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Abstract

In many applications, the data, such as web pages
and research papers, contain relation (link) struc-
ture among entities in addition to textual content
information. Matrix factorization (MF) methods,
such as latent semantic indexing (LSI), have been
successfully used to map either content information
or relation information into a lower-dimensional la-
tent space for subsequent processing. However,
how to simultaneously model both the relation in-
formation and the content information effectively
with an MF framework is still an open research
problem. In this paper, we propose a novel MF
method calledrelation regularized matrix factor-
ization (RRMF) for relational data analysis. By
using relation information to regularize the con-
tent MF procedure, RRMF seamlessly integrates
both the relation information and the content infor-
mation into a principled framework. We propose
a linear-time learning algorithm with convergence
guarantee to learn the parameters of RRMF. Exten-
sive experiments on real data sets show that RRMF
can achieve state-of-the-art performance.

1 Introduction

Matrix factorization (MF) methods[Singh and Gordon,
2008], which try to project objects (entities) into a lower-
dimensional latent space, have been widely used for vari-
ous data analysis applications.1 One of the most popular MF
methods is latent semantic indexing (LSI)[Deerwesteret al.,
1990], which uses singular value decomposition (SVD) to
map thecontentof documents into a lower-dimensional la-
tent semantic space. The objective is to retain as much in-
formation of the documents as possible while simultaneously
removing the noise. Subsequent analysis, such as cluster-
ing or classification, can be performed based on this latent
space representation. Maximum margin matrix factorization
(MMMF) [Srebroet al., 2004; Rennie and Srebro, 2005],

1Due to the page limit constraint, many related MF references are
not cited in this paper. We refer the readers to[Singh and Gordon,
2008] for many such references.

which can be seen as a regularized version of SVD by control-
ling the complexity of the factors,2 has been successfully used
for many applications, such as collaborative filtering[Rennie
and Srebro, 2005]. Many other variants of MF methods and
their applications can be found in[Singh and Gordon, 2008].

Although MF methods have achieved very promising per-
formance in many applications, most of them are designed
to handle only one matrix at a time. The matrix can be ei-
ther the feature representation (content information) of a set
of objects (entities), or the link structure (relation informa-
tion) among a set of objects. For example, LSI was originally
proposed for content-based information analysis by perform-
ing SVD on the bag-of-words representation of a set of docu-
ments, and MMMF has been successfully applied to collabo-
rative filtering which employs only the relationship among a
set of entities[Rennie and Srebro, 2005].

However, the data in many applications, such as web pages
and research papers, contain both textual content information
and relation structure. These two kinds of information often
complement each other because they are typically collected
at different semantic levels. For example, a citation/reference
relation between two papers provides a very strong evidence
for them to belong to the same topic, although sometimes they
bear low similarity in their content due to the sparse nature of
the bag-of-words representation. Similarly, the content infor-
mation can also provide additional insights about the relation
among entities. Hence, naively discarding any one kind of
information would not allow us to fully utilize all the rele-
vant information available. Ideally, we should strive for inte-
grating both kinds of information seamlessly into a common
framework for data analysis.

In [Zhu et al., 2007], a joint link-content MF method, ab-
breviated as LCMF here, was proposed to seamlessly inte-
grate content and relation information into an MF framework
through a set of shared factors for the factorization of both
content and link structures. The authors of LCMF argue
that their method is more reasonable than some other simple
methods for combining content and link information, such
as that in[Kurland and Lee, 2005], which seek to convert

2MMMF can make use of different loss functions. The original
MMMF [Srebroet al., 2004] only used the hinge loss, but many sub-
sequent works also used other loss functions such as smooth hinge
[Rennie and Srebro, 2005] and squared loss. Here we refer in par-
ticular to the squared loss function.



one type of information into the other. Experimental results
in [Zhu et al., 2007] show that LCMF can outperform other
state-of-the-art methods.

However, the links in different applications might cap-
ture different semantics. As a result, the model assumption
adopted by LCMF might not be satisfied for some applica-
tions, which would cause LCMF to fail in such cases. Let
us take a synthetic link structure from[Zhu et al., 2007] as
an example to illustrate this point. This example is shown
in Figure 1(a), in which there are eight nodes, corresponding
to eight entities, and eight directed links. After performing
link MF based on Zhuet al.’s method, the entities will be
automatically grouped into five clusters, each corresponding
to one ellipse in Figure 1(a). The learned latent factors of the
entities[Zhu et al., 2007] are shown in Figure 1(b), in which
the latent factors for V1 to V8 are listed from the first row to
the last row in order. We can see that the entities in each clus-
ter, say V2 and V3, have the same latent factor representation.
From this example, it is not difficult to reveal the model as-
sumption behind LCMF: if two entities link to or are linked
by one common entity, the two entities will have similar la-
tent factor representations. This is a very promising property
if the application scenario indeed satisfies this assumption.
One such application is the web page classification task on
WebKB [Cravenet al., 1998]. For example, the homepages
of faculties are always linked by or link to the homepage of
the department, but the homepages of two faculties seldom
link to each other. The advantage of this property has been
verified by the promising accuracy of LCMF on the WebKB
data set[Zhuet al., 2007].

V1 V8

V6

V7

V4

V5

V2

V3
-.8    -.5   .3    -.1   -.0
-.0    .4    .6    -.1   -.4
-.0    .4    .6    -.1   -.4
.3     -.2   .3    -.4   .3
.3     -.2   .3    -.4   .3
-.4    .5    .0    -.2   .6
-.4    .5    .0    -.2   .6
-.1    .1    -.4   -.8   -.4

(a) Synthetic link structure (b) Result of link MF

Figure 1: A synthetic example of link structure from [Zhuet al.,
2007] for illustration.

However, one problem with LCMF is that the factor rep-
resentations of two linked entities are not guaranteed to be
similar. For example, the latent factor representation of V8
is relatively far away from that of V6 or V7 after LCMF
learning. This property is undesirable for many other appli-
cations. For example, to classify research papers according
to their topic, the citation (link) information is usually very
important. More specifically, two papers with a citation rela-
tion between them are most likely about the same topic, and
consequently, the learned latent factors of two linked papers
should be similar. Unfortunately, this cannot be handled well
by LCMF, which is also verified by the relatively poor perfor-
mance of LCMF on the Cora data set[McCallumet al., 2000]
for paper classification.

From the analysis above, we can see that there exist at least
two types of links with different semantics. In this paper, we
call the first type of links, such as those in the WebKB data
set,Type I links, and the other type of links, such as those in
the Cora data set,Type II links. As discussed above, LCMF
can handle well applications with Type I links but not those
with Type II links. It is this limitation that has motivated us

to pursue research reported in this paper.

We propose in this paper a novel MF method. The ba-
sic idea is to make the latent factors of two entities as
close as possible if there exists a link between them. More
specifically, we utilize relation information to regularize the
content MF procedure, resulting in a principled framework
which seamlessly integrates content and relation informa-
tion. We refer to our method as relation regularized matrix
factorization, which will be abbreviated as RRMF in the se-
quel for convenience. To learn the parameters of RRMF, we
propose a linear-time algorithm, which makes RRMF suitable
for large-scale problems. Furthermore, the learning proce-
dure of RRMF can be proved to be convergent. Experimen-
tal results on a data set with Type II links demonstrate that
RRMF can dramatically outperform LCMF and other state-
of-the-art methods.

Although RRMF is motivated to model Type II links, it
can also be used for applications with Type I links by adding
a simple step to preprocess the link structure of the data. This
will be discussed in detail in the following sections.

2 Relation Regularized Matrix Factorization

2.1 Notations

We use boldface uppercase letters, such asK, to denote ma-
trices, and boldface lowercase letters, such asz, to denote
vectors. Theith row and thejth column of a matrixK are
denoted asKi∗ andK∗j , respectively.Kij denotes the ele-
ment at theith row andjth column inK. zi denotes theith
element inz. X denotes the content matrix of sizen × m,
with n being the number of entities andm the number of fea-
tures.A is the adjacency matrix of then entities.D denotes
the number of latent factors.I denotes the identity matrix
whose dimensionality depends on the context. For a matrix
K, K � 0 means thatK is positive semi-definite (psd) and
K � 0 means thatK is positive definite (pd).

2.2 Model Formulation

Like in LSI [Deerwesteret al., 1990], we adopt a similar MF
method to approximate the content matrix:

min
U,V

1

2
‖X−UVT ‖2 +

α

2
(‖U‖2 + ‖V‖2), (1)

where we use ann × D matrix U and anm × D matrix V
to denote the latentD-dimensional representations of all the
documents (or entities in a more general case) and words (or
features in a more general case), respectively, withUi∗ for
documenti andVj∗ for word j. α is a hyperparameter.

To integrate the relation (link) information into the MF pro-
cedure, we use the relations among entities to regularize the
latent factors. The basic idea of our method is to make the la-
tent representations of two entities as close as possible if there
exists a relation between them. We can achieve this goal by



minimizing the following objective function:

l =
1
2

n∑
i=1

n∑
j=1

Aij‖Ui∗ −Uj∗‖2

=
1
2

n∑
i=1

n∑
j=1

[
Aij

D∑
d=1

(Uid − Ujd)2
]

=
1
2

D∑
d=1

 n∑
i=1

n∑
j=1

Aij(Uid − Ujd)2


=

D∑
d=1

UT
∗dLU∗d = tr(UT LU), (2)

whereAij = 1 if there is a relation between entitiesi and
j, and otherwiseAij = 0, andL = D − A is known as
the Laplacian matrix[Chung, 1997] with D being a diagonal
matrix whose diagonal elementsDii =

∑
j Aij , andtr(·)

denotes the trace of a matrix.
Combining (1) and (2), we obtain the following objective

function which we seek to minimize during learning:

f =
1

2
‖X−UVT ‖2 +

α

2
(‖U‖2 + ‖V‖2) +

β

2
tr(UT LU)

=
1

2
‖X−UVT ‖2 +

1

2
tr[UT (αI + βL)U] +

α

2
tr(VVT ), (3)

which seamlessly integrates the content information and the
relation information into a principled framework. Because
we use relation information to regularize the content MF pro-
cedure, we call the model in (3) relation regularized matrix
factorization, abbreviated as RRMF.

Remark 1 The normalized Laplacian matrix[Chung, 1997] ,
given by L̃ = D−1/2LD−1/2 = I − D−1/2AD−1/2,
can be used to substituteL in (2) and (3) for regulariza-
tion. If L̃ is adopted, the objective function in (2) will be

l̃ = 1
2

∑D
d=1

[∑n
i=1

∑n
j=1 Aij

(
Uid√
Dii

− Ujd√
Djj

)2
]

. The

choice betweenL and L̃ depends on applications. In this
paper, the lemmas and theorems are derived based onL, but
they also hold for̃L with slight changes in the derivations.

From (3), it is easy to see that the model assumption behind
RRMF is in line with the semantics of Type II links. Hence,
RRMF can be expected to achieve good performance for ap-
plications with Type II links, such as research paper classifi-
cation, which will be verified by experiment in Section 3.

On the other hand, RRMF can also be used for applications
with Type I links. All we need to do is just to preprocess the
link structure in the data with a very simple strategy, but the
model and learning algorithms need not be changed. Accord-
ing to the semantics of Type I links, two entities linking to
or linked by one common entity will likely be from the same
class. One simple way to preprocess the link structure is to
artificially add a link between two entities if they link to or are
linked by a common entity. The added links will then satisfy
the semantics of Type II links. For example, in Figure 1(a),
after preprocessing, V2 and V3 will be connected and V6

and V7 will also be connected. Learning RRMF based on
these added links is now in line with the underlying seman-
tics. From our experiments on the WebKB data set, we find
that RRMF can still achieve performance comparable with
LCMF just by adopting the simple link preprocessing strat-
egy as described above.

2.3 Learning
In this subsection, we first prove that the objective function
in (3) is convex with respect to (w.r.t.) any one of its param-
eters,U andV. Then, we propose an alternating projection
algorithm to learn the parameters in linear time and show that
it is guaranteed to converge to a local optimum.

Convexity of the Objective Function
Lemma 1 The Laplacian matrixL is psd, i.e.,L � 0.

Proof: For any n × 1 vector x 6= 0, xT Lx =
1
2

∑n
i=1

∑n
j=1 Aij(xi − xj)2 ≥ 0. �

Lemma 2
∑m

j=1 VT
j∗Vj∗ � 0.

Proof: For anyD×1 vectorz 6= 0, zT
(∑m

j=1 VT
j∗Vj∗

)
z =∑m

j=1 zT VT
j∗Vj∗z =

∑m
j=1(Vj∗z)2 ≥ 0. �

Theorem 1 f is convex w.r.t.U.

Proof: We first rewrite f as follows: f =
1
2

∑n
i=1

∑m
j=1(Xij − Ui∗VT

j∗)
2 + 1

2

∑D
d=1 UT

∗d(αI +
βL)U∗d + C1, whereC1 is a constant independent ofU.

Let g = 1
2

∑n
i=1

∑m
j=1(Xij − Ui∗VT

j∗)
2 = C2 +

1
2

∑n
i=1

[
Ui∗

(∑m
j=1 VT

j∗Vj∗

)
UT

i∗ − 2
(∑m

j=1 XijVj∗

)
UT

i∗

]
,

where C2 is a constant independent ofU. It is
easy to see thatGi , ∂2g

∂UT
i∗∂Ui∗

=
∑m

j=1 VT
j∗Vj∗,

and ∂2g
∂UT

i∗∂Uk∗
= 0 (if i 6= k). If we use u =

(U1∗,U2∗, . . . ,Un∗)T to denote the vector repre-
sentation of U, the second-order derivative (Hes-
sian) of g w.r.t. u will be a block-diagonal matrix:
Gu , ∂2g

∂u∂uT = diag[G1,G2, . . . ,Gn]. According to
Lemma 2,det(Gi) ≥ 0, wheredet(·) denotes the determi-
nant of a matrix. Becausedet(Gu) =

∏n
i=1 det(Gi) ≥ 0,

we can conclude thatg is convex w.r.t.U.
Let h = 1

2

∑D
d=1 U∗d(αI + βL)UT

∗d. If we usea =
(UT

∗1,U
T
∗2, . . . ,U

T
∗D)T to denote another vector represen-

tation of U, the Hessian ofh w.r.t. a will also be a block-
diagonal matrix:Ha , ∂2h

∂a∂aT = diag[H1,H2, . . . ,HD],
where Hd is defined as follows: Hd , ∂2h

∂U∗d∂UT
∗d

=
αI + βL. According to Lemma 1, we can conclude that
det(Ha) > 0, and henceh is convex w.r.t.U.

Hence,f = g + h + C1 is convex w.r.t.U. �

Theorem 2 f is convex w.r.t.V.

Proof: We first rewrite f as follows: f =
C3 + 1

2

∑m
j=1[Vj∗

(∑n
i=1 UT

i∗Ui∗ + αI
)
VT

j∗ −
2 (

∑n
i=1 XijUi∗)VT

j∗], where C3 is a constant inde-
pendent ofV. If we use v = (V1∗,V2∗, . . . ,Vm∗)T



to denote the vector representation ofV, the Hes-
sian of f w.r.t. v will be a block-diagonal matrix:
Kv , ∂2f

∂v∂vT = diag[K1,K2, . . . ,Km], where
Kj =

∑n
i=1 UT

i∗Ui∗ + αI. It is easy to verify that
Kj � 0 andKv � 0. Hence,f is convex w.r.t.V. �

Learning Strategy
We adopt an alternating projection method to learn the pa-
rametersU andV. More specifically, each time we fix one
parameter and then update the other one. This procedure will
be repeated for several iterations until some termination con-
dition is satisfied. We will prove that the learning algorithm
is convergent.

Learning U According to Theorem 1, one straightforward
way to learnU is to set the gradient off w.r.t. U to 0 and
solve the corresponding linear system. However, this is com-
putationally demanding ifn is large because we have to invert
a Hessian matrix of size as large asnD × nD. In this paper,
we adopt an alternative strategy to perform optimization on
U, which is to optimize one columnU∗d at a time with the
other columns fixed. Becausef is convex w.r.t.U, this alter-
native strategy will be guaranteed to converge to the optimal
solution.

Becausef is convex w.r.t.U, f is also convex w.r.t.U∗d
with all other variables fixed. Hence, computing the gradient
of f w.r.t. U∗d and setting it to 0, we can optimizeU∗d by
solving the following linear system:

F(d)U∗d = e(d), (4)

where F(d) = E(d) + αI + βL, and E(d) =
diag( ∂2g

∂U1d∂U1d
, ∂2g

∂U2d∂U2d
, . . . , ∂2g

∂Und∂Und
) with ∂2g

∂Uid∂Uid
=∑m

j=1 V 2
jd, ande(d) = (e(d)

1 , e
(d)
2 , . . . , e

(d)
n )T with e

(d)
i =∑m

j=1 Vjd(Xij −Ui∗VT
j∗ + UidVjd).

One direct way to solve the linear system in (4) is to
set U∗d = [F(d)]−1e(d). However, the computation cost
is O(n3), which is computationally prohibitive for gen-
eral text classification applications becausen is always very
large. Here, we propose to use thesteepest descentmethod
[Shewchuk, 1994] to iteratively updateU∗d: r(t) = e(d) −
F(d)U∗d(t), δ(t) = r(t)T r(t)

r(t)T F(d)r(t)
, U∗d(t + 1) = U∗d(t) +

δ(t)r(t).
Steepest descent will guarantee the algorithm to converge

to the global minimum with the objective function value de-
creased in each iteration. Suppose the number of nonzero
elements inL is M . We can see that the computation cost
in each iteration isO(n + M). If the number of iterations
is K, the time complexity will beO(K(n + M)). From our
experiments, good performance can be achieved with a small
value ofK, such asK = 10 in our following experiments.
Furthermore,M is typically a constant multiple ofn. Hence,
the overall complexity is roughlyO(n), which is dramatically
less thanO(n3).

Learning V One very nice property ofV is that the Hes-
sianKv is block-diagonal, where each nonzero block corre-
sponds to a row ofV. Since the inverse of a block-diagonal

matrix can be expressed as the inverse of each block, the up-
date of the whole matrixV can naturally be decomposed into
the update of each rowVj∗.

Unlike the learning ofU, all the Hessian matrices for
different rows ofV are equal, i.e.,Kj = Kk = K =∑n

i=1 UT
i∗Ui∗ + αI. Furthermore,K is a small matrix of

sizeD ×D, whereD is typically a small number and is less
than 50 in our experiments. Hence, we can directly update
Vj∗ as follows:Vj∗ = (

∑n
i=1 XijUi∗)K−1.

2.4 Convergence and Complexity Analysis
Theorem 3 The learning algorithm will converge.

Proof: (Sketch) In each iteration, the learning algorithm en-
sures that the objective function value in (3) always decreases.
Furthermore, the objective function is bounded below by 0.
Hence, the learning algorithm will converge. Becausef is
not jointly convex w.r.t.U andV, the solution is a local opti-
mum.�

We have seen that in each iteration, the time required for
updatingU is O(n), and it is easy to see that the time com-
plexity for updatingV is alsoO(n). In our experiments, typ-
ically the algorithm can converge in less than 50 iterations.
In fact, we find that 5 iterations are sufficient to achieve good
performance. Hence, the overall time complexity of the learn-
ing algorithm isO(n).

3 Experiments

3.1 Data Sets and Evaluation Scheme
We use the same data sets, WebKB[Cravenet al., 1998] and
Cora [McCallum et al., 2000], and the same bag-of-words
representation with the same original link structure as those
in [Zhu et al., 2007] to evaluate our method. The WebKB
data set contains about 6,000 web pages collected from the
web sites of computer science departments of four universi-
ties (Cornell, Texas, Washington, and Wisconsin). Each web
page is labeled with one out of seven categories: student,
professor, course, project, staff, department, and “other”. It
should be noted that to train our RRMF method we adopt
the simple preprocessing strategy for the link structure in this
data set. That is, if two web pages are co-linked by another
common web page, we add a link between these two pages.
After preprocessing, all the directed links are converted into
undirected links. The characteristics about the WebKB data
set are briefly summarized in Table 1.

Table 1:Characteristics of the WebKB data set.
#classes #entities #terms

Cornell 7 827 4,134
Texas 7 814 4,029

Washington 7 1,166 4,165
Wisconsin 6 1,210 4,189

The Cora data set contains the abstracts and references of
about 34,000 research papers from the computer science com-
munity. For fair comparison, we adopt the same subset of the
data as that in[Zhu et al., 2007] to test our method. The task
is to classify each paper into one of the subfields of data struc-
ture (DS), hardware and architecture (HA), machine learning



Table 2:Characteristics of the Cora data set.
#classes #entities #terms

DS 9 751 6,234
HA 7 400 3,989
ML 7 1,617 8,329
PL 9 1,575 7,949

(ML), and programming language (PL). The characteristics
of the Cora data set are summarized in Table 2.

As in [Zhu et al., 2007], we adopt 5-fold cross validation
to evaluate our method. More specifically, we randomly split
the data into five folds (subsets), and then repeat the test five
times, in each one of which we use one fold for testing and
the other four folds for training. As in[Zhu et al., 2007],
the number of factorsD is set to 50 for RRMF. Theα in
(3) is fixed to 1, andβ is specified by cross-validation on
the training data. After obtaining the factors, a linear support
vector machine (SVM) is trained for classification based on
the low-dimensional representation, which is the same as the
test procedure for the methods in[Zhu et al., 2007]. The
average classification accuracies and the standard deviations
over the five repeats are adopted as the performance metric.

3.2 Baselines
The methods adopted for our comparative study belong to two
classes. The first class contains the baselines used in[Zhu et
al., 2007]:

• SVM on content: This method ignores the link structure
in the data, and applies SVM only on the content infor-
mation in the original bag-of-words representation.

• SVM on links: This method ignores the content informa-
tion, and treats links as the features, i.e, theith feature is
link-to-pagei.

• SVM on link-content: The content features and link fea-
tures of the two methods above are combined to give the
feature representation.

• Directed graph regularization: This is the method intro-
duced in[Zhouet al., 2005], which is only based on the
link structure.

• PLSI+PHITS: This method, described in[Cohn and
Hofmann, 2000], combines text content information and
link structure for analysis.

The second class contains some methods that are most re-
lated to RRMF:

• PCA: This method first applies principal component
analysis (PCA) on the content information to get a low-
dimensional representation, based on which SVM is
trained for classification. Because we use PCA to ini-
tializeU andV in RRMF, this method serves to demon-
strate whether the good performance of RRMF comes
from a good initialization value or from the learning pro-
cedure of RRMF.

• MMMF: This method applies MF only on the content
information, which is a special case of (3) by settingβ =
0. It is used to show that the relation information does
help a lot in relational data analysis.

• Link-content MF: This is the joint link-content MF
method in[Zhuet al., 2007].

• Link-content sup. MF: This is the supervised counterpart
of link-content MF by using the data labels to guide the
MF procedure, which is introduced in[Zhuet al., 2007].

3.3 Convergence Speed

We use the HA data set to illustrate the convergence speed
of RRMF. The objective function values against the itera-
tion numberT are plotted in Figure 2(a), from which we
can see that RRMF converges very fast. The average clas-
sification accuracy of the 5-fold cross validation againstT is
shown in Figure 2(b). We can see that even though the initial
value (corresponding toT = 0) is not satisfactory (accuracy
= 65.5%), RRMF can still achieve very promising and sta-
ble performance without requiring many iterations. Because
we can achieve promising performance whenT ≥ 5, we set
T = 5 in all our following experiments.
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Figure 2:Convergence properties of RRMF.

3.4 Performance

The Cora data set satisfies the model assumption of RRMF
but it does not satisfy the model assumption of link-content
MF. We first test RRMF on Cora to verify that when the
model assumption is satisfied, RRMF can dramatically out-
perform link-content MF and other methods. The average
classification accuracies with standard deviations are shown
in Figure 3, from which we can see that RRMF does out-
perform other methods dramatically. Even though the link-
content sup. MF method uses label information for MF,
RRMF can still give much better result, showing that it is
indeed very effective. Comparing RRMF to PCA, we can
see that the good performance of RRMF does not come from
a good initialization but from the learning algorithm itself.
Comparing RRMF to MMMF, we can see that the relational
information is very useful. Comparing RRMF to directed
graph regularization, we can see that the content information
also does great help for classification.

We also test RRMF on the WebKB data set. Here, we
adopt the normalized Laplacian. The performance is shown
in Figure 4. It should be noted that the WebKB data set does
not satisfy the model assumption of RRMF. However, with
simple preprocessing, RRMF can still achieve performance
comparable to the link-content MF method and its supervised
counterpart, and outperform other methods.
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Figure 3: Average classification accuracies with standard devia-
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Figure 4: Average classification accuracies with standard devia-
tions on the WebKB data set.

3.5 Sensitivity to Parameters

We have illustrated the effect of the number of iterations in
Section 3.3. Here, we examine the sensitivity of RRMF to
β and the number of factorsD. We again use the HA data
set for illustration. Figure 5 illustrates the accuracy of RRMF
whenβ andD take different values. From Figure 5(a), we
can see that the smaller theβ, the worse the performance will
be. Largerβ means that the relational information plays a
more significant role in the learning procedure. Hence, we
can conclude that the relational information is very important.
Whenβ exceeds some value (around 30), the performance
becomes very stable, which means RRMF is not sensitive to
β. From 5(b), we can see that asD increases, the accuracy
also increases. But largerD will incur higher computation
cost. Hence, in real applications, we need to consider the
tradeoff between computation cost and accuracy.
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Figure 5:Sensitivity to parameters of RRMF.

4 Conclusion and Future Work
In this paper, we propose a novel MF framework, called
RRMF, to model relational data of Type II links. One promis-
ing property of RRMF is that it can also be used to model
data of Type I links just by the inclusion of a very simple
preprocessing step. Experimental results verify that RRMF
can dramatically outperform other methods on data of Type II
links, and can achieve performance comparable with state-
of-the-art methods on data of Type I links. Another attrac-
tive property of RRMF is that its training time is linear in the
number of training entities, which makes it scalable to large-
scale problems. Moreover, the learning algorithm of RRMF
is guaranteed to be convergent and is very stable.

Incorporating label information into RRMF will be pur-
sued in our future work. Furthermore, although the collec-
tive classification methods[Senet al., 2008], latent Wishart
processes (LWP)[Li et al., 2009] and relational topic model
(RTM) [Chang and Blei, 2009] are not closely related to
RRMF, performing experimental comparison between them
will be very interesting and will help to reveal the relation-
ships between several approaches of relational learning work
which are currently disparate.
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