
A Kernel Path Algorithm for Support Vector Machines

Gang Wang wanggang@cse.ust.hk
Dit-Yan Yeung dyyeung@cse.ust.hk
Frederick H. Lochovsky fred@cse.ust.hk

Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Clear
Water Bay, Kowloon, Hong Kong, China

Abstract

The choice of the kernel function which deter-
mines the mapping between the input space
and the feature space is of crucial importance
to kernel methods. The past few years have
seen many efforts in learning either the ker-
nel function or the kernel matrix. In this
paper, we address this model selection issue
by learning the hyperparameter of the ker-
nel function for a support vector machine
(SVM). We trace the solution path with re-
spect to the kernel hyperparameter without
having to train the model multiple times.
Given a kernel hyperparameter value and the
optimal solution obtained for that value, we
find that the solutions of the neighborhood
hyperparameters can be calculated exactly.
However, the solution path does not exhibit
piecewise linearity and extends nonlinearly.
As a result, the breakpoints cannot be com-
puted in advance. We propose a method to
approximate the breakpoints. Our method is
both efficient and general in the sense that
it can be applied to many kernel functions in
common use.

1. Introduction

Kernel methods (Müller et al., 2001; Schölkopf &
Smola, 2002) have demonstrated great success in solv-
ing many machine learning and pattern recognition
problems. These methods implicitly map data points
from the input space to some feature space where even
relatively simple algorithms such as linear methods can
deliver very impressive performance. The implicit fea-
ture mapping is determined by a kernel function, which

Appearing in Proceedings of the 24 th International Confer-
ence on Machine Learning, Corvallis, OR, 2007. Copyright
2007 by the author(s)/owner(s).

allows the inner product between two points in the fea-
ture space to be computed without having to know the
explicit mapping from the input space to the feature
space. Rather, it is simply a function of two points in
the input space. In general, the input space does not
have to be a vector space and hence structured, non-
vectorial data can also be handled in the same way.

For a kernel method to perform well, the kernel func-
tion often plays a very crucial role. Rather than choos-
ing the kernel function and setting its hyperparame-
ters manually, many attempts have been made over
the past few years to automate this process, at least
partially. Ong et al. (2005) shows that the kernel
function is a linear combination of a finite number of
prespecified hyperkernel evaluations, and introduces a
method to learn the kernel function directly in an in-
ductive setting. Some approaches have been proposed
(Cristianini et al., 2002; Bach et al., 2004; Lanckriet
et al., 2004; Sonnenburg et al., 2006; Zhang et al.,
2006) to seek a kernel matrix directly or learn a conic
combination of kernel matrices from data.

Our paper adopts the kernel function learning ap-
proach. However, unlike the method of hyperkernels,
we seek to learn the optimal hyperparameter value
for a prespecified kernel function. The traditional
approach to this model selection problem is to ap-
ply methods like m-fold cross validation to determine
the best choice among a number of prespecified can-
didate hyperparameter values. Extensive exploration
such as performing line search for one hyperparameter
or grid search for two hyperparameters is usually ap-
plied. However, this requires training the model mul-
tiple times with different hyperparameter values and
hence is computationally prohibitive especially when
the number of candidate values is large. Keerthi et al.
(2006) proposed a hyperparameter tuning approach
based on minimizing a smooth performance validation
function. The direction to update the hyperparame-
ters is the (negative) gradient of the validation func-

A Kernel Path Algorithm for Support Vector Machines

tion with respect to the hyperparameters. This ap-
proach also requires training the model and computing
the gradient multiple times.

Some approaches have been proposed to overcome
these problems. A promising recent approach is based
on solution path algorithms, which can trace the en-
tire solution path as a function of the hyperparame-
ter without having to train the model multiple times.
A solution path algorithm is also called a regulariza-
tion path algorithm if the hyperparameter involved in
path tracing is the regularization parameter in the op-
timization problem. Efron et al. (2004) proposed an
algorithm called the least angle regression (LARS). It
can be applied to trace the regularization path for lin-
ear least square regression problem regularized with
the L1 norm. The path is piecewise linear and hence
it is efficient to explore the entire path just by mon-
itoring the breakpoints between the linear segments
only. Zhu et al. (2003) proposed an algorithm to com-
pute the entire regularization path for the L1-norm
support vector classification (SVC) and Hastie et al.
(2004) proposed one for the standard L2-norm SVC.
They are again based on the property that the paths
are piecewise linear. More generally, Rosset and Zhu
(2003) showed that any model with an L1 regulariza-
tion and a quadratic, piecewise quadratic, piecewise
linear, or linear loss function has a piecewise linear
regularization path and hence the entire path can be
computed efficiently. Bach et al. (2005) explored a
nonlinear regularization path for multiple kernel learn-
ing regularized with a block L1-norm. Rosset (2004)
proposed a general path following algorithm to approx-
imate the nonlinear regularization path. Besides the
regularization parameter, we showed in our previous
work (Wang et al., 2006) that this approach can also
be applied to explore the solution paths for some other
model hyperparameters.

In this paper, we propose a novel method that traces
the solution path with respect to the kernel hyperpa-
rameter in SVC. We refer to this solution path as a
kernel path. Given a kernel hyperparameter value and
the optimal solution obtained for that value, we find
that the solutions of the neighborhood hyperparame-
ters can be calculated exactly. Since the kernel hyper-
parameter is embedded into each entry of the kernel
matrix, the path is piecewise smooth but not piecewise
linear. The implication is that the next breakpoint
cannot be computed in advance before reaching it like
what other solution path algorithms do. We propose
a method to approximate the breakpoints. Unlike the
path following algorithm of Rosset (2004) for nonlin-
ear regularization paths, our approach is more efficient
so that the kernel path can be traced efficiently. More-

over, our algorithm is general in the sense that it can
be applied to many kernel functions in common use.

2. Problem Formulation

In a binary classification problem, we have a set of
training pairs {(xi, yi)}n

i=1 where xi ∈ X ⊆ Rd is the
input data, X is the input space, and yi ∈ {−1,+1} is
the class label. The goal is to learn a decision function
f(x) that can classify the unseen data as accurately
as possible. Its associated classifier is sign[f(x)]. Us-
ing the hinge loss, the primal optimization problem for
SVC can be formulated based on the standard regu-
larization framework as follows:

min
f∈H

Rprimal =
∑n

i=1 ξi + λ
2 ‖f‖2

K (1)

s.t. yif(xi) ≥ 1 − ξi (2)
ξi ≥ 0. (3)

Here and below, i = 1, ..., n. ‖·‖K denotes the norm in
the reproducing kernel Hilbert space (RKHS) H corre-
sponding to a positive definite kernel function K. λ is
the regularization parameter which gives the balance
between the two opposing components of the objec-
tive function. A kernel function, i.e., Kγ(xi,xj), is a
bivariate function with its two independent variables
defined in the input space. Here we explicitly show
the hyperparameter γ of the kernel function in the
subscript. Different values of γ embed the data into
different feature spaces. In SVC, both λ and γ are
hyperparameters in the model.

Using Wahba’s representer theorem and Wolfe’s dual-
ity theorem, we can derive the dual form of the opti-
mization problem as:

max
β,β0

Rdual(β, β0) = λ
∑n

i=1 βi − (4)

1
2

∑n
i,j=1 βiβjyiyjKγ(xi,xj)

s.t.
∑n

i=1 yiβi = 0 (5)
0 ≤ βi ≤ 1, (6)

where the dual variables (Lagrange multipliers) β are
introduced for constraint (2). The decision function is
given by

f(x) =
1
λ

(
n∑

i=1

βiyiKγ(x,xi) + β0

)
. (7)

f(x) is expressed as an expansion in terms of only a
subset of data points, called support vectors (SV), for
which βi is nonzero.

From the KKT optimality conditions, we have three
cases to consider depending on the value of yif(xi),
which in turn determines how much the loss ξi is:

A Kernel Path Algorithm for Support Vector Machines

• If yif(xi) > 1, then ξi = 0 and βi = 0;

• If yif(xi) = 1, then ξi = 0 and βi ∈ [0, 1];

• If yif(xi) < 1, then ξi > 0 and βi = 1.

These three cases refer to points lying outside, at and
inside the margins, respectively. We can see that βi

can take non-extreme values other than 0 and 1 at
the optimal solution β̂ only if the value of yif(xi) is
equal to 1. β0 is computed based on the points at the
margins.

The optimal solution may be regarded as a vector func-
tion of some hyperparameter, denoted as μ:1

(β̂(μ), β̂0(μ)) = arg max
(β,β0)

Rdual(β, β0;μ). (8)

Thus, the optimal solution varies as μ changes. For
notational simplicity, we remove theˆnotation in the
rest of the paper. For every value of μ, we can parti-
tion the set of indices for the n data points into three
subsets, E , L and R, which are referred to as the elbow,
left of the elbow, and right of the elbow, respectively, to
be consistent with the convention introduced in Hastie
et al. (2004):

E =

⎧⎨
⎩i : yi

⎛
⎝ n∑

j=1

βjyjKγ(xi,xj) + β0

⎞
⎠ = λ, 0 ≤ βi ≤ 1

⎫⎬
⎭(9)

L=

⎧⎨
⎩i : yi

⎛
⎝ n∑

j=1

βjyjKγ(xi,xj) + β0

⎞
⎠ < λ, βi = 1

⎫⎬
⎭ (10)

R=

⎧⎨
⎩i : yi

⎛
⎝ n∑

j=1

βjyjKγ(xi,xj) + β0

⎞
⎠ > λ, βi = 0

⎫⎬
⎭ (11)

Therefore, the direction
(

∂β(μ)
∂μ , ∂β0(μ)

∂μ

)
in which the

solution moves as μ changes should maintain the con-
ditions (9)–(11) above.

Suppose E contains m indices which are represented
as an m-tuple (E(1), · · · , E(m)) such that E(i) < E(j)
for i < j. Let yE = (yE(1), . . . , yE(m))T , βE =
(βE(1), . . . , βE(m))T , and βa

E = (β0,β
T
E)T . Equation

(9) gives a linear system

L(βa
E(μ), μ) = 0 (12)

with m linear equations. If now μ increases by an
infinitesimally small step ε such that the three point
sets remain unchanged and the conditions (9)–(11) still

1μ is very general. It can be used to represent any
hyperparameter such as λ or γ in SVC.

hold, then the corresponding linear system becomes
L(βa

E(μ + ε), μ + ε) = 0.

Expanding L(βa
E(μ + ε), μ + ε) via first-order Taylor

series approximation around βa
E(μ), we have

L(βa
E(μ + ε), μ + ε) � L(βa

E(μ), μ + ε) (13)

+
∂L(βa

E(μ), μ + ε)
∂βa

E
[βa

E(μ + ε) − βa
E(μ)] .

The gradient of L with respect to βa
E is a matrix of

size m × (m + 1):

∂L
∂βa

E
= [yE Kγ] , (14)

where Kγ =
[
yE(i)yE(j)Kγ(xE(i),xE(j))

]m
i,j=1

. It is in-
teresting to note that the gradient ∂L/∂βa

E does not
contain the parameter βa

E any more. Hence all terms
after the first-order term of the Taylor series are in fact
equal to zero, implying that the � in (13) should be
replaced by =. From constraint (5), we also have

yT
E (βE(μ + ε) − βE(μ)) = 0. (15)

Integrating equations (13) and (15) together, we know
the next solution βa

E(μ + ε) can be updated as

βa
E(μ+ε) = βa

E(μ)+

[
0 yT

E
∂L(βa

E (μ),μ+ε)

∂βa
E

]−1(
0

−L(βa
E(μ), μ + ε)

)
.

(16)

Hence, given a hyperparameter μ and its correspond-
ing optimal solution (β(μ), β0(μ)), the solutions of its
neighborhood hyperparameters can be computed ex-
actly as long as the three point sets remain unchanged.
However, some events may occur when we change the
value of μ to a larger extent. An event is said to oc-
cur when some point sets change. We categorize these
events as follows:

• A new point i joins E , i.e., the condition (10) for
a variable βi with i ∈ L or the condition (11) for
a variable βi with i ∈ R ceases to hold if βa

E(μ)
keeps moving in the same direction.

• The variable βi for some i ∈ E reaches 0 or 1.
In this case, the condition (9) will cease to hold
if βa

E(μ) changes further in the same direction.
Thus, point i leaves E and joins some other set.

By monitoring the occurrence of these events, we can
find the next breakpoint at which the updating for-
mula needs to be calculated again. The algorithm then
updates the point sets and continues to trace the path.

A Kernel Path Algorithm for Support Vector Machines

2.1. Regularization Path Algorithm

Our goal is to generate the solution path for a range
of hyperparameter values by repeatedly calculating the
next optimal solution based on the current one. Based
on the updating formula in equation (16), we can easily
derive the path following algorithm with respect to the
regularization parameter λ. Replacing μ with λ, we
have

βa
E(λ + ε) = βa

E(λ) + ε

[
0 yT

E
yE Kγ

]−1(0
1

)
, (17)

where the γ value is fixed. Note that equation (17) for
the solution updating is equivalent to the formula in
Hastie et al. (2004). Substituting (17) into (7), we can
calculate the next breakpoint at which the conditions
(9)–(11) will not hold if λ is changed further. As a
result, the regularization path can be explored.

3. Kernel Path Algorithm

Replacing μ by γ in equation (16), the kernel path
algorithm can be derived in a similar manner. We
consider the period between the lth event (with γ =
γl) and the (l + 1)th event (with γ = γl+1). The
sets E , L and R remain unchanged during this period.
Thus we trace the solution path of (βE(γ), β0(γ)) as γ
changes.

Theorem 1 Suppose the optimal solution is (βl, βl
0)

when γ = γl. Then for any γ in γl+1 < γ < γl, we
have the following results:

• For the points i ∈ L ∪ R, βi = βl
i is fixed at 0 or

1, which is independent of γ;

• The solution to (βE , β0) is given by(
β0

βE

)
=
(

βl
0

βl
E

)
+
[

0 yT
E

yE Kγ

]−1(0
bγ

)
,

(18)
where

Kγ =
[
yE(i)yE(j)Kγ(xE(i),xE(j))

]m
i,j=1

, (19)

bγ =

⎛
⎝−yE(i)

⎡
⎣ n∑

j=1

βl
jyjKγ(xE(i),xj) + βl

0

⎤
⎦+ λ

⎞
⎠

m

i=1

.(20)

As such, we can update the solution to (βE , β0) exactly
while those to others remain unchanged. The value
of γ can either increase or decrease. As γ changes,
the algorithm monitors the occurrence of any of the
following events:

• One of the βE(i) for i = 1, . . . , m reaches 0 or 1.

• A point i /∈ E hits the elbow, i.e., yif(xi) = 1.

By monitoring the occurrence of these events, we com-
pute the largest γ < γl for which an event occurs.
This γ value is a breakpoint and is denoted by γl+1.
We then update the point sets and continue until the
algorithm terminates.

Table 1. Kernel path algorithm.

Input:
β̂, β̂0, γ0 - initial solution for γ;
θ, ε, γmin - decay rate, error tolerance, γ limit

1. t = 0; β0 = β̂, β0
0 = β̂0

2. while γ > γmin

3. r = θ;
4. while r < 1 − ε
5. γ = rγt;
6. use (18) to compute (β(γ), β0(γ))
7. if (β(γ), β0(γ)) is the valid solution
8. βt+1 = β(γ); βt+1

0 = β0(γ); γt+1 = γ;
t = t + 1

9. else r = r1/2

10. endif
11. end-while
12. update the point sets E ,L,R;
13.end-while ;

Output:
a sequence of solutions (β(γ), β0(γ)), γmin < γ < γ0

In the previous works (Zhu et al., 2003; Hastie et al.,
2004; Wang et al., 2006), the solution path is piece-
wise linear with respect to some hyperparameter. The
breakpoint at which the next event occurs can be cal-
culated in advance before actually reaching it. How-
ever, the value of the kernel hyperparameter is im-
plicitly embedded into the pairwise distance between
points. As a result, we need to specify a γ value in
advance to compute the next solution and then check
whether the next event has occurred or not. Suppose
we are given the optimal solution at γ = γl. We pro-
pose here an efficient algorithm for estimating the next
breakpoint, i.e., γl+1, at which the next event occurs.
Table 1 shows the pseudocode of our proposed kernel
path algorithm. The user has to specify a decay rate
θ ∈ (0, 1). At each iteration, γ is decreased through
multiplying it by θ. If the next event has not occurred,
we continue to multiply γ by θ. Otherwise the decay
rate is set to θ1/2. The above steps are repeated until
the decay rate becomes less than (1 − ε), where ε is
some error tolerance specified in advance by the user.
Hence, we can estimate the breakpoint γ such that

A Kernel Path Algorithm for Support Vector Machines

γl+1(1− ε) ≥ γ ≥ γl+1. Note that this algorithm only
describes the kernel path algorithm in the decreasing
direction. In general, γ can either increase or decrease.
The only difference for the increasing direction is to set
θ greater than 1. An SVM solver is needed in the be-
ginning to initialize the optimal solution for some γ
value.

We assume on average the ratio of the γ values
(γt+1/γt) at two consecutive events is π. Thus, the al-
gorithm needs (logθ π + log2(log1−ε θ)) iterations from
γt to γt+1. The choice of θ is a tradeoff between logθ π
and log2(log1−ε θ), and the choice of ε represents a
tradeoff between computational complexity and accu-
racy. Setting the error tolerance ε to a large value may
lead to the algorithm getting stuck, and here we set it
to 10−6. It is not necessary to set ε to be very small,
say 10−9, which will require a great deal of unnecessary
computation. Figure 1 shows the number of iterations
needed as a function of the decay rate θ. Three aver-
age ratios, π = 0.85, 0.9 and 0.95, are considered. If θ
is chosen to be not very close to 1, then the number
of iterations does not vary much. We set θ = 0.95
and ε = 10−6 in our experiments, and the algorithm
always takes less than 20 iterations to reach the next
breakpoint.

0.7 0.75 0.8 0.85 0.9 0.95 1
16

18

20

22

24

26

28

θ

ite
ra

tio
ns

ε = 1e−6

π = 0.85

π = 0.9

π = 0.95

Figure 1. Number of iterations logθ π + log2(log1−ε θ) vs.
decay rate θ. Three different π values (0.85, 0.9, 0.95) are
considered and the error tolerance ε is set to 10−6.

Since γ decreases at each iteration, the kernel matrix
also changes accordingly. However, it is not neces-
sary to recompute the entire kernel matrix. To update
the solution through equation (18), only the entries
Kγ(xi,xj) for i ∈ E and j ∈ E∪L need to be computed
again. The cost of calculating bγ is O(mn) and that of
inverting an (m+1)×(m+1) matrix is O(m3). To mon-
itor whether a point leaves the current set to join an-
other set, the entries Kγ(xi,xj), i ∈ 1, ..., n, j ∈ E ∪ L
need to be re-calculated in order to check the condi-
tions (9)–(11). These lead to an overall complexity

of O(n2 + m3) for each iteration where m is typically
much smaller than n. The total number of events is the
number of times that the points pass through E . Its
value depends on both the range [γmin, γ0] and the λ
value specified by the user. From many experiments,
empirical findings suggest that the number of itera-
tions is always some small multiple c of n for a large
enough range of γ, which implies that the total compu-
tational cost is O(cn3 + cnm3). In practice, users usu-
ally try out a small number of hyperparameter values
on an SVM solver to gain some basic understanding of
the data. This preliminary investigation can provide
some hints on how to specify the region in which the
users are interested for the kernel path algorithm.

4. Discussion

In step 7, the algorithm checks whether the new solu-
tion is valid or not. A naive way is to scan through
the entire training set to validate the move. However,
this is too slow involving a great deal of unnecessary
computation. A feasible alternative for larger datasets
is to keep track of only a small set of marginal points,
i.e., M = {i ∈ E |βi < ξ0 or βi > 1 − ξ1} ∪ {i ∈
L | yif(xi) > 1 − ξ2} ∪ {i ∈ R | yif(xi) < 1 + ξ3}
for small positive numbers ξ0, ξ1, ξ2 and ξ3, and dis-
card all other points. A marginal point is one that
is likely to leave the set to which it currently belongs
and join another set. Thus, only a small number of
entries in the kernel matrix need to be re-calculated.
Keeping track of only these points between two con-
secutive events makes the algorithm significantly more
efficient. Every time after one or several events occur,
the set of marginal points is then updated accordingly.

Note that the kernel function used in the algorithm can
be very general. For example, we may use the polyno-
mial kernel Kc,d(xi,xj) = (〈xi,xj〉 + c)d or the Gaus-
sian RBF kernel Kγ(xi,xj) = exp(−‖xi − xj‖2/γ).
If the kernel function contains multiple hyperparam-
eters, the kernel solution path may still be traced in
a multivariate space by updating the solution for one
hyperparameter while holding the others fixed at each
iteration.

Rosset (2004) proposed a general path following algo-
rithm based on second-order approximation when the
solution path is not piecewise linear. It assumes that
the solution update is not exact. Thus the algorithm
only takes a very small step s in each iteration and
applies a single Newton-Raphson step to approximate
the next solution. Since it does not try to calculate the
breakpoint value, the difference between the estimated
value γ and the real breakpoint value γl is |γ−γl| < s.
As a result, it is infeasible to keep the error tolerance

A Kernel Path Algorithm for Support Vector Machines

−1.5 −0.5 0.5 1.5 2.5
−0.8

−0.2

0.4

1

x1

x2

γ = 5

−1.5 −0.5 0.5 1.5 2.5
−0.8

−0.2

0.4

1

x1

x2

γ = 2

−1.5 −0.5 0.5 1.5 2.5
−0.8

−0.2

0.4

1

x1

x2

γ = 0.5

(a) γ = 5 (b) γ = 2 (c) γ = 0.5

Figure 2. SVM classification results of the two-moons dataset for different kernel hyperparameter values (γ = 5, 2, 0.5).
In each sub-figure, the middle line (green) shows the decision boundary and the other two lines specify the margins with
the points it contains indicated by blue circles. λ is set to 1.

0.02 0.1 0.5 2 10
0.7

0.8

0.9

1

γ

G
en

er
al

iz
at

io
n

A
cc

ur
ac

y

λ = 5

λ = 1

λ = 0.1

0.02 0.1 0.5 2 10

20

40

60

80

100

γ

N
um

be
r

of
 S

V
s

λ = 5

λ = 1

λ = 0.1

0.02 0.1 0.5 2 10
0

100

200

300

400

γ

N
um

be
r

of
 E

ve
nt

s

λ = 5

λ = 1

λ = 0.1

(a) (b) (c)

Figure 3. Change in (a) the generalization accuracy and (b) the number of SVs and (c) the number of events occurred
along the kernel path with different λ values for the two-moons dataset. The horizontal axis is in logarithm scale. The
generalization accuracy first increases and then decreases and the number of SVs first decreases and then increases as γ
decreases from 10 to 0.2.

to be very small. Otherwise, the total number of iter-
ations will become very large. On the contrary, in our
algorithm, if the number of iterations increases, the
error tolerance will decrease exponentially, making it
possible to keep the error tolerance arbitrarily small.

5. Experimental Results

The behavior of the above algorithms can best be illus-
trated using video. We have prepared some illustra-
tive examples as video in http://www.cse.ust.hk/

~wanggang/sol_path/SvmKernelPath.htm.

In our experiments, we consider two binary classifica-
tion datasets which possess very different properties.
The first is the two-moons dataset with strong mani-
fold structure. It is generated according to a pattern of
two intertwining moons and the data points in the two

classes are well separated from each other. The second
dataset is generated from two Gaussian distributions
with different means and covariances corresponding to
the positive and negative classes which partially over-
lap with each other. Each of the two datasets contains
100 positive points and 100 negative points. We ran-
domly select 50% of the points for training and the rest
for estimating the generalization error. The Gaussian
RBF kernel is used in the experiments. To explore the
solutions along the kernel path, we first use LIBSVM
(Chang & Lin, 2001) to compute an initial optimal so-
lution and then execute the kernel path algorithm as
described above.

For the two-moons dataset, the kernel path starts from
γ = 10 and extends in the decreasing direction of γ
until γ = 0.02, while setting λ = 1. Figure 2 shows
the classification results at three points of the kernel

A Kernel Path Algorithm for Support Vector Machines

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

x1

x2

γ = 5

x1
−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

x1

x2

γ = 2

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

x1

x2

γ = 0.5

(a) γ = 5 (b) γ = 2 (c) γ = 0.5

Figure 4. SVM classification results of the two-Gaussians dataset for different kernel hyperparameter values (γ = 5, 2, 0.5).
λ is set to 1.

0.2 1 5

0.8

0.84

0.88

0.92

γ

G
en

er
al

iz
at

io
n

A
cc

ur
ac

y

λ = 5

λ = 1

λ = 0.1

0.2 1 5
40

50

60

70

80

90

100

γ

N
um

be
r

of
 S

V
s

λ = 5

λ =1

λ = 0.1

0.2 1 5 10
0

40

80

120

160

200

γ

N
um

be
r

of
 E

ve
nt

λ = 5

λ =1

λ =0.1

(a) (b) (c)

Figure 5. Change in (a) the generalization accuracy and (b) the number of SVs and (c) the number of events occurred
along the kernel path with different λ values for the two-Gaussians dataset. The horizontal axis is in logarithm scale. The
generalization accuracy decreases and the number of SVs increases as γ decreases from 10 to 0.2.

path, γ = 5, 2, 0.5. As we can see, different kernel
hyperparameter values produce dramatically different
decision boundaries. When γ is large, the decision
boundary is closer to linear, which leads to large gen-
eralization error in this dataset. As γ decreases, the
decision boundary becomes more flexible to fit into the
gap between the two classes. Thus, the generalization
error decreases accordingly. When γ = 0.5, the deci-
sion function well separates the points between the two
classes and only a small number of SVs are used to rep-
resent the function. Figure 3 shows the change in the
generalization accuracy, the number of SVs, and the
number of events occurred along the kernel path with
different λ values. We notice that the generalization
accuracy increases and the number of SVs decreases as
γ decreases from 10 to 0.5. Since there exists a well-
separated boundary between the two classes, setting a
smaller λ value will give fewer SVs and attain better
performance. Although the generalization accuracies

in the beginning of the kernel paths have significant
differences, they all can reach 100% accuracy as γ de-
creases. However, as γ further decreases to be very
small, the margins become so elastic that most of the
input points are included as SVs. Hence, the decision
function has high variance, which leads to the overfit-
ting problem. We also notice from Figure 3(c) that
the computational cost of the kernel path can be op-
timized by setting a proper regularization value.

Figure 4 shows the classification results of the two-
Gaussians dataset for different γ values. Unlike the
two-moons dataset, this dataset has an overlapping
region between the two classes. Hence, the optimal
decision boundary is expected to be a smooth surface
that passes through the overlapping region. This can
be obtained by setting γ to a relatively large value.
Since setting a larger λ value in this dataset leads
to wider margins and a smoother decision boundary,
higher generalization accuracy can be obtained and

A Kernel Path Algorithm for Support Vector Machines

more points become SVs. As the kernel path extends
in the decreasing direction, the decision function be-
comes more rugged and a higher degree of overfitting
will occur. The decision boundary changes slightly
as the kernel path starts from γ = 10 and both the
number of SVs and the generalization accuracy re-
main stable. The decision function shows more sig-
nificant changes as the kernel path algorithm proceeds
after γ is less than 2. As γ decreases, more and more
points become SVs and the generalization accuracy
drops dramatically. Figure 5(a) and (b) illustrate this.
As a smaller λ value tends to minimize the training er-
ror, more severe overfitting will occur along the kernel
path for λ = 0.1 than for λ = 5 in this dataset. When γ
becomes small, most points become SVs and the deci-
sion function is no longer a very sparse representation.
Its generalization accuracy thus decreases.

6. Conclusion and Future Work

In kernel machines, it is very important to set the ker-
nel hyperparameters to appropriate values in order to
obtain a classifier that generalizes well. In this paper,
we derive an exact updating formula to calculate solu-
tions along the kernel path in SVC. Since the piecewise
linearity property does not hold along the kernel path,
breakpoints cannot be calculated in advance. We pro-
pose an efficient algorithm to find the breakpoints so
that the kernel path can be traced without having to
train the model multiple times.

It is also important to set a proper regularization value
in SVC, since it can not only produce a well general-
ized decision function but can also reduce the number
of iterations, leading to speedup of the kernel path al-
gorithm. We are interested in an integration of this
kernel path algorithm with a regularization path algo-
rithm into a unified approach for tracing solution paths
in a two-dimensional hyperparameter space. This di-
rection will be explored in our future work.

Acknowledgment

This research is supported by Competitive Earmarked
Research Grant (CERG) 621706 from the Research
Grants Council (RGC) of the Hong Kong Special Ad-
ministrative Region, China. The author would also
like to thank the anonymous reviewers for their con-
structive comments.

References

Bach, F., Lanckriet, R., & Jordan:, M. (2004). Multiple
kernel learning, conic duality, and the SMO algorithm.
Proceedings of the 21th International Conference on Ma-

chine Learning (ICML-04).

Bach, F., Thibaux, R., & Jordan, M. (2005). Regulariza-
tion paths for learning multiple kernels. Advances in
Neural Information Processing Systems 17 (NIPS-05).

Chang, C., & Lin, C. (2001). LIBSVM: a library for
support vector machines. Software available at http:
//www.csie.ntu.edu.tw/~cjlin/libsvm/.

Cristianini, N., Kandola, J., Elissee, A., & Shawe-Taylor, J.
(2002). On kernel target alignment. Advances in Neural
Information Processing Systems 15 (NIPS-02).

Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R.
(2004). Least angle regression. The Annals of Statis-
tics, 32, 407–499.

Hastie, T., Rosset, S., Tibshirani, R., & Zhu, J. (2004).
The entire regularization path for the support vector ma-
chine. Journal of Machine Learning Research, 5, 1391–
1415.

Keerthi, S., Sindhwani, V., & Chapelle, O. (2006). An
efficient method for gradient-based adaption of hyper-
parameters in SVM models. Advances in Neural Infor-
mation Processing Systems 19 (NIPS-06).

Lanckriet, G., Cristianini, N., Bartlett, P., Ghaoui, L., &
Jordan, M. (2004). Learning the kernel matrix with
semidefinite programming. Journal of Machine Learning
Research, 5, 27–72.

Müller, K., Mika, S., Rätsch, G., Tsuda, K., & Schölkopf,
B. (2001). An introduction to kernel-based learning al-
gorithms. IEEE Transactions on Neural Networks, 12,
181–202.

Ong, C., Smola, A., & Williamson, R. (2005). Learning the
kernel with hyperkernels. Journal of Machine Learning
Research, 6, 1043–1071.

Rosset, S. (2004). Following curved regularized optimiza-
tion solution paths. Advances in Neural Information
Processing Systems 17 (NIPS-04).

Rosset, S., & Zhu, J. (2003). Piecewise linear regularized
solution paths (Technical Report). Stanford University.

Schölkopf, B., & Smola, A. (2002). Learning with kernels.
MIT Press.

Sonnenburg, S., Rätsch, G., Schäfer, C., & Schölkopf, B.
(2006). Large scale multiple kernel learning. Journal of
Machine Learning Research, 7, 15311565.

Wang, G., Yeung, D., & Lochovsky, F. (2006). Two-
dimensional solution path for support vector regression.
Proceedings of the 23th International Conference on Ma-
chine Learning (ICML-06).

Zhang, Z., Kwok, J., & Yeung, D. (2006). Model-based
transductive learning of the kernel matrix. Machine
Learning, 63, 69–101.

Zhu, J., Rosset, S., Hastie, T., & Tibshirani, R. (2003).
1-norm support vector machines. Advances in Neural
Information Processing Systems 16 (NIPS-03).

