Hidden-Mode Markov Decision Processes

Samuel P. M. Choi
pmchoi@cs.ust.hk

Dit-Yan Yeung
dyyeung@cs.ust.hk

Nevin L. Zhang
1zhang@cs.ust.hk

Department of Computer Science, Hong Kong University of Science and Technology

Clear Water Bay, Kowloon, Hong Kong

Abstract

Traditional reinforcement learning (RL) as-
sumes that environment dynamics do not
change over time (i.e., stationary). This as-
sumption, however, is not realistic in many
real-world applications. In this paper, a for-
mal model for an interesting subclass of non-
stationary environments is proposed. The en-
vironment model, called hidden-mode Markov
decision process (HM-MDP), assumes that en-
vironmental changes are always confined to a
small number of hidden modes. A mode basi-
cally indexes a Markov decision process (MDP)
and evolves with time according to a Markov
chain.

HM-MDP is a special case of partially ob-
servable Markov decision processes (POMDP).
Nevertheless, modeling an HM-MDP environ-
ment via the more general POMDP model un-
necessarily increases the problem complexity.
In this paper the conversion from the former to
the latter is discussed.

Learning a model of HM-MDP is the first step
of two steps for nonstationary model-based RL
to take place. This paper shows how model
learning can be achieved by using a variant of
the Baum-Welch algorithm. Compared with
the POMDP approach, empirical results reveal
that the HM-MDP approach significantly re-
duces computational time as well as the re-
quired data.

1 Introduction

Markov decision process (MDP) [1] is a mathematical
framework originated from stochastic optimal control.
The generality and flexibility of MDP make it applica-
ble to a wide range of problems, and thus MDP has
received much attention from other disciplines such as
artificial intelligence. There are, however, three neces-
sary conditions that limit the usefulness of conventional
MDPs, namely: 1) The environment model must be
given in advance (completely-known environment). 2)

The environment states have to be completely observ-
able (completely-observable states, implying Markovian
environment). 3) The environment parameters are as-
sumed to be fixed (stationary environment).

In the past, research efforts have been made towards
relaxing the first two conditions, leading to different
classes of problems as illustrated in Figure 1.

Model of Environment

Known Unknown
Completely MDP Traditional
States of Observable RL
Environment)
Partially Partialy Hidden-state
Observable | Observable MDP RL

Figure 1: Categorization into four related problems with
different conditions. Note that the degree of difficulty
increases from left to right and from upper to lower.

In this paper the first and third conditions are par-
tially addressed. We first identify and formalize an inter-
esting subclass of nonstationary environments, and then
develop for it a model-learning algorithm. At the end
of the paper, how the second condition could be relaxed
will be discussed.

1.1 Nonstationary Environments

Traditional MDP problems typically assume that envi-
ronment dynamics (i.e., MDP parameters) are always
fixed (i.e., stationary). This assumption, however, is
not realistic in many real-world applications. In elevator
control [5], for instance, the passenger arrival and depar-
ture rates can vary significantly over one day, and should
not be modeled by a fixed MDP.

Previous studies on nonstationary MDPs [13] presume
that changes of the MDP parameters are exactly known
in every time step. Given this assumption, solving non-
stationary MDP problems is trivial, as the problem can
be recast into a stationary one (with a much larger state
space) by performing state augmentation. Nevertheless,
extending the idea to incompletely-known environmental

changes (i.e., to the reinforcement learning framework)
is far more difficult.

In fact, reinforcement learning (RL) [7; 17] in nonsta-
tionary environments is an impossible task if there exists
no regularity in the way environment dynamics change.
Hence, some degree of regularity must be assumed.
There exists a few heuristic approaches along this line [8;
16; 17], but to the best of our knowledge, only one formal
model [6] has been proposed. The model, due to Dayan
and Sejnowski, assumes that the environmental changes
are governed by a known probability distribution.

1.2 Our Proposed Model

This paper proposes another formal environment model.
Our model is inspired by observations from an interesting
subclass of nonstationary RL tasks. The properties of
such nonstationary environments are:

Property 1: Environmental changes are confined to
a small number of environment modes. These modes
are stationary environments that possess distinct envi-
ronment dynamics and require different control policies.
At any time instant, the environment is assumed to be
in exactly one of these modes. This concept of modes
seems to be applicable to many, though not all, real-
world tasks. In an elevator control problem, for example,
the system might operate in a morning-rush-hour mode,
an evening-rush-hour mode and a non-rush-hour mode.
One can also imagine similar modes for other real-world
control tasks, such as traffic control, dynamic channel
allocation [15], and network routing [2].

Property 2: Unlike states, modes cannot be directly
observed; the current mode can only be estimated ac-
cording to the past state transitions. It is analogous to
the elevator control example in that the passenger arrival
rate and pattern can only be partially observed through
the occurrence of pick-up and drop-off requests.

Property 3: Mode transitions are stochastic events
and are independent of the control system’s response.
In the elevator control problem, for instance, the events
that change the current mode of the environment could
be an emergency meeting in the adminstrative office, or
a tea break for the staff on the 10th floor. Obviously, the
elevator’s response has no control over the occurrence of
these events.

Property 4: Mode transitions are relatively infre-
quent. In other words, a mode is more likely to retain
for some time before switching to another one. Take the
emergency meeting as an example, employees on differ-
ent floors take time to arrive at the adminstrative office,
and thus would generate a similar traffic pattern (drop-
off requests on the same floor) for some period of time.

Property 5: The number of states is often substan-
tially larger than the number of modes. This is a com-
mon property in many real-world applications. In the
elevator control example, the state space comprises of

all possible combinations of elevator positions, pick-up
and drop-off requests, and certainly would be huge. On
the other hand, the mode space could be small. For in-
stance, an elevator control system can simply have the
three modes as described above to approximate the re-
ality.

Based on these properties, an environment model is
now proposed. The whole idea is to introduce a mode
variable to capture environmental changes. Each mode
specifies an MDP and hence completely determines the
current state transition function and reward function
(property 1). A mode, however, is not directly observ-
able (property 2), and evolves with time according to
a Markov process (property 3). The model is therefore
called hidden-mode model.

Note that the hidden-mode model does not impose any
constraint to satisfy properties 4 and 5. In other words,
the model is flexible enough to work for environments
where these two properties do not hold. Nevertheless, as
will be shown later, these properties can be utilized to
help the learning in practice.

The hidden-mode model, however, also has its limita-
tions. For instance, one may argue that the mode of an
environment should preferably be continuous. While this
is true, for tractability, we assume the mode is discrete.
This implies that our model, as for any other model, is
only an abstraction of the real world. Moreover, we as-
sume that the number of modes is known in advance.
We will seek to relax these assumptions in our future
research.

1.3 Related Work

Our hidden-mode model is closely related to Dayan and
Sejnowski’s model. Although our model is more re-
strictive in terms of representational power, it involves
much fewer parameters and is thus easier to learn. Be-
sides, other than the number of possible modes that
should be known in advance, we do not assume any
other knowledge about the way environment dynamics
change!. Dayan and Sejnowski, on the other hand, as-
sume that one knows precisely how the environment dy-
namics change.

The hidden-mode model can also be viewed as a spe-
cial case of the hidden-state model, or partially ob-
servable Markov decision process (POMDP). As will be
shown later, a hidden-mode model can always be repre-
sented by a hidden-state model through state augmen-
tation. Nevertheless, modeling a hidden-mode environ-
ment via a hidden-state model will unnecessarily increase
the problem complexity. In this paper, the conversion
from the former to the latter is discussed in Section 2.2.

1.4 Owur Focus

In order for RL to take place, one may choose between
the model-based and model-free approaches. Model-
based RL first acquires an environment model and then,

'That is, the transition probabilities of the Markov pro-
cess governing mode changes, though fixed, are unknown in
advance.

from which, an optimal policy is derived. Model-free
RL, on the other hand, learns an optimal policy di-
rectly through its interaction with the environment.
This paper is primarily concerned with the first part
of the model-based RL approach, i.e., how a hidden-
mode model can be learned from its experience. Our
model-learning algorithm is based on the Baum-Welch
algorithm commonly used for learning hidden Markov
models (HMM) [14]. We will address the policy learning
issue in a separate paper.

2 Hidden-Mode Markov Decision
Processes

This section presents our hidden-mode model. Basically,
a hidden-mode model is defined as a finite set of MDPs
that share the same state space and action space, with
possibly different transition functions and reward func-
tions. The MDPs correspond to different modes in which
a system operates. States are completely observable and
their transitions are governed by an MDP. In contrast,
modes are not directly observable and their transitions
are controlled by a Markov chain. We refer to such a
process as a hidden-mode Markov decision process (HM-
MDP). Figure 2 gives an example of HM-MDP.

Moden

Figure 2: A 3-mode, 4-state, 1-action HM-MDP. The
values T, and yn,(s,a,s’) are the mode and state tran-
sition probabilities respectively.

2.1 Formulation

More formally, an HM-MDP is defined as an 8-tuple
(@Q,S, A, X,)Y,R 11, ¥), where (), S and A represent the
sets of modes, states and actions respectively; the mode
transition function X maps mode m to n with a fixed
probability z,,,; the state transition function Y defines
transition probability, y.,(s,a,s’), from state s to s
given mode m and action a; the stochastic reward func-
tion R returns rewards with the mean value r,,(s,a); IT

and ¥ denote the prior probabilities of the modes and
of the states respectively. The evolution of modes and
states is depicted in Figure 3.

Time ®

vote () () H@

Figure 3: The evolution of an HM-MDP. Each node rep-
resents a mode, action or state variable. The arcs indi-
cate dependencies between the variables.

2.2 Reformulating HM-MDP as POMDP

HM-MDP is a subclass of POMDP. In other words, it
is always possible to reformulate the former as a special
case of the latter. In particular, one may take an ordered
pair of any mode and observable state in the HM-MDP
as a hidden state in a POMDP, and any observable state
of the former as an observation of the latter. Suppose the
observable states s and s’ are in modes m and n respec-
tively. These two HM-MDP states together with their
corresponding modes form two hidden states < m,s >
and <n, s’ > for its POMDP counterpart. The transition
probability from <m, s> to <n, s’ > is then simply the
mode transition probability z,,, multiplied by the state
transition probability y.,(s,a,s’). For an M-mode, N-
state, K-action HM-MDP, the equivalent POMDP thus
has N observations and M N hidden states.

Figure 4: Reformulating a 3-mode, 4-state, 1-action HM-
MDP described in Figure 2 as an equivalent POMDP.
For brevity, exact transition probability values are not
shown. State s of mode m in Figure 2 is relabeled as
< m,s >. Note that HM-MDP has much fewer model
parameters than its POMDP counterpart.

Figure 4 demonstrates the reformulation for a 3-
mode, 4-state, l-action HM-MDP and compares the
model complexity with its equivalent POMDP. Note that
most state transition probabilities (dashed lines) in the
POMDP are collapsed into mode transition probabilities
in the HM-MDP through parameter sharing. This saving
is significant. In the example, the HM-MDP model has
a total of 57 transition probabilities, while its POMDP
counterpart has 144. In general, an HM-MDP contains
much fewer parameters (N2M K + M?) than its corre-
sponding POMDP (M2N2K).

3 Learning a Hidden-mode Model

There are now two ways to learn a hidden-mode model.
One may learn either an HM-MDP, or an equivalent
POMDP instead. In this section, we first briefly discuss
how the latter can be achieved by a variant of the Baum-
Welch algorithm, and then develop a similar algorithm
for HM-MDP.

3.1 Learning a POMDP Model

Traditional research in POMDP [12; 9] assumes a known
environment model and is concerned with finding an op-
timal policy. Chrisman [4] was the first to study the
learning of POMDP models from experience.

Chrisman’s work is based on the Baum-Welch algo-
rithm, which was originally proposed for learning HMMs
[14]. Based on the fact that a POMDP can be viewed as
a collection of HMMs, Chrisman proposed a variant of
the Baum-Welch algorithm for POMDP. This POMDP
Baum-Welch algorithm requires ©(M2N?2T) time and
O(M2N?K) storage for learning an M-mode, N-state,
K-action HMMDP, given T data items. However, Chris-
man’s algorithm does not learn the reward function. One
possible extension is to estimate the reward function by
averaging the obtained rewards, weighted by the esti-
mated state certainty. The effectiveness of the algorithm
will be examined in the next section.

3.2 Learning an HM-MDP Model

We now extend Chrisman’s method to the learning of
an HM-MDP model. The algorithm is basically identi-
cal to the POMDP version, except that auxiliary vari-
ables are redefined. Intuitively, the new algorithm esti-
mates model parameters based on the expected counts
of the mode transitions, which are computed by a set of
auxiliary variables. The resultant algorithm, HM-MDP
Baum-Welch, is presented in Figure 5.

HMMDP Baum-Welch requires only ©(M?2T) time
and ©(M? + MN2K) storage, which gives a significant
reduction compared with the POMDP approach.

4 Empirical Studies

This section empirically examines the POMDP Baum-
Welch? and HM-MDP Baum-Welch algorithms in terms

2Chrisman’s algorithm also attempts to learn a minimal
possible number of states. This paper concerns only with the
learning of the model parameters.

of the required data size and time. Experiments on vari-
ous model sizes and settings were conducted. The results
are quite consistent. In the following, some details of a
typical run are presented for illustration.

4.1 Experimental Setting

The experimental model is a randomly generated HM-
MDP with 3 modes, 10 states and 5 actions. Note that
this HM-MDP is equivalent to a fairly large POMDP,
with 30 hidden states, 10 observations and 5 actions.
In order to simulate the infrequent mode changes, each
mode is set to have a minimum probability of 0.9 in
looping back to itself. In addition, each state of the HM-
MDP has 3 to 8 non-zero transition probabilities, and
rewards are uniformly distributed between r,, (s, a)+0.1.
This reward distribution, however, is not disclosed to the
learning agents.

The experiments were run with data of various sizes,
using the same initial model. The model was also ran-
domly generated in the form of HM-MDP. To ensure
fairness, the equivalent POMDP model was used for
POMDP Baum-Welch learning. For each data set, the
initial model was first loaded, and the selected algorithm
iterated until the maximum change of the model param-
eters was less than a threshold of 0.0001. After the algo-
rithm terminated, the model learning time was recorded,
and the model estimation errors were computed. The ex-
periment was then repeated for 11 times with different
random seeds in order to compute the median.

4.2 Performance Measure

The HM-MDP and POMDP Baum-Welch algorithms
learn a hidden-mode model in different representations.
To facilitate comparison, all models were first converted
into POMDP form. Model estimation errors can then be
measured in terms of the minimum difference between
the learned model and the actual model. As the state
indices for the learned model might be different from the
actual one, a renumbering of the state indices is needed.
In our experiment, an indexing scheme that minimizes
the sum of the squares of differences on the state tran-
sition probabilities between the learned and the actual
models was used (provided the constraints on the obser-
vation probabilities are preserved). Figure 6 (a) and (b)
report respectively the sum of the squares of differences
on the transition function and on the reward function
using this indexing scheme.

Regarding the computational requirement of the algo-
rithms, the total CPU running time was measured on
a SUN Ultra I workstation. Table 1 reports the model
learning time in seconds.

4.3 Empirical Results

Conclusions can now be drawn. Generally speaking,
both algorithms can learn a more accurate environment
model as the data size increases (Figure 6). This result
is not surprising since both algorithms are statistically-
based, and hence their performances rely largely on the
amount of data provided. When the training data size is

Data Set Size

A h

PPTOaCh 1000 T 2000 | 3000 | 4000 | 5000
TM-MDD || 460 | 1872 | 1514 | 948 | 1007
POMDP || 189.40 | 946.78 | 2164.20 | 3233.56 | 4317.19

Table 1: CPU time in seconds

too small (less than 1000 in this case), both algorithms
perform about equally poorly. However, as the data
size increases, HM-MDP Baum-Welch improves substan-
tially faster than POMDP Baum-Welch.

Our experiment reveals that HM-MDP Baum-Welch
was able to learn a fairly accurate environment model
with a data size of 2500. POMDP Baum-Welch, on the
contrary, needs a data size of 20000 (not shown) in or-
der to achieve a comparable accuracy. In fact, in all the
experiments we conducted, HM-MDP Baum-Welch al-
ways required a much smaller data set than the POMDP
Baum-Welch. We believe that this result holds in gen-
eral because in most cases, an HM-MDP consists of fewer
free parameters than its POMDP counterpart.

In terms of computational requirement, HM-MDP
Baum-Welch is much faster than POMDP Baum-Welch
(Table 1). We believe this is also true in general for
the same reason described above. In addition, compu-
tational time is not necessarily monotonically increasing
with the data size. It is because the total computations
depend not only on the data size, but also on the number
of iterations being executed. From our experiments, we
noticed that the number of iterations tends to decrease
as the data size increases.

5 Discussions

The usefulness of a model depends on the validity of
the assumptions made. In this section, we revisit the
assumptions of HM-MDP, discuss the issues involved,
and shed some light on its applicability to real-world
nonstationary tasks. Some possible extensions are also
discussed.

Modeling a nonstationary environment as a
number of distinct MDPs.

MDP is a flexible framework that has been widely
adopted in various applications. Among these there ex-
ist many tasks that are nonstationary in nature and are
more suitable to be characterized by several, rather than
a single, MDPs. The introduction of distinct MDPs for
modeling different modes of the environment is a natural
extension to those tasks.

One advantage of having distinct MDPs is that the
learned model is more comprehensive: each MDP nat-
urally describes a mode of the environment. In ad-
dition, this formulation facilitates the incorporation of
prior knowledge into the model initialization step.

States are directly observable while modes are
not.

While modes are not directly observable, they may be
estimated by observing the past state transitions. It is
a crucial (fortunately still reasonable) assumption that
one needs to make.

Although states are assumed to be observable, it is
possible to extend the model to allow partially observ-
able states, i.e., to relax the second condition mentioned
in Section 1. In this case, the extended model would be
equivalent in representational power to a POMDP. This
could be proved by showing the reformulation of the two
models in both directions.

Mode changes are independent of the agent’s
responses.

This property may not always hold for all real-world
tasks. In some applications, such as learning in a multi-
agent environment or performing tasks in an adversary
environment, the agent’s actions might affect the state
as well as the environment mode. In that case, an MDP
instead of a Markov chain should be used to govern the
mode transition process. Obviously, the use of a Markov
chain involves fewer parameters and is thus preferable
whenever possible.

Mode transitions are relatively infrequent.

This is a property that generally holds in many appli-
cations. In order to characterize this property, a large
transition probability for a mode looping back to itself
can be used. Note that this is introduced primarily from
a practical point of view, but is not a necessary con-
dition for our model. In fact, we have tried to apply
our model-learning algorithms to problems in which this
property does not hold. We find that our model still
outperforms POMDP, although the required data size is
typically increased for both cases.

Using high self-transition probabilities to model rare
mode changes may not always be the best option. In
some cases mode transitions are also correlated with the
time of a day (e.g. busy traffic in lunch hours). In this
case, time (or the mode sequence) should be taken into
account for identifying the current mode. One simple
way to model this property is to strengthen left-to-right
transitions between modes, as in the left-to-right HMMs.

Number of states is substantially larger than
the number of modes.

This nice property significantly reduces the number of
parameters in HM-MDP compared to that in POMDP,
and makes the former more applicable to real-world non-
stationary tasks.

The number of states can be determined by the learn-
ing agent. States can be distinguished by, for instance,
transition probabilities, mean rewards, or utilities. Mc-
Callum [11] has detailed discussions on this issue.

Likewise, the number of modes can be defined in var-
ious ways. After all, modes are used to discern changes
of environment dynamics from noise. In practice, in-
troduction of a few modes is sufficient for boosting the

system performance. More modes might help further,
but not necessarily significantly. A trade-off between
performance and response time must thus be decided.
In fact, determining the optimal number of modes is an
important topic that deserves further studies.

6 Conclusion

A formal model for a special case of nonstationary envi-
ronments is proposed. The environment model, named
HM-MDP, is motivated by the observation that the
changes of most real-world nonstationary RL tasks are
often confined to a small number of modes. In this pa-
per we also show that an HM-MDP is a special case of
POMDP. Nevertheless, HM-MDP requires fewer model
parameters and is a more natural formulation for many
real-world nonstationary tasks. Besides the model for-
mulation, we develop a variant of the Baum-Welch al-
gorithm for HM-MDP model learning. Empirical results
confirm that the HM-MDP approach yields a more ac-
curate environment model with less data and time.

7 Future Work

Despite the encouraging results obtained, there are a
number of issues that need to be addressed in order to
broaden the applicability of HM-MDP. First, the number
of modes is currently assumed to be known. In some sit-
uations, choosing the right number of modes can be dif-
ficult. Hence, we are now investigating the possibility of
using Chrisman’s or McCallum’s hidden-state-splitting
techniques [4; 10] to remove this limitation. Next, thus
far we are concerned only with the model learning proce-
dures, but have not addressed how an optimal policy can
be computed. Although in principle it can be achieved
indirectly via any POMDP algorithm (e.g. [3]), a more
efficient algorithm based on the model-based approach
is possible. We will address this issue in a separate pa-
per. Third, an accurate reward function is shown to be
crucial for learning an optimal policy. It is noticed that
our intuitive extension of Chrisman’s POMDP model-
learning algorithm does not always lead to an accurate
estimate. In some cases, the estimated mean rewards
tend to be averaged out. To further enhance the learn-
ing accuracy, the functional form of the reward function
is needed. Finally, the exploration-exploitation issue is
currently ignored. In our future work, we will address
this important issue and apply our model to real-world
nonstationary tasks.

References

[1] R. E. Bellman. A Markovian decision process.
Journal of Mathematics and Mechanics, 6:679—684,
1957.

[2] J. A. Boyan and M. L. Littman. Packet routing
in dynamically changing networks: a reinforcement
learning approach. In Advances in Neural Informa-
tion Processing Systems 6, 1994.

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

A. R. Cassandra, M. L. Littman, and N. Zhang. In-
cremental pruning: A simple, fast, exact algorithm
for partially observable Markov decision processes.

In Uncertainty in Artificial Intelligence, Providence,
RI, 1997.

L. Chrisman. Reinforcement learning with percep-
tual aliasing: The perceptual distinctions approach.
In AAAI-92, 1992.

R. H. Crites and A. G. Barto. Improving elevator
performance using reinforcement learning. In Ad-
vances in Neural Information Processing Systems 8,
1996.

P. Dayan and T. J. Sejnowski. Exploration bonuses
and dual control. Machine Learning, 25(1):5-22,
Oct. 1996.

L. P. Kaelbling, M. L. Littman, and A. W. Moore.
Reinforcement learning: A survey. Journal of Arti-
ficial Intelligence Research, 4:237-285, May 1996.

M. L. Littman and D. H. Ackley. Adaptation in con-
stant utility non-stationary environments. In Pro-
ceedings of the Fourth International Conference on
Genetic Algorithms, 1991.

W. S. Lovejoy. A survey of algorithmic methods for
partially observed Markov decision processes. An-
nals of Operations Research, 28:47-66, 1991.

A. McCallum. Overcoming incomplete perception
with utile distinction memory. In Tenth Interna-
tional Machine Learning Conference, Amherst, MA,
1993.

A. McCallum. Reinforcement Learning with Selec-
tive Perception and Hidden State. PhD thesis, Uni-
versity of Rochester, Dec. 1995.

G. E. Monahan. A survey of partially observable
Markov decision processes: Theory, models and al-
gorithms. Management Science, 28:1-16, 1982.

M. L. Puterman. Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. John Wi-
ley and Sons, 1994.

L. R. Rabiner. A tutorial on hidden Markov mod-
els and selected applications in speech recognition.
Proceedings of the IEEE, 77(2), Feb. 1989.

S. Singh and D. P. Bertsekas. Reinforcement learn-
ing for dynamic channel allocation in cellular tele-
phone systems. In Advances in Neural Information
Processing Systems, 1996.

R. S. Sutton. Integrated architectures for learn-
ing, planning, and reacting based on approximating
dynamic programming. In Proceedings of the Sev-
enth International Conference on Machine Learn-
ing, 1990.

R. S. Sutton and A. G. Barto. Reinforcement Learn-
ing: An Introduction. The MIT Press, 1998.

Given a collection of data and an initial model parameter

vector 6.
repeat
=20
Compute forward variables a;.
a1 (z) = 1/)31
a2(8) = mi s, yi(s1,a1, 52)
a1 (f) = D (i) zij y; (se, ar, se41)
i€Q

Compute backward variables f;.

Br(i) =1

Be(3) = %%’j Y5 (8¢, at, St+1) Be+1(F)
e

Bi(i) = Y- 7 yj(s1,a1,82) B2(4)
JjERQ

Compute auxiliary variables &; and ;.

oo ou(9) g i (S, a8, 8641) Ber1(J
3= 0)

keEQ
Ye(8) = 3 &e41(4,)

JjERQ
Compute the new model parameter 8.
T
E gt (/L: .7)
t=2
T .
> e (d)

t=1

VieQ
VieQ
VieQ

VieQ
VieQ

VieQ

Vi, j€Q

VieQ

S 6(0) 8(se,) 8(s141,1) 8(a, k)

vi(G, k1) = —5

55 (i) 850,) 6(se41, 1) 6(a,)

les t=1

5 06) 8(au k) 6(s0, 5) o
’F’i(j: k) = 22

5 e6) (a k) 6(s0, 9)

t=1
7t = (%)

until max|0; — ;| < e
2

Figure 5: HM-MDP Baum-Welch Algorithm

100

Comparing POMDP and HM-MDP Baum-Welch
T T T

Error in Transition Function

20

T
'POMDP Baum-Welch’ ——
'HM-MDP Baum-Welch' -+--

0 500

L L L L
1000 1500 2000 2500 3000 3500 4000 4500 5000

Window Size

(a) Error in Transition Function

30

Error in Reward Function

Comparing POMDP and HM-MDP Baum-Welch

T T T T T T T
'POMDP Baum-Welch' ——
'HM-MDP Baum-Welch® -+--

.

L A +

L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Window Size

(b) Error in Reward Function

Figure 6: Model learning errors in terms of the transition
probabilities and rewards. All environment models were
in their POMDP form for comparison. The errors were
measured by summing the squares of differences on the
state transition probabilities and on the reward function

respectively.

