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Abstract

TCP-based flooding attacks are a common form of
Distributed Denial-of-Service (DDoS) attacks which
abuse network resources and can bring about seri-
ous threats to the Internet. Incorporating IP spoof-
ing makes it even more difficult to defend against
such attacks. Among different IP spoofing techniques,
which include random spoofing, subnet spoofing and
fixed spoofing, subnet spoofing is the most difficult type
to fight against. In this paper, we propose a simple
and efficient method to detect and defend against TCP
SYN flooding attacks under different IP spoofing types,
including subnet spoofing. The method makes use of a
storage-efficient data structure and a change-point de-
tection method to distinguish complete three-way TCP
handshakes from incomplete ones. Simulation exper-
iments consistently show that our method is both ef-
ficient and effective in defending against TCP-based
flooding attacks under different IP spoofing types.

1 Introduction

Distributed Denial-of-Service (DDoS) attacks are
large-scale cooperative attacks typically launched from
a large number of compromised hosts. DDoS at-
tacks are bringing about growing threats to businesses
around the world. While many methods have been
proposed to counter such attacks, they are either not
efficient or not effective enough. Some recent DDoS
incidents show that such attacks continue to cause se-
rious threats to the Internet.
DDoS attacks are even more difficult to fight against

if IP spoofing is incorporated into such attacks. IP
spoofing, or called source IP address spoofing, refers to
the technique of lying about the return address (i.e.,

source address) of a packet. With IP spoofing, attack-
ers can gain unauthorized access to a computer or a
network by making it appear that a message has come
from a certain trusted machine by “spoofing” the IP
address of that machine. Strictly speaking, IP spoof-
ing is not an attack by itself; it is merely a scheme used
with DDoS attacks.

Spoofing techniques can be categorized into differ-
ent types according to what spoofed source addresses
are used in the attacking packets. The three common
IP spoofing types are random spoofing, subnet spoof-
ing, and fixed spoofing [8]. In random spoofing, the
attacker randomly generates 32-bit numbers for use as
source addresses of the attacking packets. In subnet
spoofing, the addresses are generated from the address
space corresponding to the subnet in which the agent
machine resides. For example, a machine which is part
of the 143.89.124.0/24 network may spoof any address
in the range from 143.89.124.0 to 143.89.124.255. An-
other type of IP spoofing, called fixed spoofing, chooses
source addresses from a given list. In this case, the at-
tacker typically wants to perform a reflector attack or
impose a blame for attack on several specific machines.

To defend against spoofed flooding traffic, especially
that with subnet spoofing, we propose a scheme that
is based on a storage-efficient data structure and a
change-point detection method. The storage-efficient
data structure, which is a variant of Bloom filter [3],
is used to generate a hash digest of the traffic. The
change-point detection method is based on the CUSUM
algorithm [4], which is a nonparametric change-point
detection method. After some information about the
traffic is extracted and stored in the Bloom filter,
CUSUM is then applied to detect abnormal changes
in the digested traffic.

The remainder of this paper is organized as fol-
lows. We first review some basics about TCP hand-
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shakes in Section 2. In Section 3, a space-efficient
data structure called Bloom filter is reviewed. Our
method makes use of a modified Bloom filter to store
a hash digest of the relevant portions of a packet. The
CUSUM based change-point detection scheme is pre-
sented in Section 4. The experimental results reported
in Section 5 show that our method can accurately de-
tect spoofed flooding traffic under different IP spoofing
types. Finally, Section 6 presents some related work in
the area of DDoS research and Section 7 concludes the
paper and outlines some further research issues.

2 TCP Handshakes

Most existing DDoS attacks exploit the Transmis-
sion Control Protocol (TCP) [9]. It has been reported
that more than 90% of the existing DDoS attacks are
TCP based [12], although we do expect that attacks of
other types, such as UDP based, will increase in the
future as more and more applications based on them
become available in the Internet. It is well known that
IP spoofing is one of the major security problems in
the TCP/IP protocol suite, and hence it is commonly
exploited by attackers to launch attacks. In what fol-
lows, we will first look at TCP handshakes for normal
transactions and then those for spoofed ones.
During normal TCP handshakes, the client first

sends a SYN request to the server. After receiving the
request, the server replies with a packet which contains
both the acknowledgement ACK and the synchroniza-
tion request SYN (denoted as ACK/SYN hereinafter).
Then the client sends an ACK back to the server to
complete the establishment of the TCP connection.
Under IP spoofing, however, the three-way hand-

shake will be very different from that of the normal
case. Attackers usually use unreachable spoofed source
IPs in the attacking packets to improve the attack ef-
ficiency [10]. These packets will not trigger the third
round of an otherwise three-way handshake. Under
random IP spoofing, most connections will not re-
ceive the second round of each handshake because the
ACK/SYN packets are sent to other subnets. Under
subnet spoofing, however, ACK/SYN packets are sent
to the correct subnet but are destined to an incorrect
host. The third round of the handshake is thus unsuc-
cessful. As a consequence, a major difference between
random spoofing and subnet spoofing is the different
return paths of the ACK/SYN packets.
Our method tries to detect incomplete handshakes

by monitoring the first and third rounds of each hand-
shake. If either round is missing, it is regarded as an in-
complete handshake. We use the first and third rounds
because both of them belong to the outgoing traffic.

Therefore, our method which requires only one-way
traffic monitoring has the advantage of being flexible
and hence can easily be deployed at the source side,
the intermediate network or the victim side.

3 Traffic Information Digest

Accurate detection of anomalies has to rely on de-
tailed information analysis. However, storing detailed
traffic information for subsequent analysis is generally
very expensive. In order to extract useful informa-
tion about abnormal (i.e., incomplete) handshakes, we
choose to record only information about TCP hand-
shakes. Moreover, we use a storage-efficient data struc-
ture for this purpose. In this section, we first give a
brief overview of such a data structure. We then dis-
cuss how to extract useful information from the net-
work traffic.

3.1 Bloom filter

Bloom filter was first proposed by Bloom [3] in 1970.
Recently, it has been adapted for use in some meth-
ods for defending against DDoS attacks [2, 5, 11]. A
Bloom filter is composed of a vector v of m bits, ini-
tially all set to 0. We have k independent hash func-
tions, h1, h2, . . . , hk, each with a range 0, 1, . . . ,m− 1.
The vector v can show the existence of an element from
some address space A. Given an element a ∈ A, the
bits at positions hi(a), 1 ≤ i ≤ k, in v are set to 1. Note
that a particular bit may be set to 1 multiple times and
hence may potentially lead to inaccurate results. Given
a query on the existence of b in A, we check the bits at
positions hi(b), 1 ≤ i ≤ k. If any one of them is 0, then
b is certainly not in A. Otherwise, we conjecture that b
is in it. However, there is a certain probability that the
Bloom filter will give a false result. This probability is
referred to as the false positive rate.
A variant of the original Bloom filter, called count-

ing Bloom filter, uses a table of counters to replace the
n bits. Each counter represents the number of times
the corresponding location has been hit. When a key
a (such as an IP address) is inserted or deleted, the
value of the corresponding counter in each row is in-
creased or decreased by 1, respectively, according to
hi(a) for all k rows. If an IP address b is already stored
in the modified bloom filter, the counters at locations
hi(b), 1 ≤ i ≤ k, in the table should all be nonzero.

3.2 Traffic Digest

Two hash tables, which are based on the counting
Bloom filter, are used in our scheme to record informa-
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Figure 1. Td and Ts together monitor TCP SYN
and ACK packets.

tion about TCP handshakes. One table, called desti-
nation table and denoted as Td, is used to record des-
tination IP information. The other one, called source
table and denoted as Ts, is used to record source IP
information.
When a SYN request packet, corresponding to the

first round of a handshake, is captured in the outgoing
traffic, the destination IP of the SYN packet is hashed
using the k independent hash functions and the cor-
responding counters in Td hit by the k hash functions
are incremented by α where 0 < α ≤ 1. At the same
time, another hash table Ts works in the same way but
records the source IP information.
When an ACK packet, corresponding to the third

round of a handshake, is captured in the outgoing traf-
fic, both the destination and source IP addresses are ex-
tracted again and hashed into Td and Ts, respectively.
This time the corresponding counters are decremented
by α where 0 < α ≤ 1. For a normal TCP handshake,
both SYN and ACK are observed and hence the corre-
sponding counters are first incremented and then decre-
mented by α, leading to no resulting changes. Figure 1
summarizes how tables Td and Ts are used.
All entries in both tables Td and Ts are reset period-

ically to prevent them from growing indefinitely when
it is under attack and hence many incomplete hand-
shakes are encountered. Suppose Rt−1 is the value of
a counter at time t− 1. Its value is reset to Rt at time
t as follows:

Rt = (1− α)Rt−1, 0 < α ≤ 1.
Although it is possible that two different IP ad-

dresses are mapped to the same counter in a row, the
probability that they get mapped to the same counters
in all k > 1 rows is very low even for a small value of
k. As a result, the false positive rate caused by hash
table collision is rather low.

4 Detection Mechanism

In this section, we address the problem of detect-
ing change points in the probabilistic characteristics of
random sequences. When a packet is identified as sus-
picious, we analyze its source IP and classify it into one
of three categories: random, subnet or fixed spoofing.

4.1 Change-Point Detection Method

The essence of sequential change-point detection is
as follows. Suppose the observations of a random pro-
cess Xt (with discrete or continuous time) are received
sequentially. At a certain moment (random or not,
but unknown), some probabilistic characteristics of this
process change. An observer must make a decision as
quickly as possible to decide whether or not a change
point has happened, while keeping the false alarm rate
as low as possible.
Suppose a sequence X1, ...,Xr of independent ran-

dom variables has been observed. For each 1 ≤ v ≤ r,
consider the hypothesis Hv that x1, ..., xv−1 have the
same density function f0(·) and xv, ..., xr have another
density function f1(·). Denote by H0 a hypothesis of
stochastic homogeneity of the sample. Then the likeli-
hood ratio statistic for testing the composite hypothe-
sis Hv (1 ≤ v ≤ r) against H0 is:

max
0≤k≤r

(Sr − Sk) = Sr − min
0≤k≤r

Sk,

where

S0 = 0, Sk =
kX

j=1

log
f1(xj)

f0(xj)
.

There is a nonparametric version of the CUSUM
statistic:

yr = (yr−1 + xr)
+, y0 = 0,

and the corresponding decision rule is

dN(·) = d(yr) = I(yr > N),

where I(·) is the indicator function andN is the thresh-
old. The function dN represents the decision at time
r, which gives a value of 1 to indicate an attack and 0
to indicate a normal condition.
In general E(Xr) = c. We choose a parameter a

that is the upper bound of c, i.e., a > c. Then we
define xr = Xr − a so that it has a negative value
under normal operation. When an attack takes place,
the rate of increase will suddenly become larger and
hence the value xr = Xr − a will become positive.
The two parameters a, the upper bound in case of

normal operation, and N , the flooding threshold, in-
fluence the performance of sequential detection. We
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should try to strike a good balance by minimizing the
detection delay subject to a certain false alarm toler-
ance level.

4.2 Sequence Model

Since the k rows in Td are independent of each other,
for clarity, we choose one row for our discussions here.
There are n counters in each row of table Td and these
counters are denoted as C1, C2, ..., Cn. The hash table
is refreshed periodically. The value of counter Ci (1 ≤
i ≤ n) forms a sequence {Ct

i} according to the refresh
period t. For each counter, we analyze the change-point
characteristics of the sequence {Ct

i}.
Normal TCP traffic has symmetric SYN and ACK

pairs and hence the counter values in Td should be
close to 0. When spoofed TCP handshake packets are
sent to a victim host, there will be more SYN packets
than ACK packets. The corresponding counter value
in Td will grow rapidly. The density function of se-
quence {Ct

i} will change and CUSUM will detect this
change. We define xti = Ct

i − a (a > 0) as the sequence
of time t for the CUSUM method. The two parameters
are set according to the network conditions. Thus xti
has a negative value during normal operation. When
a spoofed flooding attack occurs, it will change to a
positive value.

When a spoofed flooding attack occurs, each row
is expected to have a counter with an abnormally high
value. These abnormal counters are referred to as heavy
counters. If a packet is hashed into Td and hits all the
k heavy counters in all k rows, this packet is regarded
as a suspicious spoofed packet and hence an alarm will
be launched.

4.3 Spoofing Type Classification and Response

Since random spoofing generates a wide range of IP
addresses for the source IPs of the packets, the prob-
ability that two packets have the same source IP is
very low. On the other hand, subnet spoofing has a
much narrower range than random spoofing. During a
spoofed flooding attack, the attacking source typically
generates a large number of packets. This number is
much larger than the number of candidate IP addresses
used for subnet spoofing. For example, in order to
bring down a victim server for 10 minutes, there should
be at least 300,000 SYN packets [12]. However, a class
C subnet only has 254 IP addresses which are avail-
able for a subnet spoofing attack. Therefore, quite a
number of subnet spoofed packets are expected to have
identical source IPs during the attack period.

We define two thresholds, θ1 and θ2 (1 < θ1 < θ2),
for Ts. When a packet hits k heavy counters in Td, its
source IP is checked in Ts. If all counters in Ts hit by
this packet have values larger than θ1 but smaller than
θ2, it is regarded as subnet spoofing. If the value is
much larger than θ2, it may be caused by fixed spoof-
ing. Otherwise it is regarded as random spoofing.
Random spoofing may be throttled by ingress filters

deployed at the edge routers. However, there has been
a lack of efficient methods for fighting against subnet
spoofing. To defend against attacks caused by fixed
spoofing and subnet spoofing, we propose here a soft
rate-limiting scheme. Specifically, the percentage of
traffic to go through is equal to

Rpass = γ−εCs ,

where Cs is value of a counter in Ts and γ, ε are pa-
rameters. The legitimate value of Cs is 0. Thus if Cs is
close to 0, we essentially allow almost all traffic to pass
through. According to the classification scheme above,
a higher value of Cs means that the traffic has a higher
probability of being fixed spoofed packets. The larger
the value of Cs is, the more traffic will be blocked.

5 Performance Evaluation

We have carried out some simulation experiments
to evaluate the performance of our proposed method.
The DARPA off-line intrusion detection benchmark [6]
is used for the experiments. We use the NS2 network
simulator [1] to simulate the three IP spoofing types.

5.1 Attack Traffic Detection

Two datasets from the DARPA benchmark are used
to evaluate the detection performance of our method.
Specifically, one dataset contains SYN flood attack
packets and the other dataset is free of flooding at-
tack. In all the experiments, the number of rows k in
each hash table is set to 4 and the number of coun-
ters n in each row is set to 1024. For attack detection,
we only need to monitor the destination table Td. As
before, since each row in Td corresponds to an indepen-
dent hash function, we only discuss any one row here
as other rows are the same.
We first observe the status of Td during normal op-

eration. Normal traffic begins at 21:00 on one day and
ends at 18:32 on the following day. There are a total of
27877 TCP connections during this period. We observe
that most of the counters have a zero value and only
two counters (out of 1024 counters in the row) have
nonzero values. The nonzero values are triggered by
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Figure 2. CUSUM result for a nonzero counter
during a SYN flooding attack.

incomplete handshakes caused by occasional network
errors.
In another experiment, the dataset with SYN flood

attack packets is used. During the attack, there are
many more SYN packets than ACK packets. The
counters corresponding to the hashed values of the
victim IP addresses grow dramatically and hence be-
come heavy counters. While most of the counters still
have a zero value, there are a few heavy counters with
values significantly higher than those of the nonzero
counters during normal operation as observed above.
The CUSUM detection method can successfully detect
these heavy counters. Figure 2 shows the CUSUM re-
sult for a nonzero counter when an attack is launched.
Since there is very little traffic around midnight, the
result for this period is not shown for clarity.

5.2 Spoofing Type Classification

We use NS2 to simulate the random spoofing, sub-
net spoofing and fixed spoofing attack scenarios. In the
simulations, there are 10 server nodes and 1000 client
nodes. One of the server nodes is selected as the victim.
The client nodes randomly select one or more server
nodes as destinations for establishing connections. Re-
gardless of what spoofing type is used, we observe that
the flooding traffic can trigger one counter in each row
of table Td to have an abnormally large value as above.
To classify the spoofing into one of the three types,

we have to monitor the counter values in table Ts. Fig-
ure 3(a) shows the values of the counters in one row
of Ts under random spoofing. The counters have rel-
atively small values which are distributed somewhat
uniformly across different counters because the spoofed
IPs are generated randomly. For subnet spoofing as
shown in Figure 3(b), since a much narrower range of
IP addresses is used, we can see that only a portion

of the counters have nonzero values. Moreover, these
counter values are generally higher than those in Fig-
ure 3(a). If we examine more closely the two tables in
Figure 3(a) and Figure 3(b), we can see that many dif-
ferent IP addresses are hashed into the same counter in
Figure 3(a) due to hash table collisions, but a counter
in Figure 3(b) almost always corresponds to the same
IP address. Figure 3(c) shows the counter values un-
der fixed spoofing. This type of spoofing is much easier
to identify since only a few counters have nonzero val-
ues and they are heavy counters with extremely high
values.

6 Related Work

A hash table is a high-performance data structure
that can be used for efficient table lookup. Recently,
it has been applied to some applications for network
packet processing. Snoeren [11] presented a technique
based on hash table for IP traceback, which generates
audit trails for the network traffic so that the origin
of an IP packet delivered by the network in the recent
past can be traced. Hash table has also been employed
to look for imbalance between the incoming and out-
going traffic flows to or from an IP address [2]. More
recently, a router equipped with DDoS protection ca-
pability called IDR [5] was proposed to detect DDoS
attacks using a Bloom filter.
Change-point detection methods have been applied

to DDoS detection due to their simplicity and effec-
tiveness. Wang et al. [12, 13] proposed a method for
detecting SYN flood attacks at leaf routers that con-
nect end hosts to the Internet. Based on the observa-
tion that SYN and FIN packets form pairs in normal
network traffic, they proposed using a nonparametric
CUSUM method to accumulate the pairs. Luo and
Chang [7] proposed a two-stage scheme to detect the so-
called pulsing DoS attacks. The first stage uses wavelet
transform to extract the desired frequency components
of the traffic data and the second stage tries to detect
change points in the extracted components.

7 Conclusion

Although IP spoofing is not an attack in itself, it
is commonly used with real TCP-based attacks by ex-
ploiting the characteristics in the design of the TCP/IP
suite.
To defend against spoofed flooding attacks, we pro-

pose in this paper an efficient method that can de-
tect all three types of spoofing: random, subnet and
fixed spoofing. Based on the Bloom filter, we propose
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Figure 3. Counter values in one row of table Ts under different spoofing types.

a storage-efficient data structure which only requires
a fixed-length table for recording relevant traffic infor-
mation. A change-point detection method, CUSUM,
is then applied to detect abrupt changes in the traffic
characteristics which correspond to the occurrence of
flooding attacks. When malicious events are detected,
they can further be classified into random spoofing,
subnet spoofing or fixed spoofing type by analyzing
a hash table for the source IP characteristics. Sim-
ulation experiments show that our proposed method
yields very accurate detection and classification results
yet with low computational demand.
There are some parameters in our method. Cur-

rently these parameters are set manually based on ex-
perience. A future extension is to devise an automated
scheme for setting or adapting the parameters. An-
other interesting direction to pursue is to design adap-
tive hash functions that maximize the utilization of the
hash table entries and hence minimize the false positive
rate. Moreover, we plan to evaluate our method in a
reasonably large real network.
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