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Abstract
Distance-based methods in pattern recognition and
machine learning have to rely on a similarity or
dissimilarity measure between patterns in the in-
put space. For many applications, Euclidean dis-
tance in the input space is not a good choice and
hence more complicated distance metrics have to
be used. In this paper, we propose a parametric
method for metric learning based on class label in-
formation. We first define a dissimilarity measure
that can be proved to be metric. It has the favorable
property that between-class dissimilarity is always
larger than within-class dissimilarity. We then per-
form parametric learning to find a regression map-
ping from the input space to a feature space, such
that the dissimilarity between patterns in the in-
put space is approximated by the Euclidean dis-
tance between points in the feature space. Para-
metric learning is performed using the iterative ma-
jorization algorithm. Experimental results on real-
world benchmark data sets show that this approach
is promising.

1 Introduction
The notion of similarity or dissimilarity plays a fundamental
role in pattern recognition and machine learning. A promis-
ing direction to pursue is to learn good (dis)similarity mea-
sures from data. Recently, learning distance metrics from
data has aroused a great deal of interest from machine learn-
ing researchers. One typically wants to embed patterns in
a (possibly non-metric) input space into a feature space, in
which the Euclidean distance between points accurately re-
flects the dissimilarity between the corresponding patterns.
Therefore the (linear or nonlinear) mapping from the input
space to the feature space corresponds to feature extraction.
Alternatively, the feature space may be a low-dimensional
space for data visualization.

In this paper, we propose a parametric distance metric
learning method in the supervised setting. The main ideas
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of our method are summarized as follows. Using class la-
bel information, we define a similarity measure (and hence
also the corresponding dissimilarity measure) between pat-
terns in the input space. The dissimilarity measure implicitly
induces a metric space for embedding the original patterns.
To explicitly represent the mapping from the input space to
the feature space, we then approximate the mapping by a re-
gression model to embed the original patterns in an Euclidean
space. The regression parameters are estimated from data
with the objective that the dissimilarity between patterns in
the input space is approximated by the Euclidean distance be-
tween points in the feature space. Once the regression model
has been found, any new pattern can be mapped to its corre-
sponding location in the feature space. Distance-based meth-
ods, such ask-means clustering, nearest neighbor classifiers
and support vector machines, can then be applied in the fea-
ture space for clustering or classification applications.

The rest of this paper is organized as follows. A modified
metric incorporating class label information is proposed in
Section 2. Section 3 outlines our regression model for metric
learning and the corresponding optimization method. Exper-
imental results are presented in Section 4, and the last section
gives some concluding remarks.

2 Modified Metric with Label Information
Denote the input space byRq and the set of allC possible
class (target) labels byT . A training setD ⊆ Rq × T has
n patterns{(x1, t1), . . . , (xn, tn)}, whereti = r if patterni
belongs to classr. Here, each pattern is assumed to belong to
only one class. In general, a number of similarity measures
can be defined on these patterns[Gower and Legendre, 1986].
In this paper, we utilize also the label information in defining
the similaritysij between patternsxi andxj :
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where‖ · ‖ denotes the Euclidean norm andβ > 0 is a width
parameter. The corresponding dissimilarityδij is then:

δij = sii + sjj − 2sij
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As illustrated in Figure 1, this (dis)similarity measure en-
joys some nice properties for pattern discrimination. For ex-
ample, the (dis)similarity between any two patterns in the
same class is always larger (smaller) than that between any
two patterns belonging to different classes. Moreover, the
larger the Euclidean distance between the patterns is, the
smaller is the within-class similarity while the larger is the
between-class similarity.
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(a)sij versus‖xi − xj‖2
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(b) δij versus‖xi − xj‖2

Figure 1: Similarity and dissimilarity in (1) and (2).

In recent years, finite metric spaces and their embeddings
have received much attention[Indyk, 2001; Linial et al.,
1995]. Among embedding into normed spaces, embedding
into an Euclidean space is the most popular.

Given the dissimilarity matrix∆ = [δij ]n×n, we are in-
terested in the question of whether and how the dissimilarity
matrix ∆ can be embedded. In other words, for the origi-
nal points{x1, . . . ,xn}, we attempt to find a configuration
of points{x̂1, . . . , x̂n} in some Euclidean spaceRl such that
the squared distances between these points will be equal to
the so-defined dissimilaritiesδij .

The following theorem confirms that∆ can be embedded.

Theorem 1 Definedij =
√

δij , withδij as in (2). The matrix
D = [dij ] is metric. In other words,dij satisfies the following
properties:

1. dij ≥ 0, ∀i, j,

2. dii = 0, ∀i,
3. dij = dji, ∀i, j,

4. dik + djk ≥ dij , ∀i, j, k.
The proof of this theorem can be found in[Zhang et al.,
2003]. The subsequent task is then to find the embedding,
i.e., points{x̂1, . . . , x̂n} ∈ Rl such that the inter-point dis-
tance is equal todij . In general, obtaining an exact solution
for thesex̂i’s is difficult. Nevertheless, becauseD is met-
ric, an approximate solution can be easily obtained by using
principal coordinate analysis or other multidimensional scal-
ing (MDS) methods[Cox and Cox, 2000]. We will return to
this problem in Section 3.

Notice that the resultant Euclidean embedding will still in-
corporate information from both the input space representa-
tion (xi) of the patterns and their corresponding class labels

(ti). Moreover, the distance metricdij , like the associatedδij ,
enjoys those nice properties useful for pattern discrimination.

3 Metric Learning with Regression Model
As mentioned in Section 2, an approximate solution for
{x̂1, . . . , x̂n} can be obtained by using MDS. However, this
may be intractable for large data sets. Moreover, for new pat-
terns with unknown labels, the problem then is on how to
determinesij in the first place. Following[Koontz and Fuku-
naga, 1972; Cox and Ferry, 1993; Webb, 1995], we attempt
to find a mapping fromxi in the original input spaceRq to
x̂i in the embedded Euclidean spaceRl. One possibility is to
first obtain a MDS configuration, and then construct a regres-
sion model fromxi to x̂i [Cox and Ferry, 1993]. However,
this mapping is not determined as part of the MDS procedure
[Webb, 1995]. In the following, we will follow the approach
of [Webb, 1995].

Denote the mapping from the original input spaceRq to the
embedded Euclidean spaceRl by f = (f1, . . . , fl)′. Assume
that eachfi is a linear combination ofp basis functions:

fi(x;W) =
p∑

j=1

wjiφj(x), (3)

whereW = [wji]p×l contains the free parameters, and the
φj(x)’s are basis functions that can be linear or nonlinear.
The regression mapping (3) can be written in matrix form as

y(W) = f(x;W) = W′φ(x),

whereφ(x) = [φ1(x), . . . , φp(x)]′. Let X be the target con-
figuration, withdij(X) =

√
δij whereδij is defined in (2).

Using the iterative majorization algorithm, we then minimize
the squared error

e2(W) =
n∑

i=1

n∑

j=1

(dij(X)− qij(W))2 (4)

w.r.t. W, whereqij(W) = ‖W′(φ(xi)− φ(xj))‖. More
details can be found in[Zhanget al., 2003].

4 Experiments
In this Section, we perform experiments on six benchmark
data sets (Table 1) from the UCI repository[Murphy and Aha,
1994]. The distance metric is learned using a small subset of
the labeled patterns, withl = p = q, φ(x) = x and the width
β in (1) set to the average distance of the labeled patterns to
the class means. The remaining patterns are then used for
testing.

Table 2 shows the classification results by the nearest mean
and nearest neighbor classifiers, with both the Euclidean and
learned metrics. As can be seen, the learned metric almost
always outperforms the original metric.

Next, we perform clustering experiments using thek-
means clustering algorithm, with the value ofk set to the true
number of clusters in each data set. The clustered patterns
are assigned labels and the clustering accuracy is measured
by comparing these labels with the true labels (as in classi-
fication problems). As these cluster labels can be permuted



Table 1: The six UCI data sets used in the experiments.

data set total # of patterns # patterns for
class size metric learning

Pima Indians 1 500 80
diabetes (diabetes) 2 268 50

soybean 1 10 2
2 10 2
3 10 2
4 17 4

wine 1 59 20
2 71 20
3 48 20

Wisconsin breast 1 212 50
cancer (WBC) 2 357 50

ionosphere 1 126 50
2 225 50

iris 1 50 10
2 50 10
3 50 10

Table 2: Classification accuracies on the UCI data sets (Num-
bers in bold indicate the better results).

data set nearest mean nearest neighbor
Euclidean learned Euclidean learned

metric metric metric metric
diabetes 463/638 475/638 432/638 425/638
soybean 36/37 37/37 35/37 37/37

wine 86/118 115/118 77/118 117/118
WBC 430/469 451/469 420/469 453/469

ionosphere 159/251 201/251 212/251 225/251
iris 108/120 110/120 114/120 114/120

Table 3: Clustering accuracies on the UCI data sets (Numbers
in bold indicate the better results).

data set Euclidean metric learned metric
diabetes 459/638 480/638
soybean 37/37 37/37

wine 85/118 117/118
WBC 412/469 446/469

ionosphere 168/251 221/251
iris 107/120 110/120

without changing the clustering solution, results reported here
are based on the labeling with the highest clustering accuracy.
As can be seen from Table 3, the learned metric outperforms
that with the original metric on all data sets.

5 Concluding Remarks
In this paper, we proposed a new parametric method for dis-
tance metric learning based on class label information. Ex-
periments on UCI data sets show promising results.

The current work can be extended in several directions.
First, nonlinear basis functions can be used to improve the
approximation power of the regression mapping. Second, al-
though Theorem 1 states that the dissimilarity measure in-
duces a metric, it is not clear whether the matrix is also Eu-
clidean. If this is the case, a new kernel can then be defined
on the joint space of the input space and class label space
[Scḧolkopf, 2002]. Third, in addition to using label infor-
mation, we will also incorporate manifold structure between
neighboring patterns into our metric learning process.
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