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Abstract:
Many supervised and unsupervised learning algorithms de-

pend on the choice of an appropriate distance metric. While
metric learning for supervised learning tasks has a long his-
tory, extending it to learning tasks with weaker supervisory
information has only been studied very recently. In particu-
lar, several methods have been proposed for semi-supervised
metric learning based on pairwise (dis)similarity information.
In this paper, we propose a kernel-based approach for nonlin-
ear metric learning, which performs locally linear translation
in the kernel-induced feature space. We formulate the met-
ric learning problem as a kernel learning problem and solve it
efficiently by kernel matrix adaptation. Experimental results
based on synthetic and real-world data sets show that our ap-
proach is promising for semi-supervised metric learning.
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1 Introduction

Many machine learning and pattern recognition methods,
such as nearest neighbor classifiers, radial basis function
networks, support vector machines for classification and the
k-means algorithm for clustering involve the use of a dis-
tance metric. The performance of these methods often de-
pends very much on the metric of choice. Instead of deter-
mining a metric manually, a promising approach is to learn
an appropriate metric from data.

For supervised learning applications such as classifica-
tion and regression tasks, one can easily formulate the dis-
tance function learning problem as a well-defined optimiza-
tion problem based on the supervisory information available
in the training data. This approach can be dated back to
early work on optimizing the metric for k-nearest neighbor
density estimation [1]. More recent research continued to
develop locally adaptive metrics for nearest neighbor clas-
sifiers [2, 3, 4, 5]. Besides, there are other methods that also
perform metric learning based on nearest neighbors, e.g.,

radial basis function networks and variants [6].
While class label information is available for metric

learning in classification (or supervised learning) tasks,
such information is not available in standard clustering (or
unsupervised learning) tasks. Under the unsupervised learn-
ing setting, the distance function learning problem is ill-
posed with no well-defined optimization criteria. In order
to adapt the metric to improve the clustering results, some
additional background knowledge or supervisory informa-
tion is required. The supervisory information may be in the
form of labeled data, which are typically limited in quantity.
For such problems, the classification accuracy can usually
be improved with the aid of additional unlabeled data. Some
methods that adopt this approach include [7, 8, 9].

Another type of supervisory information is in the form
of pairwise similarity or dissimilarity constraints. This type
of supervisory information is weaker than the first type,
in that pairwise constraints can be derived from labeled
data but not vice versa. Wagstaff and Cardie [10] and
Wagstaff et al. [11] first used such pairwise constraints
to improve clustering results. Extensions have also been
made to model-based clustering based on the expectation-
maximization (EM) algorithm for Gaussian mixture mod-
els [12, 13]. However, these methods do not incorporate
metric learning into the clustering algorithms. Recently,
some methods have been proposed for learning global Ma-
halanobis metrics and related distance functions from pair-
wise information [14, 15, 16, 17]. However, the distance
functions learned are either nonmetric or globally linear
metrics. Chang and Yeung [18] generalized the globally
linear metrics to a new metric that is linear locally but non-
linear globally. However, the criterion function of the op-
timization problem defined in that paper has local optima,
and the algorithm is not efficient enough.

In this paper, we propose a new kernel-based metric
learning method along the same direction we pursued be-
fore [18]. Instead of applying metric adaptation in the in-
put space, we define locally linear translation in the kernel-
induced feature space, where data points have higher sepa-
rability. Instead of formulate the metric learning problem as
an optimization problem, we formulate it as a kernel learn-



ing problem, and solve it by iterative kernel matrix adap-
tation. As a nonparametric approach, the new method has
higher computational efficiency than that proposed in [18].

The rest of this paper is organized as follows. In Sec-
tion 2, we present our metric learning method, where we
perform metric learning in kernel-induced feature space and
formulate the metric learning problem as a kernel learning
problem. Experimental results on both synthetic and real
data are presented in Section 3, comparing our method with
some previous metric learning methods. Finally, some con-
cluding remarks are given in the last section.

2 Kernel-Based Metric Learning

2.1 Basic Ideas

Let us denote a set of n data points in a d-dimensional input
space by X = {x1,x2, . . . ,xn}, the set of similar pairs by
S, and the set of dissimilar pairs by D. S and D are both
represented as sets of point pairs, where each pair (xi,xj)
indicates that xi and xj are similar or dissimilar to each
other, respectively. Intuitively, we want to adjust the lo-
cations of the data points, such that similar pairs tend to
get closer while dissimilar pairs tend to move away from
each other. (1) For computational efficiency, we resort to
locally linear translation. (2) Instead of applying locally
linear translation in the input space, we define the transla-
tion in the kernel-induced feature space, where data points
have higher separability. (3) To preserve the topological
relationships between data points, we move not only the
points involved in the similar and dissimilar pairs but also
other points in their neighborhoods. Locally linear transla-
tion is equivalent to changing the metric of the feature space
implicitly. In this section, we will propose a nonparamet-
ric metric learning algorithm in kernel space and establish
the relationship between metric learning with kernel matrix
adaptation.

2.2 Centering in the Feature Space

Suppose we use a kernel function k̂ which induces a nonlin-
ear mapping φ̂ from X to some feature space F .1 The im-
ages of the n points in F are φ̂(xi) (i = 1, . . . , n), which in
general are not centered (i.e., their sample mean is not zero).
The corresponding kernel matrix K̂ = [k̂(xi,xj)]n×n =

[〈φ̂(xi), φ̂(xj)〉]n×n.

We want to transform (simply by translating) the coordi-
nate system of F such that the new origin is at the sample
mean of the n points. As a result, we also convert the kernel
matrix K̂ toK = [k(xi,xj)]n×n = [〈φ(xi), φ(xj)〉]n×n.

1We use RBF kernel in this paper.

Let Φ = [φ(x1), . . . , φ(xn)]
T , Φ̂ =

[φ̂(x1), . . . , φ̂(xn)]
T and H = I − 1

n
11

T , where 1 is
a column vector of ones. We can expressΦ = HΦ̂. Hence,

K = ΦΦT = HΦ̂Φ̂T
H = HK̂H. (1)

2.3 Locally Linear Translation in the Feature
Space

For each similar pair (xk,xl) ∈ S, we define a translation
vector

ak = [φ(xl)− φ(xk)] /2,

pointing from φ(xk) to the midpoint of φ(xk) and φ(xl).
φ(xk) and φ(xl) are translated towards their midpoint, in-
dicated by vector ak and −ak, respectively. For each dis-
similar pair (xu,xv) ∈ D, we define a translation vector

bu = [φ(xu)− φ(xv)] /2,

pointing from the midpoint of φ(xu) and φ(xv) to φ(xu)
. φ(xu) and φ(xv) are moved away from their midpoint,
indicated by vector bk and−bk, respectively. If a data point
is involved in more than one point pair, we consider the
linear translation for each pair separately.

To preserve the topological relationships between data
points, we apply the above linear translations to other data
points in the neighborhood sets of the similar or dissimilar
pairs. Therefore, the new location ψ(xi) of φ(xi) in the fea-
ture space is the overall translation effected by possibly all
similar and dissimilar point pairs (and hence neighborhood
sets):

ψi = φi + α
∑

(k,l)∈S

πkiak + β
∑

(u,v)∈D

πuibu, (2)

where πki and πui are Gaussian functions. If φ(xi) is closer
to φ(xk) than φ(xl),

πki = exp

[

−
1

2
(φ(xk)− φ(xi))

T
Σ
−1
k (φ(xk)− φ(xi))

]

,

otherwise

πki = − exp

[

−
1

2
(φ(xk)− φ(xi))

T
Σ
−1
k (φ(xk)− φ(xi))

]

,

with Σk being the covariance matrix. For simplicity, we
use a hyperspherical Gaussian function, meaning that the
covariance matrix is diagonal with all diagonal entries being
σ2. Thus πki can be rewritten as

πki = exp[−‖φ(xk)− φ(xi)‖
2/(2σ2)],

if φ(xi) is closer to φ(xk) than φ(xl), and

πki = − exp[−‖φ(xk)− φ(xi)‖
2/(2σ2)],



otherwise. For dissimilar constraints, πui is defined in the
same way.

Let ΠS = [πki] and ΠD = [πui], with k =
1, . . . , |S|, u = 1, . . . , |D|, and i = 1, . . . , n. |S| and |D|
denote the number of similar and dissimilar pairs in S and
D, respectively. Let A and B denote the translation matri-
ces decided by similar or dissimilar constraints, with each
of the |S| or |D| columns representing a different transla-
tion vector. From 2, the adaptation of data set Φ can be
expressed as

Ψ = Φ+ αAΠS + βBΠD. (3)

2.4 Kernel Matrix Adaptation
We first apply the centering transform as described in Sec-
tion 2.2 to give the kernel matrix K. Then, we compute
the new kernel matrix K̃ after performing the locally linear
translation defined in Section 2.3. It is worthy to note that
we can use kernel trick to avoid explicit embedding of data
points in the feature space. Metric learning with pairwise
constraints is actually formulated as a kernel learning prob-
lem. Let us omit the derivation details due to page limit.
The kernel matrix will be adapted as follows:

K̃

= Ψ
T
Ψ

= K

+α[(KΦS2 −KΦS1)ΠS +ΠST
(KS2Φ −KS1Φ)]/2

+β[(KΦD1 −KΦD2)ΠD +ΠDT
(KD1Φ −KD2Φ)]/2

+α2ΠST
(KS2S2 − 2KS2S1 +KS1S1)ΠS/4

+β2ΠDT
(KD1D1 − 2KD1D2 +KD2D2)ΠD/4

+αβΠST
(KS2D1 −KS2D2 −KS1D1 +KS1D2)ΠD/4

+αβΠDT
(KD1S2 −KD2S2 −KD1S2 +KD2S1)ΠS/4.

(4)

We define KPQ as a submatrix of K, with P and Q spec-
ifying the indices of data points, corresponding to the rows
and columns extracted from K. Φ represents the indices
of all data points in X . S1 = {k|(xk,xl) ∈ S}, and
S2 = {l|(xk,xl) ∈ S}. D1 and D2 are defined in the
similar way.

As for the Gaussian window parameter, we make σ2 de-
pend on the average of squared Euclidean distance between
all point pairs in the feature space:

σ2 =
θ

n2

n
∑

i,j=1

‖φi − φj‖
2 =

2θ

n

[

Tr(K)− nK̄
]

,

where K̄ represents the mean value of the elements in ma-
trixK. The parameter θ is set to be the same (= 0.5) for all

data sets in our experiments. Note that ‖φ(xk)−φ(xi)‖
2 =

k(xk,xk)− 2 k(xk,xi) + k(xi,xi), so the Gaussian func-
tions defined in our method can be computed directly using
kernel matrix K. The parameter α and β in Equation (2)
and ( 3) decide the learning rate as well as the relative ef-
fects of between similarity and dissimilarity constraints. We
set them to be 1/|S| and 1/|D|, respectively.

The locations of the data points in the feature space are
translated iteratively, with the kernel matrix being adapted
accordingly. As in [18], the Gaussian window parameter
and learning rate should be decreased over time to increase
the local specificity gradually. The iterative adaptation pro-
cedure will stop when either there is no much changes in
the kernel matrix or the maximum number of iterations (T )
is reached. We summarize the metric learning algorithm
below:

Input: X = {x1,x2, . . . ,xn}, S, D
Begin

t = 0
Centering transform to get initial kernelK0 (Equation (1))
Repeat {

Update kernel matrixKt toKt+1 (Equation (4))
Decrease parameters σ2, α, β
t = t+ 1
λ = ‖Kt+1 −Kt‖

} Until (λ <theshold or t = T )
End

Figure 1: Iterative metric learning by kernel matrix adapta-
tion

3 Experiments
To assess the efficacy of our kernel-based metric learning
method, we perform extensive experiments on toy data as
well as real data from the UCI Machine Learning Reposi-
tory.2

3.1 Experimental Setting
We compare the our proposed method described in Sec-
tion 2 with two previous methods. The first method is rele-
vant component analysis (RCA) [14]. As a metric learning
method, RCA changes the input space by a global linear
transformation which assigns large weights to relevant di-
mensions and low weights to irrelevant dimensions. An-
other method is locally linear metric adaptation (LLMA)
[18], which is more general in that it is linear locally but
nonlinear globally. We also use the Euclidean distance

2http://www.ics.uci.edu/˜mlearn/MLRepository.html



without metric learning for baseline comparison. Since
both RCA and LLMA make use of pairwise similarity con-
straints only, we also use such supervisory information only
for our method. In summary, the following four distance
measures for the k-means clustering algorithm are included
in our comparative study (the short forms inside brackets
will be used subsequently for convenience):

1. k-means without metric learning (Euclidean)

2. k-means with RCA for metric learning (RCA)

3. k-means with LLMA for metric learning (LLMA)

4. k-means with our kernel-based method for metric
learning (Kernel-based)

There exist many performance measures for clustering
tasks. As in [18, 17, 14], we use the Rand index [19]
to quantify the agreement of the clustering result with the
ground truth. For each data set, we randomly generate 20
different S sets to provide pairwise similarity constraints to
the clustering task. In addition, for each S set, we perform
20 runs of k-means with different random initializations and
report the average Rand index over the 20 runs.

3.2 Experiments on Synthetic Data
Figure 2 demonstrates the power of our proposed metric
learning method on two synthetic data sets. One is exclu-
sive four data set, the other is 2-moon data set which is com-
monly used in some recent semi-supervised learning work.
However, the difference is that we do not exploit the un-
derlying manifold structure here. Instead, only some lim-
ited pairwise similarity constraints are provided. The two
data sets are shown in the first column of Figure 2. Data
points with the same mark and color belong to the same
cluster. Similar pairs are connected by solid lines. The
second, third and fourth columns show the data sets after
applying RCA, LLMA and our kernel-based method. Obvi-
ously, RCA, which performs globally linear metric learning,
cannot give satisfactory results. The performance of LLMA
is significantly better, although some points from the two
classes are quite close to each other. On the other hand,
our kernel-based approach can group the data points well
according to their class.

We further perform some semi-supervised clustering ex-
periments on the XOR and 2-moon data sets. The results
are shown in Figure 3. For each trial, 10 point pairs are
randomly selected to form S.

3.3 Experiments on UCI Data
To access the efficacy of our metric learning methods for
real-world data sets, we further perform experiments for
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Figure 3: Clustering results for (a) XOR data set and (b) 2-
moon data set.

Table 1: Six UCI data set used in our experiments

Data set n c d |S|
Soybean 47 35 4 10
Protein 116 20 6 15
Wine 178 13 3 20
Ionosphere 351 34 2 30
Boston housing 506 13 3 40
Breast cancer 569 31 2 50

semi-supervised clustering tasks on some data sets from the
UCI Machine Learning Repository. Table 1 summarizes the
characteristics of six UCI data sets used in our experiments.
The number of data points n, the number of clusters c, the
number of features d, and the number of randomly selected
similar pairs S are shown in each line of Table 1.

The clustering results using different clustering algo-
rithms numbered as in Section 3.1 are shown in Figure 4.
From the clustering results, we can see that our kernel-based
method outperforms RCA and is comparable or even better
than LLMA.

4 Concluding Remarks

In this paper, we have proposed a new metric learning
method based on semi-supervised learning. Unlike previous
methods which perform metric learning in input space, our
method performs metric learning in kernel-induced feature
space by iterative kernel matrix adaptation. We neither have
to formulate the metric learning as an optimization problem
nor need to compute the explicit embedding of data points
in the feature space. These characteristics make our method
more powerful for solving some difficult clustering tasks as
demonstrated through the synthetic and UCI data sets.

Although our kernel-based metric learning method is
simple and still quite effective, there is still much space for
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Figure 2: Comparison of different metric learning methods on two synthetic data sets. (a) origianl synthetic data sets; and
the data sets after applying (b) RCA; (c) LLMA; (d) our kernel-based method.
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Figure 4: Clustering results for six UCI data sets.



it to be improved. We have only considered translation in
the feature space, which is a restrictive form of locally lin-
ear transformation. One possible extension is to generalized
it to more general linear transformation. Another limitation
is that our method cannot preserve the topology structure
during the metric learning procedure.

Except the illustrative examples shown in Figure 2, we
access the performance of our proposed metric learning
method by semi-supervised clustering. There may exist
other machine learning tasks that can be used to evaluate
different metric learning methods. One possible task is
content-based image retrieval (CBIR), whose performance
depends critically on the distance measure between images.
We will pursue this direction and explore other applications
as well in our future research.
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