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ABSTRACT

Complex networks are ubiquitous in our daily life, with the
World Wide Web, social networks, and academic citation
networks being some of the common examples. It is well
understood that modeling and understanding the network
structure is of crucial importance to revealing the network
functions. One important problem, known as community de-
tection, is to detect and extract the community structure of
networks. More recently, the focus in this research topic has
been switched to the detection of overlapping communities.
In this paper, based on the matrix factorization approach,
we propose a method called bounded nonnegative matrix
tri-factorization (BNMTF). Using three factors in the fac-
torization, we can explicitly model and learn the community
membership of each node as well as the interaction among
communities. Based on a unified formulation for both di-
rected and undirected networks, the optimization problem
underlying BNMTF can use either the squared loss or the
generalized KL-divergence as its loss function. In addition,
to address the sparsity problem as a result of missing edges,
we also propose another setting in which the loss function is
defined only on the observed edges. We report some experi-
ments on real-world datasets to demonstrate the superiority
of BNMTF over other related matrix factorization methods.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning; H.2.8 [Database
Management]: Database Applications—Data mining

General Terms

Algorithms
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Complex networks are ubiquitous in our daily life. For
example, the World Wide Web, social networks, and aca-
demic citation networks are some of the commonly encoun-
tered ones. In these networks, links or edges connecting en-
tities represent relations between them, such as hyperlinks
between webpages, friend relations between people, and ci-
tations in academic publications. It is well understood that
modeling and understanding the network structure is of cru-
cial importance to revealing the network functions. One
important problem in understanding the structure of a net-
work is to detect and extract its modular structure con-
sisting of communities, which is often known as community
detection [7]. Although the problem is intuitively easy to un-
derstand, what constitutes a community in a network does
not yet have a well-accepted definition. In this paper, sim-
ilar to the notion used in [7], we regard communities in a
network as densely connected subsets of vertices with a rel-
atively high ratio of the number of intra-community edges
to the number of inter-community edges.

Over the past decade, research on community detection
has mostly adopted the assumption that each node or ver-
tex in a network belongs to one and only one community.
We refer to this as the non-overlapping community detection
problem [7, 13], which is similar in many ways to clustering
in a lot of data mining applications. Some of the popu-
lar community detection methods in this category make use
of a quality measure called modularity [4, 2] to evaluate
the quality of the community structure found, possibly by
directly maximizing an objective function which is based
on the modularity measure. This assumption is apparently
too restrictive. In many real-world networks such as social
networks, it is not uncommon to find entities belonging to
multiple groups or communities. In other words, the com-
munities are not disjoint but do overlap. By relaxing the as-
sumption, the community detection problem becomes more
general and we refer to it as the overlapping community de-
tection problem. The first method for this problem, called
the clique percolation method (CPM), was proposed in [16].
CPM is based on the assumption that each community is
a union of adjacent k-cliques. It is an influential method
with many extensions proposed subsequently, e.g., [6, 17].
More recently, several methods have been developed based
on matrix factorization. For example, nonnegative matrix
factorization (NMF) [10] has been applied to develop some
methods which deliver promising performance [18, 19].

Even though the NMF-based methods in [18, 19] exhibit
good performance on some overlapping community detec-
tion applications, they do have drawbacks. For example, the
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method in [18] uses the conventional NMF model and hence
the physical meaning of the parameters is not very clear
for the overlapping community detection problem, and the
method in [19] has to use different formulations for directed
and undirected networks. Moreover, methods in [18, 19] on-
ly consider one loss function, i.e., generalized KL-divergence
in [18] and squared loss in [19], but in applications we still
have no idea which loss function is a more suitable choice
for the task at hand. In this paper, our goal is to overcome
these drawbacks within the matrix factorization approach.
We propose a method called bounded nonnegative matrix
tri-factorization (BNMTF). Specifically, from the matrix
factorization perspective, we use tri-factorization, i.e., three-
factor factorization, in the form UBUT , where U repre-
sents the membership of each node in each community and
B represents the interaction among all communities. Each
entry in U corresponds to the probability that a node be-
longs to a community and hence its value is restricted to
the range [0, 1], i.e., U is bounded. Obviously, the physi-
cal meaning of U and B is very clear. We also note that
the same tri-factorization form can be used for both direct-
ed and undirected networks. The only difference lies in B,
which is required to be symmetric for undirected networks.
Unlike the previous methods [18, 19], we consider both the
squared loss and generalized KL-divergence as loss function-
s. Moreover, we note that there is intrinsic ambiguity when
an edge is missing between two vertices. While the two ver-
tices involved may indeed be unrelated, it is also possible
that the relation between them has not been observed. In
the same spirit as many methods for collaborative filtering,
we also consider another setting in which the loss function
is defined on the edges with nonzero weights only. We will
report some experiments on real-world datasets to demon-
strate the superiority of BNMTF over existing NMF-based
methods.

Notations. Throughout the paper, we use lowercase let-
ters for scalars, bold lowercase letters for vectors, and bold
uppercase letters for matrices. We use tr(M) to denote the
trace of a square matrix M. For vector and matrix norms,
we use ‖M‖1 to denote the l1 norm of a matrix M, which is
equal to the sum of the absolute values of all the elements
of M, ‖M‖F to denote the Frobenius norm of M, and ‖a‖1
and ‖a‖2 to denote the l1 and l2 norms, respectively, of a
vector a. To characterize a matrix, we write M ≥ 0 to mean
that all elements in M are nonnegative, and M1 ≥ (≤)M2

to denote elementwise inequality between M1 and M2. We
use 0 and 1 to denote a vector or matrix consisting of all
zeros and ones, respectively, of the appropriate size. The
identity matrix of an appropriate size is denoted by I and
the Hadamard or elementwise product is denoted by ⊙.

2. COMMUNITY DETECTION VIA BNMTF
In this section, we present the BNMTF model and put it

in the context of related methods for overlapping community
detection. Details on how to solve the optimization problem
for parameter learning will be presented in the next section.

2.1 Model Formulation
Let us denote a network by N = (V, E), where V is a set

of n vertices and E is a set of m edges with each of them
connecting a pair of vertices in V. The adjacency matrix

is a nonnegative matrix G ∈ R
n×n
+ whose (i, j)th entry gij

represents the edge weight between the ith and jth vertices.
Depending on whether the network is directed or undirect-

ed, G is asymmetric or symmetric accordingly. Moreover,
the network is usually far from being a fully connected net-
work, implying that G is sparse and hence m ≪ n(n− 1)/2.

We assume that the maximum number of possible com-
munities, denoted by k, is given. In our opinion, a maximum
number is much easier to set than the exact number. We
use a matrix U ∈ R

n×k
+ to denote the community member-

ship of the n vertices in V and B ∈ R
k×k
+ to denote the

community interaction matrix. For each entry uij in U, we
interpret it as the probability that the ith vertex belongs to
the jth community. The higher the value of uij , the more
active is the ith entity in the jth community. We thus have
the following bounded constraint on each element of U:

0 ≤ uij ≤ 1 or equivalently 0 ≤ U ≤ 1. (1)

The matrix B represents the relations between communi-
ties. For example, the communities (or interest groups) ‘E-
conomics’ and ‘Politics’ are strongly related and hence we
expect a large value for the corresponding entry in B; on
the contrary, the communities ‘Movies’ and ‘Politics’ are
only weakly related and hence the corresponding entry in
B is likely to be small. The product form UBUT repre-
sents the relation between any two vertices in terms of the
community structure. We want to use it to approximate the
adjacency matrix G. In other words, we approximate G by
a nonnegative matrix tri-factorization UBUT with bounded
U:

G ≈ Ĝ ≡ UBU
T .

Two loss functions, namely, squared loss and generalized
KL-divergence, are used to measure the approximation er-
ror. Specifically, they are defined as

Lsq(G,U,B) = ‖G− Ĝ‖2F (2)

Lkl(G,U,B) =
∑

i,j

(

gij ln
gij

ĝij
− gij + ĝij

)

, (3)

where ĝij is the (i, j)th entry of Ĝ.
As discussed above, G is usually sparse. In previous com-

munity detection methods, the zero entries in G are often
interpreted as having no edges between the corresponding
vertices. However, it is also possible that some otherwise
nonzero entries have not been observed during the data col-
lection process. If a loss function is defined on the whole
matrix G, then even the second case will be treated as the
first case, bringing additional noise to the learning process.
Here we propose another loss function which is defined only
on the edges with gij > 0:

lsq(G,U,B) =
∑

gij>0

(gij − ĝij)
2 (4)

lkl(G,U,B) =
∑

gij>0

(

gij ln
gij

ĝij
− gij + ĝij

)

. (5)

In real networks, usually each vertex does not participate
in too many communities and so U is sparse. To enhance
the sparsity of U, we use the l1 norm to regularize it, i.e.,
‖U‖1 = 1TU1 due to the nonnegativity of U. Moreover, by
utilizing the l1 norm of U, we can reduce the effective num-
ber of free parameters inU and hence control the complexity
of the model.

Combining the several considerations above, the optimiza-
tion problem underlying BNMTF can be formulated as

min
U,B

L(G,U,B) + λ1T
U1 s.t. 0 ≤ U ≤ 1,B ≥ 0. (6)
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In the objective function, the loss function L(G,U,B) can
be any of the loss functions defined in Eqs. (2) to (5) and
the regularization parameter λ > 0 balances the tradeoff
between the approximation error and the complexity of U.

2.2 Related Methods
As discussed above, two NMF-based community detection

methods have been developed. In this subsection, we give
a more in-depth review of these two methods to put the
BNMTF model in perspective.

Psorakis et al. [18] used the conventional NMF model
which has two factors. Specifically, using the generalized
KL-divergence as in Eq. (3), the model approximates G us-
ing XYT for directed networks and XXT for undirected
networks. One disadvantage of this formulation is that the
physical meaning of X and Y is not very clear, because X
and Y cannot be interpreted directly as representing com-
munity membership since different entries are of different s-
cales. From the perspective of BNMTF, X (or Y) may take
the form UV where V is related to B. Thus, X (or Y) cap-
tures both U and B, making its physical meaning unclear.
For undirected networks, using a positive semidefinite (PSD)
matrix XXT to approximate the symmetric matrix G is not
very suitable in some sense. For example, the diagonal ele-
ments of XXT are usually positive but those of G are almost
zero. Moreover, the eigenvalues of XXT are all nonnegative
but G can have negative eigenvalues. For directed networks,
the number of parameters (2nk) is much larger than that of
the undirected case (nk) and also that of BNMTF (nk+k2).
As a result, its model complexity is also higher accordingly.
Moreover, since XYT = (XD)(YD−1)T where D can be
any diagonal matrix with positive diagonal elements, this
factorization also faces the nonidentifiability problem and
hence slows down the convergence of the algorithm.

In [19], the authors treated directed and undirected net-
works differently. For undirected networks, like in [18], the
factorization form XXT is used but with the squared loss as
in Eq. (2). For directed networks, however, a different for-
m XAXT is used. On the contrary, BNMTF has a unified
formulation for both directed and undirected networks, with
the only difference being that B is symmetric or asymmetric
according to whether the network is undirected or directed.
With a unified formulation, we can gain a better understand-
ing of our model under different settings. Moreover, from the
implementation point of view, having a unified formulation
is also favorable due to the high degree of code reusability.
For undirected networks, because the model in [19] is sim-
ilar to that in [18], it has the same drawbacks as discussed
above. For directed networks, even though their formulation
appears to be similar to ours, there exist some crucial dif-
ferences. For example, their method implicitly assumes that
each row of X represents the probability distribution that
the corresponding vertex belongs to each of the communities
because a postprocessing step makes the probabilities sum
to 1. They do not impose constraints on X directly because
doing so would make the optimization problem even more
difficult due to the nonexistence of an analytical solution.
However, in order to model overlapping communities, we
believe the probabilities of each vertex belonging to differ-
ent communities should not be constrained as in [19]. For
instance, a vertex may belong to the community ‘Politics’
with probability 0.9 and the community ‘Economics’ with
probability 0.8, due to the strong relation between these

two communities. An entity can be very active in multiple
communities, but this scenario cannot be modeled well if we
impose the constraint that the row sum be equal to 1.

Besides, the network sparsity problem has not been ad-
dressed by both methods in [18, 19].

In summary, compared with [18, 19], BNMTF has some
appealing advantages:

1) The use of a tri-factorization form in BNMTF gives
clear physical meaning to each factor.

2) A unified formulation is used for both directed and
undirected networks.

3) BNMTF addresses the network sparsity problem ex-
plicitly by using a loss function, as in Eq. (4) or (5),
based only on the observed data.

We note that nonnegative matrix tri-factorization has been
investigated by some other researchers. For example, Ding
et al. [5] proposed an orthogonal nonnegative matrix tri-
factorization method for clustering problems by placing an
orthogonal constraint on U. However, their method is not
suitable for overlapping community detection because it as-
sumes that each vertex can only belong to one communi-
ty. To the best of our knowledge, there does not exist any
nonnegative matrix tri-factorization method with bounded
constraints imposed.

3. PARAMETER LEARNING
In this section, we discuss how to solve the optimization

problem (6) efficiently.
In general, three types of optimization methods have been

used for solving NMF-based methods, namely, auxiliary func-
tion methods [11], which are similar to the majorization-
minimization approach [9] in statistics, projected gradient
methods [12], and the newly emerging coordinate descent
methods [3, 8]. Among these three approaches, auxiliary
function and coordinate descent methods are very popular
due to their efficiency and the existence of analytical solu-
tions. In what follows, we will develop coordinate descent
and auxiliary function methods for the BNMTF model.

3.1 Squared Loss
We first discuss how to solve problem (6) when the loss

function is the squared loss as in Eq. (2) or (4). For conve-
nience, let us unify Eqs. (2) and (4) to the following form:

L(G,U,B) =
∑

(i,j)∈I

(gij − ĝij)
2, (7)

where I is an index set of the available entries in G. More
specifically, for the squared loss defined in Eq. (2), I denotes
the set of all indices in G for directed networks and the
set of all indices in the upper-triangular portion of G for
undirected networks. For the squared loss defined in Eq. (4),
I denotes the set of indices of all the nonzero entries of G
for directed networks and the set of indices of all nonzero
entries in the upper-triangular portion of G for undirected
networks.

Here we use the coordinate descent method to solve prob-
lem (6) with the unified squared loss function as in Eq. (7).1

1We have also tried to devise an auxiliary function
method. However, due to the existence of l1 regulariza-
tion and the bounded constraint on U, we have not been
able to find a good auxiliary function, as an upper bound
of the objective function of problem (6), with an analytical
solution.
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For the matrix U, the coordinate descent method consid-
ers a one-variable update for problem (6) as

min
t

fU
pq(t) = L(G,U+ tO

pq
nk

,B) + λ1T (U+ tO
pq
nk

)1

s.t. 0 ≤ upq + t ≤ 1, (8)

where Opq

nk denotes an n × k matrix with all entries equal
to 0 except the (p, q)th entry which is equal to 1, and upg

denotes the (p, q)th entry of U. By introducing a weight
matrix W whose (i, j)th entry equals 1 when (i, j) ∈ I and
0 otherwise, we rewrite the unified squared loss as

L(G,U,B) = ‖W ⊙ (G−UBU
T )‖2F

and then simplify fU
pg(t) to

fU
pq(t)

=
∥

∥

∥W ⊙
(

G− (U+ tO
pq
nk

)B(U+ tO
pq
nk

)T
)∥

∥

∥

2

F
+ λt+ λ1T

U1

=‖W ⊙ (Z0 + tZ1 + t2Z2)‖2F + λt+ λ1T
U1

=tr
(

(

W ⊙ (Z0 + tZ1 + t2Z2)
) (

W ⊙ (Z0 + tZ1 + t2Z2)
)T
)

+ λt+ λ1T
U1

=at4 + bt3 + ct2 + dt+ e, (9)

where Z0 = UBUT − G, Z1 = Opq

nkBUT + UB(Opq

nk)
T ,

Z2 = Opq

nkB(Opq

nk)
T , a = tr((W ⊙ Z2)(W ⊙ Z2)

T ), b =

2tr((W⊙Z1)(W⊙Z2)
T ), c = 2tr((W⊙Z0)(W⊙Z2)

T ) +
tr((W⊙Z1)(W⊙Z1)

T ), d = 2tr((W⊙Z0)(W⊙Z1)
T )+λ,

and e = tr((W⊙Z0)(W⊙Z0)
T )+λ1TU1. We can further

simplify a, b, c and d by noting the following:

tr
(

(W ⊙ Zi)
T (W ⊙ Zj)

)

= tr
(

(W ⊙ Zi ⊙W)TZj

)

= tr
(

(W ⊙ Zi)
T
Zj

)

,

where the first equation follows from a property of the
Hadamard product that tr(AT (C⊙D)) = tr((A⊙C)TD),
and the second equation follows from another property of
the Hadamard product that A⊙C⊙D = A⊙D⊙C and a
property of W that W ⊙W = W because W ∈ {0, 1}n×n

is a binary matrix. If there is no constraint in problem (8),
we can set the derivative of fU

pg(t) with respect to t to 0 and
get

h(t) = 4at3 + 3bt2 + 2ct+ d = 0, (10)

which amounts to solving a root finding problem. It is easy
to show that a, b ≥ 0. Since different values of a, b, c and
d affect the result of the root finding problem, we discuss it
separately for the following cases:

1) a > 0

2) a = 0, b > 0

3) a = 0, b = 0, c 6= 0

4) a = 0, b = 0, c = 0, d 6= 0.

The solutions for these four cases are depicted in Tables 1
to 4 separately.

For the matrix B, we consider two situations depending
on whether the network is directed. When it is directed, B
is a general nonnegative matrix and the objective function
for each step of the coordinate descent method is formulated
as

min
t

fB
pq(t) = L(G,U,B+ tO

pq
kk

) + λ1T
U1

s.t. bpq + t ≥ 0, (11)

Table 1: Algorithm for solving problem (8) when
a > 0.

calculate r = c
2a − 3b2

16a2 ;

calculate s = b3

32a3 − bc

8a2 + d
4a ;

calculate ∆ = r3

27 + s2

4 ;
if ∆ > 0

calculate t1 = 3
√√

∆ − s
2 − 3

√√
∆ + s

2 − b
4a ;

t = max(−upq,min(1 − upq, t1));
elseif ∆ == 0

t1 = −2 3
√

s
2 − b

4a ;

t2 = 3
√

s
2 − b

4a ;
if s == 0

t = max(−upq,min(1 − upq, t1));
else

if t1 ∈ [−upq, 1 − upq ] and t2 ∈ [−upq, 1 − upq ]

t =

{

t1 if fU
pq(t1) <= fU

pq(t2)
t2 otherwise

;

elseif t1 ∈ [−upq, 1 − upq ]
t = t1;

elseif t2 ∈ [−upq, 1 − upq ]
t = t2;

elseif t1 < −upq

t = −upq ;
else

t = 1 − upq ;
end

end
else

calculate ρ =

√

s2

4 − ∆ =

√

− r3

27 ;

calculate φ according to cos(φ) = − s
2ρ ;

calculate ti = 2ρ
1
3 cos

(

φ+2(i−1)π
3

)

− b
4a , for i = 1, 2, 3,

assumed t1 < t2 < t3;
if t1 ∈ [−upq, 1 − upq ] and t3 ∈ [−upq, 1 − upq ]

t =

{

t1 if fU
pq(t1) <= fU

pq(t3)
t3 otherwise

;

elseif t1 ∈ [−upq, 1 − upq ]
t = t1;

elseif t3 ∈ [−upq, 1 − upq ]
t = t3;

elseif t2 ∈ [−upq, 1 − upq ]

t =

{

−upq if fU
pq(−upq) <= fU

pq(1 − upq)
1 − upq otherwise

;

elseif t1 > 1 − upq

t = 1 − upq ;
elseif t3 < −upq

t = −upq ;
elseif t2 > 1 − upq

t = −upq ;
else

t = 1 − upq ;
end

end

where bpq is the (p, q)th entry of B. We simplify fB
pq(t) as

fB
pq(t)

=
∥

∥

∥W ⊙
(

G−U(B+ tO
pq
kk

)UT
)∥

∥

∥

2

F
+ λ1T

U1

=‖W ⊙ (tP0 +P1)‖2F + λ1T
U1

=t2tr((W ⊙P0)
T
P0) + 2ttr((W ⊙P1)

T
P0) + tr((W ⊙P1)

T
P1)

+ λ1T
U1,

where P0 = UOpq

kkU
T and P1 = UBUT − G. We note

that fB
pq(t) is a quadratic function of t. It is easy to show

that the solution to problem (11) can be calculated as

t = max

(

−bpq ,−
tr((W ⊙P1)TP0)

tr((W ⊙P0)TP0)

)

= −min

(

bpq ,
tr((W ⊙P1)TP0)

tr((W ⊙P0)TP0)

)

.
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Table 2: Algorithm for solving problem (8) when
a = 0, b > 0.

if c2 < 3bd
t = −upq ;

elseif c2 > 3bd

calculate t1 =
−c+

√
c2−3bd
3b

;

calculate t2 =
−c−

√
c2−3bd
3b

;
if t1 ∈ [−upq , 1− upq ]

t = t1;
elseif t2 ∈ [−upq , 1− upq ]

t =

{

−upq if fU
pq(−upq) <= fU

pq(1− upq)
1− upq otherwise

;

elseif t1 < −upq or t2 > 1− upq

t = −upq ;
else

t = 1− upq ;
end

else
calculate t1 = − c

3b
;

if t1 ∈ [−upq , 1− upq ]
t = t1;

else
t = −upq ;

end
end

Table 3: Algorithm for solving problem (8) when
a = 0, b = 0, c 6= 0.

calculate t1 = − d
2c

;
if c > 0

t = max(−upq ,min(1− upq , t1));
else

t =

{

−upq if | − upq − t1| >= |1− upq − t1|
1− upq otherwise

;

end

Table 4: Algorithm for solving problem (8) when
a = 0, b = 0, c = 0, d 6= 0.

t =

{

−upq if d > 0
1− upq otherwise

;

When the network is undirected, B is symmetric and the
objective function for a non-diagonal entry bpq (p 6= q) is
given by

min
t

fB
pq(t) = L(G,U,B+ tO

pq
kk

+ tO
qp
kk

) + λ1T
U1

s.t. bpq + t ≥ 0, (12)

where the objective function can be simplified to

fB
pq(t)

=
∥

∥

∥W ⊙
(

G−U(B+ tO
pq
kk

+ tO
qp
kk

)UT
)∥

∥

∥

2

F
+ λ1T

U1

=‖W ⊙ (tP2 +P1)‖2F + λ1T
U1

=t2tr((W ⊙P2)
T
P2) + 2ttr((W ⊙P1)

T
P2) + tr((W ⊙P1)

T
P1)

+ λ1T
U1,

with P2 defined as P2 = U(Opq

kk + Oqp

kk)U
T . Then the

optimal t can be calculated as

t = −min

(

bpq ,
tr((W ⊙P1)TP2)

tr((W ⊙P2)TP2)

)

.

For each diagonal entry bpp, the update rule is identical to
that for directed networks and we omit the derivation here.

3.1.1 Some Implementation Issues

For the update of U, we need to efficiently compute the
coefficients in Eq. (9) or, equivalently, the matrices Z0, Z1

and Z2. According to the definition of Z2, it is a zero ma-
trix with only one nonzero element indexed by (p, p) as bqq.
Z0 measures the approximation residual and we can keep
track of Z0 and update it whenever each entry in U and B
changes. Since Z1 is related to UB and BUT , similar to
Z0, we also keep track of UB and BUT . By taking advan-
tage of the extreme sparsity of the matrices involved, we can
compute the coefficients in Eq. (9) efficiently.

For the update of B, we need to compute P0, P1 and
P2. Note that P1 is equal to Z0 which is kept as a global
variable and needs no additional computation. For P0, it
is easy to show that P0 = upu

T
q according to its definition,

where up is the pth column of U, and hence we can compute
P0 more efficiently. Similar to P0, P2 can be computed as
P2 = upu

T
q + uqu

T
p in an efficient way.

3.2 Generalized KL-Divergence
Similar to the squared loss, we first give a unified form of

the generalized KL-divergence as follows

L(G,U,B) =
∑

(i,j)∈I

(

gij ln
gij

ĝij
− gij + ĝij

)

. (13)

According to [3, 8], the coordinate descent method has no
closed-form solution and so we resort to an auxiliary function
method. We first give the definition of an auxiliary function.

Definition 1. G(h,h0) is an auxiliary function for a func-

tion F (h) if the conditions

G(h,h0) ≥ F (h); G(h,h) = F (h)

are satisfied.

For the minimization of F (h), we can minimize G(h,h0)
instead based on the following lemma from [9, 11].

Lemma 1. For an estimate h0 of F (h), we can update it
to h1 with F (h1) ≤ F (h0) where h1 satisfies

h1 = argmin
h

G(h,h0).

With B fixed, the objective function for U is formulated
as

F (U) =
∑

(i,j)∈I

([UBU
T ]ij − gij ln[UBU

T ]ij) + λ1T
U1,

where [A]ij denotes the (i, j)th element of A. Then we
define the auxiliary function for F (U) in the following the-
orem.

Theorem 1.

G(U, Û)

=
∑

(i,j)∈I

(

k
∑

r=1

k
∑

s=1

brs

(

(ûjs + ǫ)(uir + ǫ)2

2(ûir + ǫ)
+

(ûir + ǫ)(ujs + ǫ)2

2(ûjs + ǫ)

)

−
k
∑

r=1

k
∑

s=1

(

ǫbrsujs + ǫbrsuir + ǫ2brs
)

− gij
∑

r,s

αij
rs ln

uirbrsujs

α
ij
rs





+ λ1T
U1,
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where ǫ is a positive constant, ûij is the (i, j)th element

of Û, and αij
rs =

ûirbrsûjs
∑

r,s ûirbrsûjs
is the auxiliary function of

F (U).

In Theorem 1, we add ǫ to each ûrs to increase numer-
ical stability because ûrs may be equal or very close to 0.
Then we need to minimize G(U, Û) with respect to U where

Û is the current estimate of U. For each entry of U, the
optimization problem is formulated by rewriting G(U, Û) as

min
upq

f(upq) =
a

2
u2
pq + bupq − c lnupq

s.t. 0 ≤ upq ≤ 1, (14)

where

I+
p = {j | (p, j) ∈ I}, I−

p = {i | (i, p) ∈ I}

a =
∑

j∈I
+
p

k
∑

s=1

(ûjs + ǫ)bqs

ûpq + ǫ
+
∑

i∈I
−
p

k
∑

r=1

brq(ûir + ǫ)

ûpq + ǫ

b = ǫ(a−
∑

i∈I
−
p

k
∑

r=1

brq −
∑

j∈I
+
p

k
∑

s=1

bqs) + λ

c =
∑

j∈I
+
p

k
∑

s=1

gpjα
pj
qs +

∑

i∈I
−
p

k
∑

r=1

gipα
ip
rq .

If a = 0 and b = 0, f(upq) degenerates to f(upq) =
−c lnupq. It is easy to show that the optimal solution is
upq = 1 because c ≥ 0.

If a = 0 and b > 0, we set the derivative of f(upq) with
respect to upq to 0 and get the solution as upq,1 = c

b
. If c ≤ b,

we can get upq,1 ∈ [0, 1] and since the second-order derivative
f ′′(upq,1) = c

u2
pq,1

≥ 0, upq,1 is the optimal solution. If

c > b, we can get f ′(upq) = b − c
upq

< 0 for upq ∈ [0, 1],

implying that f(upq) is nonincreasing and hence 1 is the
optimal solution.

If a = 0 and b < 0, f ′(upq) = b− c
upq

< 0 over [0, 1], which

implies that f(upq) is nonincreasing and hence upq = 1 is the
optimal solution.

When a > 0,2 the situation is more complicated. If there
is no constraint in problem (14), we can set the derivative
of f(upq) with respect to upq to 0 and obtain the solutions
for upq as

upq,1 =
−b+

√
b2 + 4ac

2a
, upq,2 =

−b−
√
b2 + 4ac

2a
.

It is easy to show that upq,1 ≥ 0 and upq,2 ≤ 0 since a > 0
and c ≥ 0. When upq,1 ∈ [0, 1], we have f ′′(upq) = a+ c

upq
>

0, implying that upq,1 is the optimal solution of problem
(14). When upq,1 /∈ [0, 1] or equivalently upq,1 > 1 since
upq,1 ≥ 0, the derivative of f(·) denoted by f ′(upq) is nega-
tive over [0, 1] since f ′(upq) =

a
upq

(upq − upq,1)(upq − upq,2)

due to upq,1 > 1 and upq,2 ≤ 0. This implies that f(upq) is
nonincreasing over [0, 1] and hence upq = 1 is the optimal
solution to problem (14).

When U is fixed, the objective function for B is formu-
lated as

F (B) =
∑

(i,j)∈I

([UBU
T ]ij − gij ln[UBU

T ]ij).

For the auxiliary function of F (B), we have the following
result.

2By definition a cannot be negative.

Theorem 2.

G(B, B̂) =
∑

(i,j)∈I

(

k
∑

r=1

k
∑

s=1

brsuirujs − gij

k
∑

r=1

k
∑

s=1

βij
rs ln

brsuirujs

β
ij
rs

)

,

where b̂rs is the (r, s)th element of B̂ and βij
rs =

b̂rsuirujs
∑

r,s b̂rsuirujs

is the auxiliary function of F (B).

Then we need to minimize G(B, B̂), where B̂ is the cur-
rent estimate ofB, with the objective function for each entry
bpq of B formulated as

min
bpq

f(bpq) = bpq
∑

(i,j)∈I

uipujq −





∑

(i,j)∈I

gijβ
ij
pq



 ln bpq

s.t. bpq ≥ 0.

When the network is directed, B is asymmetric and we set
the derivative of f(bpq) with respect to bpq to 0 to get the
solution as

bpq =

∑

(i,j)∈I
gijβ

ij
pq

∑

(i,j)∈I
uipujq

,

which is nonnegative and hence satisfies the constraint.
When the network is undirected, B is symmetric. We set
the derivative of f(bpq) with respect to bpq and bqp to 0 and
get the solution as

bpq =











∑

(i,j)∈I
gijβ

ij
pq

∑

(i,j)∈I
uipujq

if p = q
∑

(i,j)∈I
gij(β

ij
pq+βij

qp)
∑

(i,j)∈I
(uipujq+uiqujp)

otherwise.

3.2.1 Some Implementation Issues

Even though the derivation above appears complicated,
it can actually be summarized as an elegant matrix for-
mulation which can be implemented efficiently using some
matrix-based software such as MATLAB.

For the update of U, we need to compute the coefficients
in the objective function of problem (14). We stack the
coefficients for all {upq} in three matrices, namely, Ma, Mb

and Mc, which are all of size n × k. Then we can compute
them as

Ma =
W(U+ ǫEnk)B

T +WT (U+ ǫEnk)B

U+ ǫEnk

Mb = ǫ(Ma −W
T
EnkB−WEnkB

T ) + λEnk

Mc = U⊙
(

G

UBU
T
UB

T +

(

G

UBU
T

)T

UB

)

,

where Enk denotes an n× k matrix of all ones, and M1
M2

for
matrices M1 and M2 denotes elementwise division. When
we utilize all the elements in G, W becomes Enn and we
can further simplify the formulation. After getting Ma, Mb

and Mc, we can easily obtain the estimate of U.
For the update of B, we unify the update rule for directed

and undirected networks as

B̃ =
B⊙

(

UT G

UBUT U

)

UTWU
,

where B̃ is the updated solution for B.
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4. EXPERIMENTS
In this section, we report the empirical performance of

BNMTF by comparing it with the two related NMF-based
methods mentioned before, denoted by NMFsq [19], which
uses the squared loss, and by NMFkl [18], which uses the
generalized KL-divergence. The two variants of BNMTF
are denoted by BNMTFsq and BNMTFkl which use the
squared loss and generalized KL-divergence, respectively.
The implementation of our method can be downloaded from
http://www.cse.ust.hk/~dyyeung/code/BNMTF.zip.

The first performance measure is modularity which was
proposed by Newman and Girvan in [14]. The modularity
measure Q is defined as

Q(Y) =
1

2m

∑

i,j,l

(

gij −
d(i)d(j)

2m

)

yilyjl =
1

2m
tr(YTXY),

where d(i) denotes the degree of node i, yil is the (i, l)th
element of the membership matrix Y, and X is a matrix

with the (i, j)th element xij = gij − d(i)d(j)
2m

. The larger
the modularity, the better the performance. Since modular-
ity was originally designed for non-overlapping community
detection, only one entry in each row of Y is 1 while all
other entries are 0. So all the methods compared need a
postprocessing step to obtain Y as

yik =

{

1 k = argmaxt uit

0 otherwise

where U is the membership matrix returned by any method
compared and uit is an element of U. The modularity mea-
sure may be viewed as a criterion to measure the confidence
of the community structure returned by each method. Be-
sides modularity, we also propose another measure which
is the area under curve (AUC) score based on modularity.
AUC score is to measure the accuracy of the finding of mul-
tiple communities by each method. We first scale the entries
in each column of the membership matrix U to [0, 1] to make
the membership value of the most active node in one com-
munity as 1.We then vary a threshold from 0 to 1 and set all
those entries in U that exceed the threshold to 1 and 0 oth-
erwise. Finally we compute the modularity Q(U) and also
the AUC score. We use several benchmark datasets3 (see
Table 5) from real-world applications for the experiments.

Table 5: Characteristics of 12 datasets.

Dataset n m
Book US politics 105 441
C. elegans metabolic 453 2025
American college football 115 613
Dolphins 62 159
Jazz musicians 198 2742
Les Misérables 77 254
Word adjacencies 112 425
Neural network 297 2345
Email 1133 5451
Coauthorships in network science 1589 2742
Power grid 4941 6594
High-energy theory collaborations 8361 15751

3http://www-personal.umich.edu/~mejn/netdata/

4.1 Comparison with NMF-based Methods
We first compare BNMTF with NMFsq and NMFkl based

on the modularity and AUC score. The results are summa-
rized in Tables 6 and 7. Using the generalized KL-divergence,
BNMTFkl is either comparable to or better than NMFkl

on every dataset with respect to both performance mea-
sures. The result is similar when the squared loss is used.
We also compare the two variants of BNMTF. Out of 12
benchmark datasets, BNMTFkl outperforms BNMTFsq on
eight in terms of modularity measure while for AUC score,
BNMTFkl outperforms BNMTFsq on seven datasets. The
result seems to suggest that both loss functions are compa-
rable in performance.

4.2 Comparison of Two Strategies to deal with
Sparsity

The methods BNMTFkl and BNMTFsq utilize the whole
graph. Here we also consider another setting in which the
loss function is defined only on the edges with nonzero weight-
s, i.e., Eqs. (4) and (5). The corresponding methods are
denoted by sBNMTFsq and sBNMTFkl. The results are
also shown in Tables 6 and 7. We note that sBNMTFkl

and sBNMTFsq are generally better than BNMTFkl and
BNMTFsq in terms of the AUC score but worse in terms of
modularity. This suggests that sBNMTFkl and sBNMTFsq

seem to be better for identifying the community structure
but worse for finding the most confident communities. More-
over, the performance of sBNMTFkl and sBNMTFsq is un-
satisfactory in some cases, e.g., on the ‘Word adjacencies’
dataset. One possible reason for this is that the network is
so sparse that there are only very few edges with nonzero
weights.

4.3 Sensitivity Analysis
The free parameters in BNMTF include the rank param-

eter k, the regularization parameter λ, and ǫ which is added
to the denominator in BNMTFkl. Here we conduct some ex-
periments on the ‘Dolphins’ and ‘American college football’
datasets to study the sensitivity of these parameters.

We vary the rank parameter k from 3 to 100 and the
results are shown in Figures 1(a) and 1(b). When k does
not exceed 10, the performance change is small. The per-
formance deteriorates very fast as k increases. This is not
surprising because the total number of communities is gen-
erally very small.

For the regularization parameter λ, we vary it from 0.01
to 100. Figures 2(a) and 2(b) show the results. We find
that the performance is very stable except with some slight
degradation as λ approaches 100. Because the performance
is not sensitive to λ, setting its value is quite easy.

Figures 3(a) and 3(b) show the results when ǫ varies from 0
to 1. The performance increases significantly as it increases
from 0 to 0.2, showing that a nonzero value can help to
enhance the numerical stability of BNMTF. Beyond 0.2, the
performance is generally insensitive to its value and hence
its value is also easy to set.

5. CONCLUSION
By using matrix tri-factorization, BNMTF explicitly mod-

els the community membership of each node and the in-
teraction among communities, making it outperform other
NMF-based methods in our empirical comparative study.
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Table 6: Comparison in terms of modularity.

Dataset NMFkl BNMTFkl sBNMTFkl NMFsq BNMTFsq sBNMTFsq

Book US politics 0.4051 0.4802 0.3893 0.4613 0.4924 0.4530
C. elegans metabolic 0.1146 0.1399 0.1111 0.1445 0.1135 0.0925
American college football 0.5566 0.5584 0.4789 0.5584 0.5733 0.4315
Dolphins 0.4125 0.4740 0.3544 0.5067 0.5067 0.4125
Jazz musicians 0.2024 0.2184 0.2070 0.1133 0.1118 0.1655
Les Misérables 0.1565 0.2146 0.1772 0.1247 0.1031 0.1763
Word adjacencies -0.0948 0.1459 0.0099 0.2539 0.2677 -0.0003
Neural network 0.1544 0.1877 0.1365 0.0647 0.1021 0.0654
Email 0.4992 0.5108 0.4210 0.4854 0.4950 -0.0020
Coauthorships in network science 0.6936 0.7827 0.6835 0.6607 0.7413 0.5552
Power grid 0.1530 0.4646 0.1217 0.3417 0.3682 0.3012
High-energy theory collaborations 0.4803 0.6053 0.4444 0.5648 0.6004 0.5413

Table 7: Comparison in terms of AUC score.

Dataset NMFkl BNMTFkl sBNMTFkl NMFsq BNMTFsq sBNMTFsq

Book US politics 0.0981 0.1024 0.2352 0.1415 0.1527 0.2000
C. elegans metabolic 0.0028 0.0044 0.0188 0.0036 0.0026 0.0268
American college football 0.2135 0.2103 0.2178 0.2125 0.2158 0.0180
Dolphins 0.1118 0.1284 0.1984 0.1504 0.1501 0.1911
Jazz musicians 0.0416 0.0848 0.1179 0.0710 0.0620 0.2219
Les Misérables 0.0339 0.0809 0.0877 0.0679 0.0529 0.0896
Word adjacencies -0.0262 0.0208 -0.0025 0.0513 0.0560 -0.0009
Neural network 0.0261 0.0285 0.0344 0.0061 0.0127 0.0278
Email 0.0782 0.0790 0.1477 0.0829 0.0808 0.0706
Coauthorships in network science 0.0394 0.0430 0.0431 0.0175 0.0162 0.0487
Power grid 0.0187 0.0385 0.0101 0.0159 0.0168 0.0149
High-energy theory collaborations 0.0231 0.0258 0.0160 0.0053 0.0181 0.0172
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Figure 1: Sensitivity analysis with respect to rank parameter k on ‘Dolphins’ and ‘American college football’
datasets.

Currently, BNMTF requires the maximum number of com-
munities to be set in advance. One possible extension in
the future is to allow the actual number of communities to
be determined automatically. For example, we may pursue
a probabilistic reformulation of BNMTF so that methods
such as automatic relevance determination [1] can be in-
corporated to learn the number of communities. Moreover,
the current paper focuses on the static community detection
problem. Another interesting direction is to extend BNMTF
to dynamic community detection [15] by modeling dynamic
network evolution over time.
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