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Abstract

In recent years, metric learning in the semi-supervised setting has

aroused a lot of research interests. One type of semi-supervised metric

learning utilizes supervisory information in the form of pairwise sim-

ilarity or dissimilarity constraints. However, most methods proposed

so far are either limited to linear metric learning or unable to scale

up well with the data set size. In this paper, we propose a nonlinear

metric learning method based on the kernel approach. By applying

low-rank approximation to the kernel matrix, our method can handle

significantly larger data sets. Moreover, our low-rank approximation

scheme can naturally lead to out-of-sample generalization. Exper-

iments performed on both artificial and real-world data show very

promising results.

Keywords: metric learning, semi-supervised learning, kernel learn-

ing, low-rank approximation, out-of-sample extension.

1 Introduction

1.1 Semi-Supervised Learning

In supervised learning, we are given a training sample in the form of input-

output pairs. The learning task is to find a functional relationship that

maps any input to an output such that disagreement with future input-

output observations is minimized. Classification and regression problems
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are the most common supervised learning problems for discrete-valued and

continuous-valued outputs, respectively. In unsupervised learning, we are

given a training sample of objects with no output values, with the aim of

extracting some structure from them to obtain a concise representation or to

gain some understanding of the process that generated the data. Clustering,

density estimation, and novelty detection problems are common unsupervised

learning problems.

Over the past decade or so, there has been growing interest in exploring

new learning problems between the supervised and unsupervised learning ex-

tremes. These methods are generally referred to as semi-supervised learning

methods, although there exist large variations in both the problem formula-

tion and the approach to solve the problem. The semi-supervised learning

literature is too large to do a comprehensive review here. Interested readers

are referred to some good surveys, e.g., (Seeger, 2000; Grira, Crucianu, &

Boujemaa, 2005; Zhu, 2006).

One way to categorize many, though not all, semi-supervised learning

methods is to consider the type of supervisory information available for learn-

ing. Unlike unsupervised learning tasks, supervisory information is available

in semi-supervised learning tasks. However, the information is in a form

that is weaker than that available in typical supervised learning tasks. One

type of (weak) supervisory information assumes that only part (usually a

limited part) of the training data are labeled. This scenario is commonly

encountered in many real-world applications. One example is the automatic

classification of web pages into semantic categories. Since labeling web pages
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is very labor-intensive and hence costly, unlabeled web pages are far more

plentiful on the web. It would be desirable if a classification algorithm can

take advantage of the unlabeled data in increasing the classification accu-

racy. Many semi-supervised classification methods (Zhu, 2006) belong to

this category.

Another type of supervisory information is even weaker in that it only

assumes the existence of some pairwise constraints indicating similarity or

dissimilarity relationships between training examples. In video indexing ap-

plications, for example, temporal continuity in the data can be naturally

used to impose pairwise similarity constraints between successive frames in

video sequences. Another example is in proteomic analysis, where protein-

protein interactions can naturally be represented as pairwise constraints for

the study of proteins encoded by the genes (e.g., Database of Interacting

Proteins (DIP), http://dip.doe-mbi.ucla.edu/). Yet another example is

the anti-spam problem. Recent studies show that more than half of the e-

mail in the Internet today is spam, or unsolicited commercial e-mail. The

relentless rise of spam is posing a significant problem to users and providers

of e-mail services. One recent approach to spam detection is based on the

trustworthiness of social networks (Boykin & Roychowdhury, 2005). Such

social networks can naturally be represented as graphs with edges between

nodes representing pairwise relationships in the social networks.

While supervisory information in the form of limited labeled data can

be transformed into pairwise similarity and dissimilarity constraints, inverse

transformation is in general not possible except for the special case of two-
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class problems. In this sense, the second type of supervisory information

is of a weaker form and hence the corresponding learning problem is more

difficult to solve. The focus of our paper is on this category of semi-supervised

learning problems.

1.2 Semi-Supervised Metric Learning Based on Pair-

wise Constraints

While many semi-supervised learning methods assume the existence of lim-

ited labeled data (Zhu, 2006), there are much fewer methods that can work

with pairwise constraints only. We survey the most representative methods

in this subsection.

Very often, the pairwise constraints simply state whether two examples

belong to the same class or different classes.1 (Wagstaff & Cardie, 2000)

and (Wagstaff, Cardie, Rogers, & Schroedl, 2001) first used such pairwise

information for semi-supervised clustering tasks by modifying the standard

k-means clustering algorithm to take into account the pairwise similarity and

dissimilarity constraints. Extensions have also been made to model-based

clustering based on the expectation-maximization (EM) algorithm for Gaus-

sian mixture models (Shental, Bar-Hillel, Hertz, & Weinshall, 2004; Lu &

Leen, 2005). However, these methods do not explicitly learn a distance func-

1In principle, it is also possible to incorporate pairwise constraints that quantify the

degree of similarity or dissimilarity as well to provide more informative knowledge for learn-

ing. Such pairwise constraints may be regarded as constituting part of the dissimilarity

matrix in multidimensional scaling (MDS).
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tion but seek to satisfy the constraints, typically for clustering tasks. Hence,

they are sometimes referred to as constraint-based clustering methods.

As a different category, some methods have been proposed to learn a

Mahalanobis metric or some other distance function based on pairwise con-

straints. (Xing, Ng, Jordan, & Russell, 2003) formulated a convex opti-

mization problem with inequality constraints to learn a Mahalanobis metric

and demonstrated performance improvement in a subsequent clustering task.

Solving a similar problem to learn a Mahalanobis metric, the relevant com-

ponent analysis (RCA) algorithm (Bar-Hillel, Hertz, Shental, & Weinshall,

2003, 2005) was proposed as a simpler and more efficient algorithm than

that of (Xing et al., 2003). However, RCA can make use of similarity con-

straints only. (Schultz & Joachims, 2004) proposed a method for learning

essentially the same metric, but they made use of a different type of pairwise

information which compares the pairwise relationships between two pairs of

examples. Specifically, each relational constraint states that example A is

closer to B than A is to C. (Hertz, Bar-Hillel, & Weinshall, 2004) proposed

a distance function learning method called DistBoost. However, there is no

guarantee that the distance function learned is a metric. (Bilenko, Basu, &

Mooney, 2004) explored the possibility of integrating constraint-based clus-

tering and semi-supervised clustering based on distance function learning.

The distance function learning methods reviewed above either learn a Ma-

halanobis metric that corresponds to linear transformation only, or learn a

distance function that is not a metric. In our previous work (Chang & Yeung,

2004), we proposed a metric learning method that corresponds to nonlinear
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transformation. While this method is more powerful than the linear meth-

ods, the optimization problem is non-convex and hence is more complicated

to solve.

In this paper, we focus on the distance function learning approach because

distance functions are central to many learning models and algorithms. This

also makes it easier to achieve out-of-sample generalization. Moreover, we

focus on learning metrics because this allows us to formulate the metric

learning problem based on the kernel approach (Vapnik, 1998; Schölkopf

& Smola, 2002), which provides a disciplined, computationally appealing

approach to nonlinear metric learning.

1.3 Organization of Paper

In Section 2, we propose a simple and efficient kernel-based metric learning

method based on pairwise similarity constraints. Like many kernel methods,

a limitation of this method is that it does not scale up well with the sample

size. In Section 3, we address the scalability issue by applying low-rank ap-

proximation to the kernel matrix. This extended method can also naturally

give rise to out-of-sample generalization, which is addressed in Section 4.

We present some experimental results in Section 5 to demonstrate the effec-

tiveness of our metric learning algorithm. Finally, Section 6 concludes the

paper.
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2 Kernel-Based Metric Learning

2.1 Problem Setup

Let {xi}ni=1 be a set of n data points in some input space X . Suppose we

have a Mercer kernel k̂ which induces a nonlinear feature map φ̂ from X

to some reproducing kernel Hilbert space H (Vapnik, 1998; Schölkopf &

Smola, 2002). The corresponding set of feature vectors in H is {φ̂(xi)}ni=1

and the kernel matrix is K̂ = [k̂(xi,xj)]n×n = [〈φ̂(xi), φ̂(xj)〉]n×n. Choices

for k̂ include the Gaussian RBF kernel and the polynomial kernel. We apply

a centering transform such that the feature vectors in H have zero mean.

The resulting kernel matrix K can be computed as K = [k(xi,xj)]n×n =

[〈φ(xi), φ(xj)〉]n×n = HK̂H, where the centering matrix H = I − (1/n)11T

with I being the n× n identity matrix and 1 being the n× 1 vector of ones.

We consider a type of semi-supervised metric learning in which the su-

pervisory information is given in the form of pairwise similarity constraints.2

Specifically, we are given a set of point pairs, which is a subset of X × X ,

as S = {(xi,xj) | xi and xj belong to the same class}. Our goal is to make

use of S to learn a better metric through modifying the kernel so that the

performance of some subsequent task (e.g., clustering, classification) based

on the metric is improved after kernel learning.

2As we will see later in the formulation of the optimization problem for kernel learning,

these constraints are “soft” constraints rather than “hard” constraints in that they are

only preferred, not enforced. This makes it easy to handle noisy constraints, i.e., erroneous

supervisory information, if we so wish.
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2.2 Kernel Learning

Since the kernel matrix K is symmetric and positive semi-definite, we can

express it as

K =

p∑
r=1

λrvrv
T
r =

p∑
r=1

λrKr, (1)

where λ1 ≥ · · · ≥ λp > 0 are the p ≤ n positive eigenvalues of K, v1, . . . ,vp

are the corresponding normalized eigenvectors, and Kr = vrv
T
r .

We consider a restricted form of kernel matrix learning by modifying K

through changing the λr’s while keeping all Kr’s fixed. This approach has also

been used in some semi-supervised kernel learning methods based on labeled

data, typically for classification problems, e.g., (Cristianini, Shawe-Taylor,

Elisseeff, & Kandola, 2002; Lanckriet, Cristianini, Bartlett, El Ghaoui, &

Jordan, 2002; Bousquet & Herrmann, 2003; Tsuda, Akaho, & Asai, 2003;

Zhang, Yeung, & Kwok, 2004). Ideally, one would like to have as much flex-

ibility as possible in modifying K. Unfortunately, for many kernel learning

settings including ours, the amount of supervisory information in the form

of pairwise constraints or labeled data is typically very limited. Allowing too

much flexibility in the model while having only limited supervisory informa-

tion for learning is likely to lead to model overfitting. A common approach

to this problem is to regularize the model using model bias. Fixing all Kr’s

while allowing the eigenvalues to change can be regarded as a form of regu-

larization by constraining the search space of possible kernel matrices to the

eigenspace defined by the eigenvectors vr’s of K.

To ensure that the eigenvalues are nonnegative, we rewrite K as Kβ =
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[kβ(xi,xj)]n×n = [〈φβ(xi), φβ(xj)〉]n×n:

Kβ =

p∑
r=1

β2
rKr, (2)

which represents a family of kernel matrices parameterized by β = (β1, . . . , βp)
T .

We perform kernel learning such that the mean squared Euclidean dis-

tance induced by Kβ between feature vectors in H corresponding to point

pairs in S is reduced. Thus the criterion function for optimization is

JS(β) =
1

|S|
∑

(xi,xj)∈S

[(Kβ)ii + (Kβ)jj − 2(Kβ)ij]

=

p∑
r=1

β2
r

 1

|S|
∑

(xi,xj)∈S

(bi − bj)
TKr(bi − bj)


= βTDSβ, (3)

where bi is the ith column of the p × p identity matrix3 and DS is a p × p

diagonal matrix with diagonal entries

(DS)rr =
1

|S|
∑

(xi,xj)∈S

(bi − bj)
TKr(bi − bj)

=
1

|S|
∑

(xi,xj)∈S

[(bi − bj)
Tvr]

2 ≥ 0. (4)

To prevent β from degenerating to the zero vector 0 and to eliminate the

scaling factor, we minimize the convex function JS(β) subject to the linear

constraint 1Tβ = c for some constant c > 0. This is a simple convex opti-

mization problem with a quadratic objective function and a linear equality

3This indicator variable will be “overloaded” later to refer to a column of any identity

matrix whose size is clear from the context.
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constraint. We introduce a Lagrange multiplier ρ to minimize the following

Lagrangian:

JS(β, ρ) = JS(β) + ρ(c− 1Tβ). (5)

The optimization problem can be solved easily to give the optimal value

of β as the following closed-form solution:

β =
cD−1
S 1

1TD−1
S 1

. (6)

Note that D−1
S exists as long as all the diagonal entries of DS are positive,

which is usually true.4 We set the constant c =
∑p

r=1

√
λr.

3 Scalable Kernel Learning

The kernel learning method described above requires performing eigende-

composition on K. In case n is very large and hence K is a large matrix,

operations such as eigendecomposition on K are computationally demand-

ing. In this section, we apply low-rank approximation to extend the kernel

learning method so that it scales up well with n.

3.1 Low-Rank Approximation

We apply low-rank approximation (Ye, 2005) to approximate K by another

n× n symmetric and positive semi-definite matrix K̃:

K ' K̃ = WLWT , (7)

4In case DS is really singular (though a rare case), a common way to make it invertible

is to add a term εI to DS where ε is a small positive constant.
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where W ∈ Rn×m is an n×m matrix and L ∈ Rm×m is an m×m symmetric

and positive semi-definite matrix, with m� n.

There are different ways to construct L for low-rank approximation. We

consider one way which constructs L using a subset of the n data points. We

refer to these points as landmarks (de Silva & Tenenbaum, 2003; Weinberger,

Packer, & Saul, 2005; Silva, Marques, & Lemos, 2006). Without loss of

generality, we assume that the n points are ordered in such a way that the

first m points form the set of landmarks {xi}mi=1. We should ensure that all

points involved in S are chosen as landmarks. Other landmarks are randomly

sampled from all the data points. Similar to K in the previous section, L is

obtained here by applying the centering transform to L̂, as L = HL̂H, where

L̂ = [k̂(xi,xj)]m×m = [〈φ̂(xi), φ̂(xj)〉]m×m is the upper-left m×m submatrix

of K̂.

We apply eigendecomposition on L and express it as

L =

q∑
r=1

µrαrα
T
r = VαDµVT

α, (8)

where µ1 ≥ · · · ≥ µq > 0 are the q ≤ m positive eigenvalues of L, α1, . . . ,αq

are the corresponding normalized eigenvectors, Dµ = diag(µ1, . . . , µq), and

Vα = [α1, . . . ,αq]. Substituting (8) into (7), we can rewrite K̃ as

K̃ = W

(
q∑
r=1

µrαrα
T
r

)
WT

=

q∑
r=1

µr(Wαr)(Wαr)
T =

q∑
r=1

µrK̃r, (9)

where K̃r = (Wαr)(Wαr)
T .
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3.2 Kernel Learning

We apply low-rank approximation to devise a scalable kernel learning algo-

rithm which can be seen as an extension of the algorithm described in Sec-

tion 2. We use K̃ to approximate K and define the following parameterized

family of kernel matrices:

K̃β =

q∑
r=1

β2
rK̃r. (10)

Note, however, that β is now a q × 1 vector rather than a p× 1 vector.

The optimal value of β has the same form as (6), except that the constant

c is set to
∑q

r=1

√
µr and DS is now a q × q diagonal matrix with diagonal

entries

(DS)rr =
1

|S|
∑

(xi,xj)∈S

(bi − bj)
T K̃r(bi − bj)

=
1

|S|
∑

(xi,xj)∈S

[(bi − bj)
T (Wαr)]

2 ≥ 0. (11)

3.3 Computing the Embedding Weights

A question that remains to be answered is how to obtain W for low-rank

approximation. We use a method that is similar to locally linear embedding

(LLE) (Roweis & Saul, 2000; Saul & Roweis, 2003), with two differences.

First, we only use the first part of LLE to obtain the weights for locally

linear fitting. Second, we perform locally linear fitting in the kernel-induced

feature space H rather than the input space X .

Let W = [wij]n×m and wi = (wi1, . . . , wim)T . If xi is a landmark, i.e.,
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1 ≤ i ≤ m, then

wij =

 1 i = j

0 otherwise.
(12)

If xi is not a landmark, then we minimize the following function to obtain

wi:

E(wi) =
∥∥∥φ(xi)−

∑
φ(xj)∈Ni

wijφ(xj)
∥∥∥2

, (13)

where Ni is the set of K nearest landmarks of φ(xi) in H, subject to the

constraints
∑

φ(xj)∈Ni
wij = 1Twi = 1 and wij = 0 for all φ(xj) 6∈ Ni. We

can rewrite E(wi) as

E(wi) =
∑

φ(xj),φ(xk)∈Ni

wijwik(φ(xi)− φ(xj))
T (φ(xi)− φ(xk))

= wT
i Giwi, (14)

where

Gi = [(φ(xi)− φ(xj))
T (φ(xi)− φ(xk))]K×K

= [k(xi,xi) + k(xj,xk)− k(xi,xj)− k(xi,xk)]K×K (15)

is the local Gram matrix of xi in H.

To prevent wi from degenerating to 0, we minimize E(wi) subject to

the constraints
∑

φ(xj)∈Ni
wij = 1Twi = 1 and wij = 0 for all φ(xj) 6∈ Ni.

As above for the kernel learning problem, we solve a convex optimization

problem with a quadratic objective function and a linear equality constraint.

The Lagrangian with a Lagrange multiplier α is as follows:

L(wi, α) = wT
i Giwi + α(1− 1Twi). (16)
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The closed-form solution for this optimization problem is given by

wi =
G−1
i 1

1TG−1
i 1

(17)

if G−1
i exists.5

Instead of performing matrix inversion, a more efficient way of finding

the solution is to solve the linear system of equations

Giŵi = 1 (18)

for ŵi and then compute wi as

wi =
ŵi

1T ŵi

(19)

to ensure that the equality constraint 1Twi = 1 is satisfied.

3.4 Iterative Extension of Basic Algorithm

We assume above that the neighborhood relationships between points in H

and the local Gram matrices remain fixed during the kernel learning process.

A simple extension of this basic algorithm is to repeat the above procedure

iteratively using the learned kernel at each iteration. Thus the basic algo-

rithm is just a special case of this iterative extension when the number of

iterations is equal to one.

3.5 Computational Complexity

A major motivation for our scalable kernel learning method based on low-

rank approximation is to reduce the computational complexity so that the

5Similar to DS above, we may add εI to make sure that Gi is invertible.
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algorithm can exhibit better scalability. In this subsection, we compare the

computational complexity of the initial kernel learning method presented in

Section 2 with that of our scalable method presented in this section.

Without exploiting any structure in the kernel matrix K, eigendecompo-

sition of K to express it in the form of (1) takes O(n3) time. The diagonal

matrix DS can be computed according to (4) in O(p|S|) time and the opti-

mal value of β can be computed according to (6) in O(p) time. Note that

p ≤ n and typically |S| < n or even |S| � n. So the overall complexity of

the method is O(n3) which is dominated by the complexity of the eigende-

composition step.

As for our method, eigendecomposition of L in (8) has O(m3) time com-

plexity. The complexity of computing DS is O(qm|S|) and the complexity of

computing β is O(q). Moreover, we also need to compute W. The rows cor-

responding to the landmarks are computed according to (12) in O(m2) time

and those corresponding to the other data points take O((n−m)(K3 +m))

time. Note that q ≤ m and K ≤ m. Hence the overall complexity is

O(m3 + m2|S| + nK3 + nm). As m � n, the complexity of our method is

significantly lower than that of the original method.

Figure 1 shows the CPU time required by the initial and the scalable

kernel learning methods on a digit data set which contains digits “0” and “1”.

The total number of data points n = 4000 (2000 data points from each digit)

and the number of similarity constraints |S| = 50. The empirical results

agree well with the complexity analysis above. As shown in Figure 1(a), the

speedup is more significant when the data set is large. The CPU time only
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increases noticeably with the number of landmarks (Figure 1(b)).

4 Out-of-Sample Generalization

The exact form of out-of-sample generalization depends on the operation we

want to perform. For example, the n given points are first clustered into

C ≥ 2 classes after kernel learning, and then a new data point x is classified

into one of the C classes. We are interested in the case where both the

clustering of the n points and the classification of new points are based on

the same Euclidean metric in H.

The key idea of our out-of-sample generalization scheme rests on the

observation that kernel principal component analysis (KPCA) (Schölkopf,

Smola, & Müller, 1998) can be performed on {xi}mi=1 to obtain an embed-

ding in a q-dimensional subspace Y of H, so that the non-landmark points

{xi}ni=m+1 and any out-of-sample point x can be embedded into Y in the

same way.

Let {u1, . . . ,uq} be an orthonormal basis with each ur ∈ H being a

unit vector along the direction of the rth principal component. We define

U = [u1, . . . ,uq]. Then each landmark xi (i = 1, . . . ,m) can be embedded

into Y to give a q-dimensional vector

yi = UTφ(xi). (20)

Since

ur =
1
√
µr

m∑
j=1

αjrφ(xj), (21)
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Figure 1: CPU time required by the initial and the scalable kernel learn-

ing methods on a digit data set. (a) CPU time vs. data set size n for the

two kernel learning methods with the number of landmarks m fixed at 100;

(b) CPU time vs. number of landmarks m for the scalable method.
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we can express yi as

yi = D−1/2
µ VT

αLbi

= D−1/2
µ VT

αVαDµVT
αbi

= D1/2
µ VT

αbi. (22)

Let Ym = [y1, . . . ,ym]. So

Ym = D1/2
µ VT

α. (23)

For the non-landmark points {xi}ni=m+1, from (13), we use φ̃(xi) =
∑

φ(xj)∈Ni
wijφ(xj)

to approximate φ(xi) and ỹi to denote the embedding of φ̃(xi) in Y . Thus

we have

ỹi = UT φ̃(xi) =
∑

φ(xj)∈Ni

wijU
Tφ(xj)

=
∑

φ(xj)∈Ni

wijyj

= YmWTbi

= D1/2
µ VT

αWTbi. (24)

Similarly, for any out-of-sample example x, we use φ̃(x) =
∑

φ(xj)∈Ni
wjφ(xj)

to approximate φ(x) and ỹ to denote the embedding of φ̃(x) in Y . The em-

bedding weights w = (w1, . . . , wm)T can be determined as in Section 3.3.

Similar to the non-landmark points {xi}ni=m+1, we can obtain

ỹ = D1/2
µ VT

αw. (25)
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Based on (24) and (25), the squared Euclidean distance between ỹi and

ỹ in Y before kernel learning can be expressed as

d2(xi,x) = ‖ỹi − ỹ‖2

= (bTi W −wT )VαDµVT
α(WTbi −w)

= (bTi W −wT )L(WTbi −w). (26)

The squared Euclidean distance after kernel learning is

d2
β(xi,x) = (bTi W −wT )VαDβVT

α(WTbi −w), (27)

where Dβ = diag(β2
1 , . . . , β

2
q ).

5 Experimental Results

In this section, we present some experiments we have performed based on

both artificial and real-world data.

5.1 Experimental Setup

We compare two versions of our kernel-based metric learning method de-

scribed in Sections 2 and 3 with three metric learning methods. The first

method is RCA (Bar-Hillel et al., 2003, 2005), which is a promising linear

metric learning method that usually performs equally well as other compu-

tationally more demanding methods. The second method is locally linear

metric adaptation (LLMA) (Chang & Yeung, 2004), which is more general

in that it is linear locally but nonlinear globally. The third method is large
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margin nearest neighbor (LMNN) (Weinberger, Blitzer, & Saul, 2006), which

learns a global Mahalanobis metric for nearest neighbor classification with the

goal that data points from different classes are separated by a large margin.

For baseline comparison, we also include two metrics without metric learn-

ing. They are the Euclidean metric in the input space and the Euclidean

metric in the feature space induced by a Gaussian RBF kernel.

For each data set, we randomly generate 10 different S sets. For small

data sets, we can learn Kβ without low-rank approximation. For large data

sets, in addition to the data points involved in S, we also randomly select

some other points as landmarks for learning K̃β. We use the iterative exten-

sion of the scalable kernel learning algorithm with the number of iterations

equal to 3. We also measure the change in metric learning performance as

the number of landmarks increases.

5.2 An Illustrative Example

Figure 2 uses the XOR data set to compare the performance of different

metrics, some with metric learning. Figure 2(a) shows 360 data points in the

input space. The points with the same color and mark belong to the same

class. The randomly generated point pairs corresponding to the similarity

constraints in S are shown in solid lines (Figure 2(b)). Forty new data points

are shown in Figure 2(c), with different marks used to distinguish them from

the original input data points. The results obtained by RCA, LMNN, LLMA,

RBF kernel and two versions of our method are shown in Figure 2(d)–(i).
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Figure 2: XOR illustration. (a) input data; (b) similarity constraints; (c) new

data; (d) RCA; (e) LMNN; (f) LLMA; (g) RBF; (h) Kβ; (i) K̃β (m = 40).
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RCA, LMNN, and LLMA perform metric learning directly in the input space,

which can be generalized to new data using the learned transformation. For

the kernel methods, we apply KPCA using the (learned) kernel matrix to

embed the data points to a 2-dimensional space, as shown in Figure 2(g)–(i).

New data points can be embedded using the generalization method described

in Section 4. As expected, neither RCA nor LMNN performs satisfactorily for

the XOR data set since it can only perform linear transformation. LLMA can

group the points according to their class membership, although the topology

of the data set is not preserved well after metric adaptation. On the other

hand, our kernel-based metric learning methods can give the best results. The

result of the scalable kernel learning method with low-rank approximation

based on 40 landmarks is almost as good as that of the basic algorithm based

on all 400 data points. Moreover, the result on embedding of new data points

verifies the effectiveness of our out-of-sample generalization method.

5.3 Quantitative Performance Comparison

5.3.1 Internal Performance Measure

Let {yi}ni=1 be the set of true class labels of the n data points. We define the

following performance measure:

J =
db

dw
, (28)

where db = (1/nb)
∑

yi 6=yj
‖xi − xj‖ is the mean between-class distance with

nb being the number of point pairs with different class labels, and dw =
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(1/nw)
∑

yi=yj
‖xi − xj‖ is the mean within-class distance with nw being the

number of point pairs with the same class label. Note that J is closely

related to the optimization criterion JS in (3), except that JS is defined for

the labeled data (i.e., data involved in the pairwise constraints) only while

J is for all data assuming the existence of true class labels. Since LLMA is

not efficient for large data sets, we only compare our kernel-based methods

with RCA and RBF kernel in this subsection. For kernel methods, we use

φ(xi) or φ̃(xi) in place of xi and apply the kernel trick to compute the mean

distances and hence J . A larger value of J corresponds to a better metric

due to its higher class or cluster separability.

We first perform some experiments on a much larger XOR data set with

8,000 data points. We randomly select 50 similarity constraints to form S

and measure the metric learning performance in terms of the J value for

an increasing number of landmarks. Table 1 shows the results for different

metrics. For the metric learning methods (i.e., RCA and our method), we

show for each trial the mean (upper) and standard deviation (lower) over

10 random runs corresponding to different S sets. From the results, we can

see that our method outperforms the other methods significantly. Moreover,

using more landmarks generally gives better results.

We further perform some experiments on real-world data sets. One of

them is the Isolet data set from the UCI Machine Learning Repository which

contains 7,797 isolated spoken English letters belonging to 26 classes, with

each letter represented as a 617-dimensional vector. Other data sets are
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Table 1: Performance comparison in terms of J value for XOR data set

(|S| = 50, m = 100:100:800).

Input data RBF RCA Our method

m = 100 m = 200 m = 300 m = 400

1.2460 1.4253 1.2552 2.8657 3.0886 3.5640 3.8422

±0.19 ±1.28 ±0.42 ±0.78 ±1.25

m = 500 m = 600 m = 700 m = 800

4.2378 4.6395 4.8334 4.7463

±0.99 ±0.68 ±0.90 ±0.65

handwritten digits from the MNIST database.6 The digits in the database

have been size-normalized and centered to 28×28 gray-level images. Hence

the dimensionality of the input space is 784. In our experiments, we randomly

choose 2,000 images for each digit from a total of 60,000 digit images in the

MNIST training set. We use 50 similarity constraints and 100 landmarks

in the experiments. The results for Isolet and different digit data sets are

shown in Table 2. From the results, we can again see that the metric learned

by our method is the best in terms of the J measure.

To assess the performance of different metric learning methods with re-

spect to the number of similarity constraints |S|, we perform more experi-

6http://yann.lecun.com/exdb/mnist/
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ments on the MNIST data sets with different sizes |S|. Figure 3 shows the

results for different MNIST data sets with the J value used as performance

measure. As we can see, the performance of RCA cannot improve with more

similarity constraints. On the other hand, the J value of our method usually

increases with the number of constraints, with some fluctuations reflecting

the randomness involved in choosing the constraint sets.

5.3.2 External Performance Measure

Besides using the generic performance measure J which is not designed for

a specific machine learning task, we further conduct external performance

evaluation on some semi-supervised learning tasks to see how much the met-

ric learning methods can help to improve the learning performance. First,

we report k-means clustering results based on the learned distance metrics

for the above Isolet and MNIST data sets. Then, we compare our kernel

methods with state-of-the-art metric learning methods on semi-supervised

classification and clustering tasks in Sections 5.4 and 5.5, where we use clas-

sification accuracy and Rand index (Rand, 1971), respectively, as external

performance measures.

The Rand index reflects the agreement of the clustering result with the

ground truth. Let ns be the number of point pairs that are assigned to

the same cluster (i.e., matched pairs) in both the resultant partition and

the ground truth, and nd be the number of point pairs that are assigned to

different clusters (i.e., mismatched pairs) in both the resultant partition and

the ground truth. The Rand index is defined as the ratio of (ns + nd) to the
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Figure 3: Performance comparison in terms of J value vs. number of simi-

larity constraints |S| for MNIST data sets.
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total number of point pairs, i.e., n(n− 1)/2. When there are more than two

clusters, however, the standard Rand index will favor assigning data points

to different clusters. We modify the Rand index as in (Xing et al., 2003) so

that matched pairs and mismatched pairs are assigned weights to give them

equal chance of occurrence (0.5).

We first externally evaluate the effectiveness of our kernel-based metric

learning method for k-means clustering on the Isolet and MNIST data sets.

As in (Bar-Hillel et al., 2003) and (Chang & Yeung, 2004), we use the Rand

index to measure the clustering quality. The comparison results are shown

in Table 3. As we can see from the table, our kernel-based method gener-

ally outperforms the other methods in terms of the Rand index, though the

improvements are not as large as those based on the internal performance

measure J .

5.4 Evaluation on Semi-Supervised Classification Tasks

In this subsection, we perform experiments on semi-supervised classification

and compare our kernel-based method with RCA and LMNN. For each data

set and percentage of training data, we randomly select 10 different subsets

of the labeled data.7 Classification accuracy is used as performance measure.

The performance comparison in terms of classification accuracy for the

Isolet and MNIST data sets is shown in Table 4. As we can see, while LMNN

can dramatically improve the classification performance, our method gives

7While LMNN directly makes use of the labeled data, we extract pairwise similarity

constraints from the label information for RCA and our kernel-based method.

28



even better results.

5.5 Evaluation on Semi-Supervised Clustering Tasks

In this subsection, we conduct performance evaluation on some semi-supervised

clustering tasks and use the Rand index as the external performance measure

for clustering quality.

We perform semi-supervised clustering experiments on six real-world data

sets from the UCI Machine Learning Repository: Soybean (47/35/4/10), Pro-

tein (116/20/6/15), Wine (178/13/3/20), Ionosphere (351/34/2/30), Boston

housing (506/13/3/40), and Breast cancer (569/31/2/50). The numbers in-

side the brackets (n/d/c/|S|) summarize the characteristics of the data sets,

including the number of data points n, number of features d, number of

clusters c, and number of randomly selected point pairs for the similarity

constraints. Note that these UCI data sets are much smaller than those

used in Section 5.3, so LLMA can also be included here for experimental

comparison.

The semi-supervised clustering results for the six UCI data sets are shown

in Figure 4 in terms of both the J value and the Rand index. As we can

see, our kernel-based metric learning method significantly outperforms all

other methods in terms of the J value. As for semi-supervised clustering,

LLMA and the kernel method are comparable in performance in terms of

the Rand index, with the kernel method being slightly better than LLMA.

More specifically, based on a paired t-test with significance level 0.05, the
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Figure 4: Performance comparison in terms of J value and Rand index for

six UCI data sets.

kernel method is better than LLMA on the Soybean and Boston housing

data sets but worse on the Breast cancer data set.

6 Concluding Remarks

We have presented a simple and efficient kernel-based semi-supervised met-

ric learning method based on supervisory information in the form of pairwise
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similarity constraints. Not only does it scale up well with the data set size,

it can also naturally lead to out-of-sample generalization. Although previous

studies by other researchers showed that pairwise dissimilarity constraints

usually cannot help much in many real-world applications, there are sit-

uations when incorporating them may still be helpful and hence we plan

to extend our method to incorporate dissimilarity constraints as well. In

our low-rank approximation scheme, besides including those points involved

in S, we also randomly sample some other points as landmarks. A recent

study (Silva et al., 2006) shows that non-uniform sampling of landmarks for

manifold learning can give parsimonious approximations using only very few

landmarks. We will pursue research along this direction in our future work.
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Table 2: Performance comparison in terms of J value for Isolet and MNIST

data sets (|S| = 50, m = 100).

Isolet MNIST

{0, 1} {1, 3} {1, 5} {1, 7} {1, 9}

Input data 1.3888 1.3914 1.2124 1.1920 1.2458 1.2379

RBF 1.2477 1.2460 1.1447 1.1357 1.1570 1.1548

RCA 1.3049 1.2970 1.1779 1.1705 1.1820 1.2086

±0.0030 ±0.0324 ±0.0270 ±0.0283 ±0.0399 ±0.0391

Our method 2.7938 2.9078 1.7070 1.4015 1.5463 1.7023

±0.0430 ±0.4614 ±0.2252 ±0.1400 ±0.2055 ±0.3567

{0, 1, 2} {6, 7, 8} {0, 1, 9} {3, 4, 5, 6}

Input data 1.2408 1.1534 1.2779 1.1162

RBF 1.1598 1.0963 1.1796 1.0729

RCA 1.1844 1.1207 1.2087 1.0793

±0.0311 ±0.0160 ±0.0200 ±0.0110

Our method 1.8620 1.6233 1.9608 1.2945

±0.3160 ±0.1996 ±0.1884 ±0.0667
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Table 3: Performance comparison in terms of Rand index for Isolet and

MNIST data sets (|S| = 50, m = 100).

Isolet MNIST

{0, 1, 2} {6, 7, 8} {3, 4, 5, 6}

Input data 0.7374 0.8779 0.9214 0.7287

±0.0143 ±0.0037 ±0.0002 ±0.0003

RBF 0.6848 0.8055 0.8908 0.6840

±0.0113 ±0.0032 ±0.0001 ±0.0551

RCA 0.7627 0.8936 0.9243 0.7875

±0.0183 ±0.0138 ±0.0032 ±0.0338

Our method 0.7712 0.8855 0.9310 0.7951

±0.0269 ±0.0161 ±0.0245 ±0.0322
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Table 4: Performance comparison in terms of classification accuracy for Isolet

and MNIST data sets.

Isolet MNIST {0, 1, 2, 3, 4}

training data 5% 10% 15% 20% 5% 10%

Input data 0.6123 0.7017 0.7518 0.7624 0.2768 0.3592

±0.0106 ±0.0024 ±0.0037 ±0.0062 ±0.0106 ±0.0212

RCA 0.8654 0.8851 0.7531 0.7655 0.2811 0.8431

±0.0083 ±0.0033 ±0.0045 ±0.0018 ±0.0117 ±0.0157

LMNN 0.8673 0.9125 0.9234 0.9328 0.7370 0.8683

±0.0067 ±0.0032 ±0.0031 ±0.0020 ±0.0247 ±0.0142

Our method 0.8810 0.9189 0.9237 0.9276 0.7874 0.8851

±0.0143 ±0.0061 ±0.0100 ±0.0087 ±0.0225 ±0.0140

training data 15% 20%

Input data 0.4336 0.5024

±0.0238 ±0.0144

RCA 0.8801 0.8931

±0.0078 ±0.0079

LMNN 0.9126 0.9349

±0.0068 ±0.0070

Our method 0.9223 0.9306

±0.0112 ±0.0087
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