Improving the Approximation and

Convergence Capabilities of Projection Pursuit Learning

March 14, 1995

Abstract
One nonparametric regression technique that has been successfully applied to high-dimen-
sional data is projection pursuit regression (PPR). In this method, the regression surface
is approximated by a sum of empirically determined univariate functions of linear com-
binations of the predictors. Projection pursuit learning (PPL) proposed by Hwang et al.
formulates PPR using a two-layer feedforward neural network. One of the main differences
between PPR and PPL is that the smoothers in PPR are nonparametric, whereas those
in PPL are based on Hermite functions of some predefined highest order R. While the
convergence property of PPR is already known, that for PPL has not been thoroughly
studied. In this paper, we demonstrate that PPL networks do not have the universal ap-
proximation and strong convergence properties for any finite R. But, by including a bias
term in each linear combination of the predictor variables, PPL networks can regain these
capabilities, independent of the exact choice of R. It is also shown experimentally that
this modification improves the generalization performance, and creates smoother decision

surfaces for classification problems.

1 Introduction

In recent years, many neural network models have been proposed for pattern classification,
function approximation and regression problems. Among them, the class of multi-layer feed-
forward networks is perhaps the most popular. Standard back-propagation performs gradient
descent in the weight space of a network with fixed topology, and is useful only when the net-
work architecture is chosen correctly. Too small a network cannot learn the problem well, but
a size too large will lead to over-generalization and thus poor performance. Hence, some recent
studies have sought to take the constructive approach [1, 2], which starts with a small network

and then grows additional hidden units and weights until a satisfactory solution is found.

Besides learning the weights and network size, one may also modify the transfer functions
in the hidden units, because different transfer functions are suitable for different problems. By
making their functional forms modifiable by a set of parameters, the transfer functions can adapt
themselves under different situations. Moody [3], for example, considered a number of these
flexible transfer functions and demonstrated experimentally better generalization performance

as compared to the sigmoid function.

2 PPL as Generalization of PPR

Projection pursuit learning (PPL)! [5, 6] is a constructive procedure developed along the lines as
discussed above. Tt is inspired from the statistical technique projection pursuit regression (PPR)
[7]. In a regression problem, one is given a d-dimensional random vector X, the components of
which are called predictor variables, and a random variable, Y, called response. A regression
surface f describes a general relationship between X and Y. Without loss of generality, we

assume E(f) = 0. In PPR, f is approximated by:
JapPr(X) = gi(a] %), (1)
ji=1

where a]»Tx denotes the inner product of the projection vector a; (with ||a;j|| = 1) and input
vector x, and g; is called the smoother. The main advantage of PPR is that it does not suffer

from the “curse of dimensionality”.

PPL is obtained by formulating PPR using a two-layer feedforward neural network. With-
out loss of generality, we consider networks with only one output unit. The output f,(x) for a

network with n hidden units is:
Fa(x) =" Bigi(a] x), (2)
ji=1

where 3; is the weight connecting the jth hidden unit to the output unit, g; is the transfer
function for the jth hidden unit, and the components of a; are the weights connecting all the
input units to the jth hidden unit with ||a;|| = 1. The similarity between (1) and (2) should

be apparent.

One of the main differences between PPR and PPL is in the form of the smoothers. In
PPR, the smoothers are nonparametric and are usually based on locally linear fits [7]. However,
this leads to the use of large regression tables, unstable approximation in calculating derivatives,

and piecewise interpolation [5].

1 This term was also coined by [4]. But, in this paper, we refer PPL to the formulation by Hwang et al. [5].

On the other hand, the smoothers in PPL are parametric. They are represented as linear

combinations of Hermite functions? [8] of the form

R

gi(af x) =Y cjrhjr(a] x), (3)

r=1
where R, called the order, is a constant set by the user. The h,’s are orthonormal and defined
by hy(z) = \/Lﬁ(r!)_1/271'1/4'2_(7_1)/2Hr(z)e_z2/2, where H,(z)’s are the Hermite polynomials.
The use of Hermite functions enables smooth interpolation and also fast and accurate computa-
tion of the derivatives without using large regression tables. Moreover, the optimal coefficients
for 3;’s and ¢;’s may be computed by linear algebra, so the only part that requires nonlinear
optimization techniques is the a;’s. Experimentally, PPL networks are considerably more parsi-
monious and accurate than conventional back-propagation networks on a number of regression
problems [5]. For classification problems, PPL networks are also able to produce smoother
classification boundaries than the cascade-correlation architecture, and are thus expected to

generalize better [6].

However, a major problem with PPL is that the order R has to be chosen correctly for
good training and testing performance. This is usually explained as a manifestation of the
bias-variance dilemma. By using a large R, one is supposedly able to decrease the bias while
possibly increasing the variance. In the following section, we will demonstrate that besides the
above reason, another important reason is that with a fixed R, the bias cannot be made as
small as desired by increasing n even without bound. In other words, PPL networks with a

fixed R do not have the property of universal approximation.

3 Fixing R Hampers Universal Approximation

The strong convergence of PPR has been proved in [9], which states that if each new g, in (1)
at stage n is given by g,(2) = E(f — fa—1/al X = z), and the projection direction a, is chosen
such that E(gn(af X))? > psupprp_, E(ga(bTX))?, where 0 < p < 1 is fixed, then f, in (1)
strongly converges to the desired f. However, this result is not readily applicable to PPL, as
has been assumed in [5]. With the smoothers in PPL being parametric, this g, may not always

be realizable. It 1s this very concern that has led us to the research work reported here.

As a simple illustration, consider the case when d = 1. Put z = ax. The polynomials
hr(z) are even or odd functions according to whether the index r is even or odd [8]. Besides,

as |a| is restricted to be 1, there can be at most two projection directions for the hidden units,

20ther parametric forms may be used in place of the Hermite functions, but the pros and cons among these

varieties will not be addressed in this paper.

corresponding to z = z. Assume that there are n; hidden units with z = z, and ns with

z = —z, where n1 + ny = n. From (2), the network output f, is given by:
fa®) = D ajgi(x)+ Y Bigi(—z)
ji=1 ji=1

= Zl: Z ajcjrh(z) + 22: Zﬁjdjrhr(_m)

j=1lr=1 j=1lr=1
[R/2] [(R-1)/2]

= Z (pas + q25)has(z) + Z (P2s+1 — q25+1)h2sy1(2),
s=1 s=1

where p, = Z;;l oCir, @y = Z;él Bjdj,. Since the family of Hermite functions is complete?® in
L?(—00, +00) only when R is infinite [8], the universal approximation property of PPL networks
does not hold for any finite R. As a consequence, in general, the sequence {f,} produced by the
PPL procedure may not converge to the desired function f. This fact will also be experimentally

demonstrated in Section 5.1.

4 Modified PPL with Addition of Bias Term

To remedy the problem suggested above, one has to determine the value of R so that it is
“sufficiently” large for the problem at hand. One possibility could be to set R to be very large.
However, a large R implies a large number of parameters, which may degrade generalization.
Moreover, the number of computational steps, both during training and testing, is increased.
Besides, a large R also increases the number of “flat spots” [10], which are locations where the
derivative of the hidden unit transfer function approaches zero. This increases the chance that

the hidden units will get stuck, making the optimization problem more difficult.

A more disciplined approach is to perform PPL at several fixed values of R, and compare
the resultant networks using criteria such as ATIC [11]. Note that because both R and the
number n of hidden units affect the approximation accuracy, one has to make comparisons

across different combinations of R and n, which is also very computationally expensive.

In the following, we suggest that one can keep R fixed, while still capable of achieving
universal approximation simply by including a bias term into each linear combination of the

predictors in (2), i.e.

Fa(x) = Bigi(a) x + 6;).

ji=1

3Note that this is required for universal approximation, not to mention exact representation.

4.1 Universal Approximation

The set of functions implementable by a modified PPL network with n hidden units is S5 (¢) =
{fo R =R | faulx) = Z?:l ﬁjib(aij + 6;)}. Consider Sy(v) = U,—, S7(¢). For
P(z) = ze‘zz/z, ¥ is obviously bounded and nonpolynomial. Hence, by Theorem 2 of [12],
Sa(3) is dense in LP(p) for all compactly supported finite measures g on R¢ and 1 < p < c0.*
As the functional form of ¢ in (3) subsumes that of ¢, hence with z = a”x+ 6, neural networks
with one layer of hidden units of the form (3) are universal approximators. In other words, the
modified PPL networks are capable of universal approximation. In comparison with PPR [7],
although the bias is not used, this is not a problem as the smoothers are nonparametric. It is
also obvious that the order R in (3) does not affect the universal approximation property. In

—22/2

fact, any function containing e can be used as g in (3).

4.2 Strong Convergence

PPL constructs the network by adding hidden units one at a time. So when a new hidden unit

is added,

n—1

Fa(x) = BG;(8] x + ;) + Buga(al x + 0,),
j=1
where [;’j,_(}j,éj,éj are the updated values of §;,¢;,a; and 6;, respectively. Details on how
to do the update are described in [5]. PPL can be implemented with or without backfitting
[7, 5], which consists of cyclically adjusting the parameters associated with each previously
installed hidden unit by minimizing the residual error until there is no significant change.
Obviously, if backfitting is employed, all the weights are freely modifiable and thus strong
convergence of the PPL procedure follows readily from the universal approximation capability
of the modified PPL network. If backfitting is not performed, i.e. §; = g;,a; = a; and éj =0;
for j = 1,2,...,n— 1, it then follows from [14] and the universal approximation capability of
the modified PPL networks that the sequence {f,} still strongly converges to f in L? provided
that at each iteration when a new hidden unit is added, the [;’j 'S, gn,a, and @, are chosen so

as to minimize the expression ||f — fu||2.

Tf we further drop the restriction of ||a;|| = 1 in (2), then by Theorem 1 of [13], S4() is dense in LP(yu) for

all finite but not necessarily compactly supported measures x on R?.

5 Simulation Experiments

The implementation of our modified PPL algorithm is based on the C code of the original PPL
algorithm provided by Jeng-Neng Hwang and Shyh-Rong Lay. But in the simulation below, we
do not use the backward pruning procedure mentioned in [5] in order to focus on the issue of

approximation capability.

5.1 Inadequacy of a Fixed R

Consider approximating the Hermite function hs(z):

_ 223 — 3z —z?

F(@) = hofa) =~ exp(T5),

using R = 2.° A training set of 1000 points is randomly generated from the uniform distribution
U[-5,5], and a test set of 2000 points is generated with regularly spaced intervals on [—5, 5].
Mean squared error (M SE = 3- Efil(f(xl) — fa(2;))?, where N is the number of data points)
is used for comparison.

The training and testing curves are shown in Figure 1. The original PPL algorithm cannot

learn the function, while the use of a bias term in the modified algorithm allows the Hermite

functions to shift for more accurate approximation.

0.12 ; ;
original(training) —+—
modified(training) -o--
original(testing) —+—
modified(testing) —+-
0.1 B
0.08 - R
<L}JJ 0.06
2 .
0.04 i
0.02 . R
e)
S)
0 | | i o & &
1 2 3 4 6 7 8 9

5
#hidden

Figure 1: Training and testing curves for f(z) = hs(z) using R = 2.

5Obviously, using R > 2 would make exact representation trivial.

5.2 Regression Problems
The regression functions tested here are the complicated interaction function described in [5]:
FO (1, 29) = 1.9(1.35+ ¢ sin(13(21 — 0.6)?)e "2 sin(T2)),
and the 6-dimensional problem used in [15]:
f(2)(a:1, T, 3, %4, 25, 2) = 10sin(mzi29) + 20(2x3 — 0.5)2 4+ 10x4 + 5zs5.

Note that zg in f(?) is a spurious predictor that does not influence the response. Methods
for generating the data are described in [15, 5]. Reported below is the fraction of variance
unezplained (FVU = Zi\;l(f(xz) — fa(x:))?/ Ef\;l(f(xz) -+ Ef\;l f(xi))?). The testing (i.e.
generalization) performance for R = 9 is summarized in Table 1. With the modified algorithm,

generalization can be improved.

Table 1: Comparison of testing (generalization) FVU with R = 9.
noiseless f(1) | noisy f(1) || noiseless f(1) | noisy f(1) F@
(3 hidden) (3 hidden) (5 hidden) (5 hidden) || (3 hidden)

original 0.05555 0.06399 0.04973 0.05653 0.499337
modified 0.05528 0.06395 0.02018 0.05627 0.266393

5.8 Classification Problem

The benchmark chosen is the two-spirals problem [1, 6]. The classification boundaries learned
are shown in Figure 2. The modified PPL is able to generate a smoother classification boundary

than the original one.

6 Conclusion

In this paper, we studied the fundamental issues of universal approximation and convergence
capabilities of the PPL algorithm. We demonstrated that PPL networks do not have these
capabilities for any finite order R. This helps to explain why the highest order R of the Her-
mite functions used in the PPL smoothers has a critical effect on the network’s approximation
accuracy. Moreover, note that while both R and the global bandwidth parameter in nonpara-

metric smoothers are responsible for controlling the bias-variance tradeoff, they are not totally

x2

(a) Original PPL (b) Modified PPL

Figure 2: Classification boundaries for the two-spirals problem with 11 hidden units and R = 13.

equivalent, as suggested in [5]. Consider, for example, radial basis function networks in which
the bandwidth corresponds to the “width” of each kernel (or hidden unit). As shown in [16],
one can have just a global bandwidth (i.e., with the same width for all kernels) while still
ensuring universal approximation, under certain regularity conditions on the functional form
of the kernels. More relevant to our study here, this approximation capability i1s independent
of the value of bandwidth chosen. This is however not the case for R in the absence of a bias
term, because then the universal approximation property does not hold for any fixed finite R
and thus the approximation error (i.e. bias) cannot be made as small as desired by trading

variance.

By including a bias term in each linear combination of the predictor variables, PPL net-
works can regain both the universal approximation and convergence capabilities. Besides, this
is not affected by the exact choice of R. We also showed experimentally that this modifica-
tion improves the testing performance in regression problems and leads to smoother decision

boundaries in classification problems.

In our future work, we will compare the use of Hermite functions as parametric smoothers
with other possibilities. We will also compare PPL networks and conventional back-propagation

networks with respect to the effective number of parameters.

7

Acknowledgments

The authors would like to thank Jeng-Neng Hwang and Shyh-Rong Lay for providing the C

code of their PPL algorithm.

References

(1]

[11]

[12]
[13]

[14]

[15]

[16]

S.E. Fahlman and C. Lebiere. The cascade-correlation learning architecture. In D.S. Touretzky,
editor, Advances in Neural Information Processing Systems 2, pages 524-532. Morgan Kaufmann,

Los Altos CA, 1990.
D.Y. Yeung. Constructive neural networks as estimators of Bayesian discriminant functions. Pat-
tern Recognition, 26(1):189-204, 1993.

J. Moody and N. Yarvin. Networks with learned unit response functions. In J.E. Moody, S.J.
Hanson, and R.P. Lippmann, editors, Advances in Neural Information Processing Systems 4, pages
1048-1055. Morgan Kaufmann, 1992.

Y. Zhao and C.G. Atkeson. Projection pursuit learning. In Proceedings of the International Joint
Conference on Neural Networks, volume 1, pages 869-874, Seattle, WA, USA, July 1991.

J.N. Hwang, S.R. Lay, M. Maechler, D. Martin, and J. Schimert. Regression modeling in back-
propagation and projection pursuit learning. IEEE Transactions on Neural Networks, 5(3):342—
353, May 1994.

J.N. Hwang, S.S. You, S.R. Lay, and [.C. Jou. What’s wrong with a cascaded correlation learning
network: A projection pursuit learning perspective. Submitted to IEEFE Transactions on Neural
Networks.

J.H. Friedman and W. Stuetzle. Projection pursuit regression. Journal of the American Statistical
Association, 76(376):817-823, 1981.

G. Sansone. Orthogonal Functions. Dover, New York, 1991.

L.K. Jones. On a conjecture of Huber concerning the convergence of projection pursuit regression.
The Annals of Statistics, 15(2):880-882, 1987.

S.E. Fahlman. Faster learning variations on back-propagation: An empirical study. In D.S.
Touretzky, G.E. Hinton, and T.J. Sejnowski, editors, Proceedings of the 1988 Connectionist Models
Summer School, pages 38—51, Los Altos, CA, 1988. Morgan Kaufmann.

H. Akaike. A new look at the statistical model identification. /EFE Transactions on Automatic
Control, AC-19(6):716—723, December 1974.

K. Hornik. Some new results on neural network approximation. Neural Networks, 6:1069-1072,
1993.

K. Hornik. Approximation capabilities of multilayer feedforward networks. Neural Networks,
4:251-257, 1991.

L.K. Jones. A simple lemma on greedy approximation in Hilbert space and convergence rates for
projection pursuit regression and neural network training. The Annals of Statistics, 20(1):608—613,
1992.

J.H. Friedman, E. Grosse, and W. Stuetzle. Multidimensional additive spline approximation.
SIAM Journal of Scientific and Statistical Computing, 4(2):291-301, June 1983.

J. Park and I. Sandberg. Universal approximation using radial-basis-function networks. Neural
Computation, 3:246-257, 1991.

