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Abstract

Network intrusion detection is the problem of detecting
anomalous network connections caused by intrusive activ-
ities. Many intrusion detection systems proposed before
use both normal and intrusion data to build their classi-
fiers. However, intrusion data are usually scarce and dif-
ficult to collect. We propose to solve this problem using
a novelty detection approach. In particular, we propose to
take a nonparametric density estimation approach based on
Parzen-window estimators with Gaussian kernels to build
an intrusion detection system using normal data only. To fa-
cilitate comparison, we have tested our system on the KDD
Cup 1999 dataset. Our system compares favorably with the
KDD Cup winner which is based on an ensemble of decision
trees with bagged boosting, as our system uses no intrusion
data at all and much less normal data for training.

1. Introduction
1.1. Host-Based versus Network-Based

Intrusion detection refers to a certain class of system at-
tack detection problems. Many intrusion detection systems
built thus far are based on the general model proposed by
Denning [5]. From a high-level view, the goal is to find out
whether or not a system is operating normally. Abnormality
or anomaly in the system behavior may indicate successful
exploitation of system vulnerabilities.

Host-based intrusion detection systems detect possible
attacks into individual computers. Such systems typically
use information specific to the operating systems of the tar-
get computers. On the other hand, network-based intrusion
detection systems monitor network behavior by examining
the content as well as the format of network data packets,
which typically are not specific to the exact operating sys-
tems used by individual computers as long as these comput-
ers can communicate with each other using the same net-
work protocol. For both types of systems, one may take a

data mining approach by “mining” through the host-based
or network-based data to detect possible attacks from inter-
nal or external intruders.

In this paper, our focus is on network-based intrusion
detection systems.

1.2. Classification versus Novelty Detection

Typical classification problems can be formulated as fol-
lows. A discriminative classifier is built using training ex-
amples from all ¢ (> 2) classes, so that it can classify each
presented pattern into one of ¢ classes with as low general-
ization error as possible.

While many pattern recognition problems fall into this
category, some other problems are best formulated differ-
ently as novelty detection [1, 4, 7] problems. In a prob-
abilistic sense, novelty detection is equivalent to deciding
whether an unknown test pattern is produced by the under-
lying distribution that corresponds to the training set of nor-
mal patterns. While novelty detection problems appear to
be similar to 2-class classification problems, a major dif-
ference is that they typically use only normal patterns as
training examples to build a generative model of normal be-
havior. The novelty detection approach is particularly at-
tractive under situations where novel or abnormal patterns
are expensive or difficult to obtain for model construction.

In this paper, the novelty detection approach is adopted.

1.3. Our Research

Over the past few years, several intrusion detection con-
tests, such as DARPA 1998, DARPA 1999, and KDD
Cup 1999, were held to evaluate results in intrusion de-
tection research. Many network intrusion detection meth-
ods have been proposed in the research community, e.g.,
[2, 3,6, 8,09, 10, 11, 14, 17, 18]. However, almost all of
them have to use both normal and intrusion traffic data for
classifier training. Thus the problem is essentially a clas-
sification problem. In practice, it is not always possible to
obtain sufficient intrusion data. Our objective is to take the



novelty detection approach without requiring intrusion data
for training.

The rest of this paper is organized as follows. In Sec-
tion 2, we will review the density estimation approach to
novelty detection and present our model based on Parzen-
window estimators. In Section 3, the KDD Cup dataset
will be described. Experimental results obtained using our
model will be presented in Section 4. We will also compare
our results with those obtained by the KDD Cup winner. Fi-
nally, some concluding remarks will be made in Section 5.

2. Parzen-Window Estimators for Novelty De-
tection

2.1. Density Estimation Approach

One approach to novelty detection is based on density
estimation. It assumes a probabilistic generative model for
the observed data. Density estimation refers to the process
of estimating the underlying density function such that the
model can best describe the data. The learned model is then
used to detect novel patterns based on some criteria derived
from statistical measures, such as likelihood. Some previ-
ous novelty detection methods based on this approach in-
clude [1, 12, 15, 16].

Since simple parametric density functions such as Gaus-
sian are too restrictive for modeling real-world data distri-
butions, the simple parametric density estimation approach
is inappropriate for novelty detection. Instead, semipara-
metric or nonparametric methods are usually used. The
most popular semiparametric method is based on Gaussian
mixture models [15, 16]. Another possible method is to use
regression trees [12]. Although semiparametric methods
can usually give parsimonious representations, they require
a parameter estimation process that could be computation-
ally intensive. Nonparametric density estimation has also
been used for novelty detection [1]. Although the amount
of training data required could be very large and hence test-
ing unknown patterns on the model becomes slow, the ad-
vantage of this approach is that essentially no training is re-
quired. Provided that sufficient data are available, the non-
parametric approach can model arbitrary distributions with-
out being restricted to special functional forms. Moreover,
nonparametric models can easily be adapted under situa-
tions with time-varying data distributions. For these rea-
sons, we will use a nonparametric method for this work.

2.2. Parzen-Window Density Estimation

Parzen introduced a nonparametric method for estimat-
ing density functions [13]. Let p(x) be the density function
to be approximated. Givenaset D = {x;1,X2,...,X,} 0fn

i.i.d. examples drawn according to p(x), the Parzen-window
estimate of p(x) based on the n examples in D is

n
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where 8,(+) is a kernel function with localized support and
its exact form depends on n.

We choose to use Gaussian kernel functions for two rea-
sons. First, the Gaussian function is smooth and hence the
estimated density function p(x) also varies smoothly. Sec-
ond, if we assume a special form of the Gaussian family in
which the function is radially symmetrical, the function can
be completely specified by a variance parameter only. Thus
p(x) can be expressed as a mixture of radially symmetrical
Gaussian kernels with common variance o2:
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where d is the dimensionality of the feature space.
2.3. Novelty Detection as Hypothesis Test

Let wy denote the state of nature corresponding to nor-
mality and wg denote that for anomaly or novelty. The
prior probabilities are denoted as P (w1 ) and P(wg) and the
probability density functions are denoted as p(x|w;) and
p(x|wo). Decisions are made according to the Bayes de-
cision rule: x € wy if and only if P(w1|x) > P(wo|x) Or
p(x|w1) > p(x|wo)(P(wo)/P(w1)). For a given input x,
the decision rule above corresponds to comparing the like-
lihood p(x|wy) against a threshold. This threshold varies
with x unless p(x|wp) is uniformly distributed with respect
to x. However, although it is possible to estimate the prior
probability P(wq) (and hence P(wp)) from data, it is very
difficult to model the distribution of anomalous or novel
events. This calls for a different formulation.

Our alternative formulation can be justified from a hy-
pothesis testing perspective. Suppose M is the model built
from normal data. Given an unknown case x from the test
set, we want to decide whether x € w;. This problem is
formulated as applying a statistical test. Suppose we gen-
erate a sufficiently large sample V from M. For an ar-
bitrary example y € V, the log-likelihood of y with re-
spect to M is denoted as L(y) = logp(y|M). Similarly,
the log-likelihood of x is L(x) = logp(x|M). Based on
the empirical probability distribution of L(y) over V, we
test the hypothesis that L(x) is drawn from the distribu-
tion of the log-likelihood of the random examplesin V, i.e.,
P(L(y) < L(x)) > 1 for some parameter 0 < % < 1. We
reject the null hypothesis if the probability is not greater
than ¢, implying that x ¢ w; or x € wy.



In practice, it is not always possible to use M as a gener-
ative model. Instead of using M to generate a random sam-
ple V, we choose to set aside a separate set of normal data to
approximate V. We call this set of data the threshold deter-
mination set. Note that +) is equal to the false detection rate
(FDR) or false alarm rate for the threshold determination
set. Each chosen value of FDR (and hence ) will induce a
threshold in log-likelihood against which test cases can be
compared and determined as either normal or intrusive.

3. Dataset for Experiments

In our experiments, we use the dataset from KDD Cup
1999. The network traffic data are connection-based, mean-
ing that each data record corresponds to one network con-
nection. A network connection is a sequence of TCP/IP
packets sent during a period of time between two IP ad-
dresses according to some well-defined network protocol.

There are three symbolic features and 38 numerical fea-
tures. In addition, a label indicating whether the record is
normal or intrusive is provided. The features include some
basic features in the packet header, some features suggested
by domain knowledge, and some temporal features such as
the number of connections to the same host in the past two
seconds. We represent each symbolic feature by a group of
binary-valued features. The resulting feature vectors have a
total of 119 dimensions.

The dataset has four intrusion categories: probing,
denial-of-service (DoS), user-to-root (U2R), and remote-to-
local (R2L). We mainly use two performance measures in
our experiments. The true acceptance rate (TAR) measures
the percentage of normal connections in the test set that are
classified as normal, whereas the true detection rate (TDR)
measures the percentage of intrusive connections in the test
set that are detected as intrusions.

4. Experimental Results
4.1. Comparison with KDD Cup Winner

41.1 TAR and TDR as Performance M easures

We use 30000 randomly sampled normal connections as
training data to estimate the density of a model. An-
other 30000 randomly sampled normal connections form
the threshold determination set, which has no overlap with
the training set. To reduce the effect due to random sam-
pling, three trials have been carried out separately with three
randomly sampled training sets. The average TAR and TDR
values over the three trials are shown in Table 1.

The winning method of KDD Cup, submitted by
Pfahringer, uses an ensemble of decision trees with bagged
boosting. Since the KDD Cup is concerned with multi-class

Table 1. Comparison of our model at 99% con-
fidence interval (i.e., FDR = 1%) and ¢ = 0.01
with the KDD Cup winner

Method || __TAR | TOR |
[ Normal | Probing [ DoS | U2R [ Rz |
ours 97.38% | |99.17% | | 96.71% | [93579%] | | 3L.17%]

KDD || | 99.45%

87.73% | |97.60% | | 26326 | 1027%

classification but we are interested only in normal/intrusion
discrimination, we have converted the results of the win-
ning method into our format. Specifically, the TDR mea-
sures the percentage of intrusive connections in the test set
that are detected as intrusions, without considering whether
they are classified into the correct intrusion categories. The
best results are highlighted by rectangular boxes. Although
the KDD winner gives slightly higher TAR for normal con-
nections and slightly higher TDR for DoS intrusions, it
gives significantly lower TDR values for other intrusion cat-
egories. In general, U2R and R2L attacks are more difficult
to detect since they typically involve much fewer connec-
tions, but our method can give very high TDR for U2R at-
tacks and can outperform the KDD Cup winner by more
than three times for both U2R and R2L attacks.

4.1.2 KDD Cup Scoring Scheme and Variant

Let us also compare our method with the KDD winning
method based on the scoring scheme used in the KDD Cup.
The scoring scheme uses the cost matrix in Table 2. The
cost matrix is analogous to a loss function for pattern clas-
sification. In the matrix, the rows correspond to actual cate-
gories and the columns correspond to predicted categories.
Note that the cost of failing to detect U2R or R2L attacks is
higher than that for probing or DoS attacks because of the
more serious implications of the former attack types.

Table 2. Scoring scheme for KDD Cup 1999

‘ Truth | Prediction
| Normal T Probing T DoS [ U2R [ R2L |
Normal 0 1 2 2 2
Probing 1 0 2 2 2
DoS 2 1 0 2 2
U2R 3 2 2 0 2
R2L 4 2 2 2 0

As discussed above, our main interest is in perform-
ing normal/intrusion discrimination rather than multi-class
classification. The standard cost matrix above has been
modified accordingly. Using this modified scoring scheme,
the average cost of our model trained with 30000 normal
connections (as in Table 1) is equal to 0.2024. The corre-
sponding average cost of the KDD Cup winner is 0.2263.



The main reason why our method performs better based
on the scoring scheme is that our method can give signifi-
cantly higher TDR values for U2R and R2L attacks, which
are the attack types with higher penalties. Although our
method is not always better because its TAR is lower, it is
fair to say that our method can achieve performance compa-
rable to the best methods, with the favorable characteristics
that it requires no intrusion data at all and significantly less
normal data for model training.

4.2. Sensitivity Analysis

To see how some model parameters can affect the perfor-
mance of our model, we have performed some additional
experiments for sensitivity analysis. An advantage of our
model is that there are only very few parameters that need
to be tuned. The major ones are the variance parameter of
the Gaussian kernels and the sample size. Due to page limit,
details of these experiments are not presented here. As a
summary, we can conclude that the model is stable over rel-
atively wide ranges of these two parameters.

5. Concluding Remarks

The major limitation of our Parzen-window method is
its relatively high computational demand during testing, al-
though it requires essentially no training time at all. For-
tunately, since the Parzen-window method has character-
istics similar to k-nearest-neighbor (k-NN) classifier, and
many speedup schemes have been proposed for £-NN, our
method can also take advantage of these previously pro-
posed schemes.

An advantage of our nonparametric approach is that the
models can easily adapt to data changes. Unlike many other
models, our nonparametric models can simply integrate
new training examples into the models without re-training
the models from scratch. This makes our nonparametric
approach particularly suitable for intrusion detection appli-
cations in continuously changing network environments.
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