can cooperate with the
ε-path algorithm to explore the two-dimensional so-
lution space. At any intermediate step of the ε-path
algorithm, λ-path update can be applied as long as
each elbow contains at least one point. In fact when

ε decreases so that the tube fits the data well, the
tube has been spline-fit by some points and the el-
bow sets ER and EL are not empty. Then λ-path up-
date is always applicable with no difficulty. However,
as we shift from ε-path update to λ-path update, if
an elbow point has its α

(∗)
i value equal to 0 or 1, it

is somewhat complicated to implement λ-path update
directly. Since λ can either increase or decrease, we are
not sure whether this point should be included into the
updating set for the λ-path algorithm. As a result, an
additional check is required to ensure that the λ-path
algorithm can proceed correctly. This overhead can be
saved if the α

(∗)
i values of all elbow points are neither

0 nor 1. Such solution can be obtained by terminating
the ε-path algorithm between two consecutive events.
The λ-path algorithm can then proceed successfully in
both increasing and decreasing directions.

Note that there is a dramatic difference between the
ε-path algorithm in ε-SVR and the λ-path algorithm
in SVC. In the SVC formulation, the support vectors
are those points inside the margin. To simplify the
initialization step for the λ-path algorithm, λ is ini-
tialized to be very large so that most points are inside
the margin. As λ decreases, both the width of the
margin and the number of support vectors decrease.
Since a classifier that generalizes well typically has a
sparse representation involving a small number of sup-
port vectors, almost the entire solution path has to be
explored until λ becomes very small such that most
points are excluded from the margin. Thus the total
number of moves is O(n). Based on empirical find-
ings, Hastie et al. (2004) suggested that this number
is some small multiple of n. In the ε-SVR formula-
tion, on the other hand, the support vectors are those
points outside the ε-tube. With ε initialized to infin-
ity, all points are inside the tube and hence there is no
support vector in the beginning. As ε decreases, the
points pass through the elbows from inside the tube to
outside. This has a similar effect as increasing ν from 0
to 1 in ν-SVR, but the number of support vectors can
be controlled exactly. To obtain a desirable regression
function with the sparseness property, we only need a
small number of steps. Therefore, there is no need to
explore the entire ε-path and hence a good result can
be obtained very efficiently.

4. Experimental Results

The behavior of the above algorithms can best
be illustrated using videos. We have pre-
pared some illustrative examples as videos in
http://www.cs.ust.hk/∼wanggang/svrpath.htm.
We randomly generate a set of 80 data points {(xi, yi)}
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Figure 4. Based on three ε-paths with λ = 1 and γ =
0.05, 0.5, 5, the optimal solution for each path in terms of
the mean squared error on the validation set is plotted.

with xi drawn uniformly from [−3, 3] and yi =
sin(πxi)/(πxi) + ei, where ei is a Gaussian noise term
with zero mean and a variance of 0.2. We randomly
partition the data set into a training set of 50 points
and a validation set of 30 points. The Gaussian RBF
kernel K(xi, xj) = exp(‖xi−xj‖2/γ) is used with three
different γ values, 0.05, 0.5 and 5. We first run the
ε-path algorithm with λ = 1. The algorithm termi-
nates when 80% of the points become support vectors.
For each solution path, we compute the mean squared
error (MSE) on the validation set for every regres-
sion function solution along the path. The solution
that minimizes the MSE is then chosen and the cor-
responding regression function is plotted in Figure 4.
The optimal regression function overfits the data when
γ = 0.05 but underfits the data when γ = 5. On the
other hand, it fits the data well when γ = 0.5. In Fig-
ure 5, we plot the elbow size |EL| + |ER| as a function
of ε for different values of γ. When γ = 0.05, the tube
is very elastic. The elbow size generally increases as ε
decreases. During this process, more and more points
move into the elbows and then settle down there. The
regression function is thus sensitive to many points,
leading to overfitting of the data. When γ = 5, on
the other hand, the elbow size always remains small.
Since the function is not flexible enough, many points
are not likely to stay at the elbows simultaneously.
This leads to underfitting of the data.

Figure 6 shows the effect of different values of the reg-
ularization parameter λ on the ε-path algorithm. Fig-
ure 6(a) shows that the regression function is not very
sensitive to the value of λ. For λ = 0.01, 0.1 and 1,
the solution paths show similar MSE curves as ε de-
creases and the optimal regression functions are ob-
tained in the same ε range. However, when λ is quite
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Figure 5. Change in elbow size as a function of ε for three
ε-paths with λ = 1 and γ = 0.05, 0.5, 5. Since ε decreases
rapidly in the beginning, the horizontal axis is shown in
log scale.

large (λ = 10), it always tends to give a flat function
leading to large MSE. Figure 6(b) shows that ε de-
creases rapidly during the first few steps of the ε-path
algorithm. Afterwards, the rate of decrease in ε slows
down significantly. As ε decreases, more and more
points move towards the elbows. We next examine
the relationships between the MSE and the number of
steps in Figure 6(c). Similar to Figure 6(b), the MSE
decreases rapidly during the first few steps.
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Figure 7. Shifting from the ε-path algorithm to the λ-path
algorithm at four shifting points with different values of ε.
The horizontal axis is in log scale.

Further executing the ε-path algorithm cannot lead
to continued improvement in the generalization abil-
ity. Instead, the resulting regression function becomes
more redundant and is likely to lead to overfitting.
Moreover, it incurs unnecessarily high computational
cost. Consequently, it is not necessary to explore all
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Figure 6. Relationships between MSE, ε, and the number of steps in the algorithm for different values of λ. (a) MSE vs.
ε, with the horizontal axis in log scale; (b) ε vs. number of steps; (c) MSE vs. number of steps.

solutions along the ε-path. The optimal solution pre-
serving the sparseness property can be obtained very
efficiently.

We now consider the scenario of shifting from the ε-
path algorithm to the λ-path algorithm. The result is
shown in Figure 7. We first run the ε-path algorithm
with λ = 0.1 and γ = 0.5. As ε decreases, we select
four different shifting points to launch the λ-path al-
gorithm. The four points on the vertical line indicate
the shifting points from the ε-path algorithm to the
λ-path algorithm. λ can either increase or decrease.
We stop λ from increasing further when it exceeds 10
and terminate the decreasing λ-path when no event
occurs. There are two points in which the λ-path can-
not extend towards the decreasing direction. For these
cases, no event occurs until λ decreases to zero.

5. Conclusion

In this paper, we have proposed an efficient algorithm
for computing the ε-path for ε-SVR. The coefficients
of the regression function are piecewise linear with re-
spect to both the regularization parameter λ and the
error parameter ε. Since the ε-path algorithm can
overcome some limitations of the λ-path algorithm,
their integrated use allows efficient exploration of the
two-dimensional solution space. Moreover, based on
the special properties of the ε-path algorithm, the op-
timal solution can be obtained very efficiently.
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