User Profiling for Intrusion Detection using
Dynamic and Static Behavioral Models *

Dit-Yan Yeung and Yuxin Ding

Department of Computer Science, Hong Kong University of Science and Technology
dyyeung@cs.ust.hk

Abstract. Intrusion detection has emerged as an important approach to
network security. In this paper, we adopt an anomaly detection approach
by detecting possible intrusions based on user profiles built from normal
usage data. In particular, user profiles based on Unix shell commands
are modeled using two different types of behavioral models. The dy-
namic modeling approach is based on hidden Markov models (HMM) and
the principle of mazimum likelihood, while the static modeling approach
is based on event occurrence frequency distributions and the principle
of minimum cross entropy. The novelty detection approach is adopted
to estimate the model parameters using normal training data only. To
determine whether a certain behavior is similar enough to the normal
model and hence should be classified as normal, we use a scheme that
can be justified from the perspective of hypothesis testing. Our experi-
mental results show that static modeling outperforms dynamic modeling
for this application. Moreover, the static modeling approach based on
cross entropy is similar in performance to instance-based learning re-
ported previously by others for the same dataset but with much higher
computational and storage requirements than our method.

1 Introduction

Intrusion detection, which refers to a certain class of system attack detection
problems, is a relatively new area in computer and information security. Many
intrusion detection systems built thus far are based on the general model pro-
posed by Denning in a seminal paper [6]. From a high-level view, the goal is to
find out whether or not a system is operating normally. Abnormality or anomaly
in the system behavior may indicate the occurrence of system intrusions caused
by successful exploitation of system vulnerabilities.

Host-based intrusion detection systems detect possible attacks into individ-
ual host computers. Such systems typically utilize information specific to the
operating systems of the target computers. On the other hand, network-based
intrusion detection systems monitor network behavior by examining the content
as well as the format of network data packets, which typically are not specific

* This research was supported by the Hong Kong Innovation and Technology Commis-
sion (ITC) under project AF/223/98 and the Hong Kong University Grants Com-
mittee (UGC) under Areas of Excellence research grant AoE98/99.EG01.

II Dit-Yan Yeung and Yuxin Ding

to the exact operating systems used by individual computers as long as these
computers can communicate among themselves using the same network protocol.

Two general approaches are commonly used for building intrusion detection
systems. Misuse detection systems detect evidence of attacks based on prior
knowledge about known attacks. Anomaly detection systems, on the other hand,
model normal system behavior to provide a reference against which deviations
are detected. In other words, the major difference between the two approaches is
on whether normal or abnormal (i.e., intrusive) behavior is modeled explicitly. In
this paper, data mining methods based on the anomaly detection approach are
proposed for host-based intrusion detection. We consider normal user profiling
based on shell command sequences from audit logs [20,9, 14, 16,18, 21].

Typical classification problems studied in pattern recognition can be formu-
lated as classifying each pattern into one of ¢ (> 2) classes with as low classifica-
tion error as possible. To build such a discriminative classifier, training examples
from all ¢ classes are needed. While this formulation is commonly used in pattern
recognition, there also exists another formulation called novelty detection [4,2,
11]. In a probabilistic sense, it corresponds to deciding whether an unknown
test pattern is produced by the underlying data distribution that corresponds
to the training set of normal patterns. While novelty detection problems appear
to be similar to 2-class classification problems, with the two classes correspond-
ing to normal and abnormal patterns respectively, a major difference is that
novelty detection methods typically use only training examples from the class
corresponding to normal patterns to build a generative model of normal behav-
ior. The novelty detection approach is particularly attractive under situations
where novel or abnormal patterns are expensive or difficult to obtain for model
construction. In this paper, the novelty detection approach is adopted.

2 Dynamic versus Static Behavioral Models

Normal user behaviors are profiled by building behavioral models using data
collected from normal operations. There are generally two categories of behav-
ioral models. Dynamic models explicitly model temporal variations essential for
discriminating abnormal behavior from normal behavior. Static models, on the
other hand, do not explicitly model temporal variations. They could be used
for anomaly detection problems if the normal system behavior does not exhibit
significant temporal variations, or if the temporal sequences are first converted
into some non-temporal feature representation.

Different anomaly detection methods have been used, e.g., instance-based
learning [15, 16], multi-layer perceptrons [7,20], decision trees [9], hidden Markov
models (HMM) [14, 23], frequent episodes [18], correlation analysis [8], statistical
likelihood analysis [7], rule learning [10, 17, 23], and uniqueness method [21]. Of
these methods, only HMMs are intrinsically dynamic in nature. Also, not all of
them are based on the preferred novelty detection approach and hence they need
both normal and intrusion data for model construction.

User Profiling for Intrusion Detection II1

In this paper, intrusion detection systems based on profiling shell command
sequences are first studied with the dynamic modeling approach using HMMs.
Afterwards, we will propose an information-theoretic static modeling approach
based on the usage frequencies of shell commands. Comparative studies will then
be performed.

3 Dynamic Modeling Approach

3.1 Hidden Markov Models

HMMs are stochastic models of sequential data. Each HMM contains a finite
number of unobservable states. State transitions are governed by a stochastic
process to form a Markov chain. At each state, some state-dependent events can
be observed. The emission probabilities of these observable events are determined
by a probability distribution, one for each state. Of interest here are discrete
HMMs in which the observed events are discrete symbols, as opposed to other
models not studied here, e.g., continuous-density HMMs.

Fully-connected or ergodic HMMs allow state transitions between all state
pairs. On the other hand, left-to-right HMMs do not allow state transition back
to any state to the left of the current state. In fact, most left-to-right HMMs
used in practice only allow state transition from a state to itself (called self-
transition), to the immediate neighbor to the right, and to the neighbor two
steps to the right. In this paper, our left-to-right HMMs are further restricted
to only the first two types of state transition.

To estimate the parameters of an HMM for modeling normal behavior, se-
quences of normal events (shell commands in our case) collected from normal
system usage are used as training examples. An ezpectation-mazimization (EM)
algorithm [5] known as the Baum-Welch re-estimation algorithm [1] for mix-
ture density estimation is used to find the maximum-likelihood (ML) parameter
estimate. More details of the algorithm can be found in [19].

3.2 Sample Likelihood with Respect to Model

Given a trained HMM M, the sample likelihood of an observation sequence S
with respect to M can be computed using either the forward algorithm or the
backward algorithm [19]. From a generative point of view, this can be seen as
computing the probability that a given observation sequence is generated by the
model. Alternatively, we can also consider it as providing a quantitative measure
for assessing how well the model matches the sequence.

Ideally, a well-trained HMM can give sufficiently high likelihood values only
for sequences that correspond to normal behavior. Sequences that correspond to
intrusive behavior should give significantly lower likelihood values. By comparing
the sample likelihood of S with respect to M against a certain threshold, one can
decide whether S deviates significantly from M and hence should be considered a
possible intrusion. We will describe how to determine the threshold in Section 6.3.

v Dit-Yan Yeung and Yuxin Ding

4 Static Modeling Approach

4.1 Occurrence Frequency Distributions

Suppose the occurrence frequencies of different events (shell commands) are
measured over a period of time. A probability distribution can represent the
overall occurrence pattern. Since the event order is not considered, we refer to
this as a static modeling method. Using this scheme, a normal user behavioral
model is simply represented as an occurrence frequency distribution, with which
possible system intrusions can be detected.

Let P(M) denote the probability distribution characterizing a normal model
M and let P;(M) denote the occurrence probability of event ¢ among N possible
events. Similarly, Q(S) and Q;(S),i =1,2,..., N denote the probability distrib-
ution and individual event probabilities, respectively, for some behavior S being
monitored. For simplicity, the dependencies on M and S will not be shown.

4.2 Cross Entropy between Distributions

We need a dissimilarity measure between distributions. An information-theoretic
measure that can serve this purpose is cross entropy [22,12], which is also related
to Kullback-Leibler information measure [13].

We use this definition of cross entropy: C(P, Q) = Zilil(Qi —P;)log (Q;/P;).
Note that these properties hold: (a) C(P,Q) = C(Q,P); (b) C(P,Q) > 0;
(¢) C(P,Q) = 0 & P = Q. Thus, by checking whether the cross entropy be-
tween P and @) is larger than a certain threshold, one can decide if S should be
considered a possible intrusion with respect to the model M. We will describe
how to determine the threshold later in Section 6.3.

5 Data Preprocessing and Partitioning

5.1 Preprocessing of Shell Command Data

The shell command datasets are available at the public-domain KDD archive.!
Since it is difficult to obtain real intrusion data, only normal data were col-
lected via the history file mechanism from eight different Unix users. For each
user login session, each word typed by the user was recorded as a token. Since
many Unix commands are followed by parameters (e.g., 1s -1aF Paper Notes
letter.tex), the set of all distinct tokens would become too large. To reduce
the token set size, only a count of the files or directories is represented as a token
(e.g., 1s -1laF <3>). All tokens in a login session form a trace.

Note that the datasets contain no real intrusion data because it is difficult
to collect such data for this kind of intrusion detection applications. In our
experiments, (normal) data from other users were used as if they were “intrusive”
data for a given user. Thus, by its very nature, this problem is more like a
classification problem than a novelty detection problem, although we still use a
novelty detection approach as it is more desirable in practice.

1 http://kdd.ics.uci.edu/databases/UNIX_user_data/UNIX_ user_data.html

User Profiling for Intrusion Detection \%

5.2 Partitioning of Datasets

Each set of data is partitioned into three subsets: training set (normal data only),
threshold determination set (normal data only), and test set (both normal and
intrusion data). The training set of data is for estimating model parameters. Only
normal data are needed for the novelty detection approach. As the model is built
using normal data only, we need a criterion to decide when an observed behavior
should be considered normal or intrusive. In particular, it corresponds to finding
a threshold for some similarity measure (e.g., likelihood) or dissimilarity measure
(e.g., cross entropy). The threshold determination set of normal data is used for
determining this threshold. After the model parameters and the threshold have
been estimated using the training and threshold determination sets, respectively,
the test set can be used for evaluating model performance. More details about
the performance measures used will be discussed in Section 6.1.

Table 1 summarizes the dataset sizes in our experiments. For each user, the
(normal) data of all other users were treated as if they were “intrusive” data for
that user. Since the available datasets are quite large, we used disjoint sets of
data for training, threshold determination, and testing. Table 1 also shows the
number of distinct tokens found in the data for each user. When the datasets for
all eight users are combined together, we have a total of 2356 distinct tokens.

Table 1. Shell command datasets

Training Threshold Test No. of distinct| Total no.
set determination set set tokens in |of distinct
No. of[No. of|No. of| No. of [No. of|No. of|| training set tokens
User||traces |[tokens|traces| tokens |traces|tokens

0 171 | 5733 | 170 6802 147 | 6316 151 286
1 196 | 5702 | 194 5327 365 | 5571 152 308
2 134 | 6776 134 3844 216 5120 174 484
3 313 [13626 | 312 10309 286 |[11970 291 476
4 213 [10826| 212 11850 121 |10981 375 561
5 832 |20285| 831 18009 762 19020 360 607
6 419 | 4485 | 418 5062 502 | 4738 228 447
7 562 |16784| 562 16586 466 |16706 406 704

6 Model Construction and Performance Evaluation

6.1 Performance Criteria

We use two performance measures, namely, true detection rate (TDR) and false
detection rate (FDR):

intrusive testing traces detected as intrusive
intrusive traces in test set

TDR = Pr(intrusive | intrusive) =

FDR = Pr(intrusive |normal) = # normal testing traces detected as intrusive

normal traces in test set

VI Dit-Yan Yeung and Yuxin Ding

We prefer these two measures because both relate reporting the occurrence
of an intrusive event to the ground truth (i.e., normal or intrusive nature) of
that event. This is in line with the convention used in [23] although they refer to
the two measures as true positives and false positives, respectively. We use the
term ‘detection’ to make the meaning of detecting intrusions more explicit. Hit
rate and false alarm rate may also be used in place of TDR and FDR.

6.2 Model Training

To train an HMM, fixed-length sequences of events are extracted from each
trace of the training set by moving a window of the specified width (i.e., se-
quence length) through the entire trace with a step size of 1. Identical sequences
extracted are represented by only a single copy in the training set. In our exper-
iments, both fully-connected and left-to-right HMMs (denoted as FC-HMM and
LR-HMM, respectively) were used. For the static modeling approach, all traces
from the training set are used to create a distribution-based behavioral model.

6.3 Threshold Determination

After model training, the threshold determination set is used to determine an
appropriate threshold for use later as a criterion for detecting possible intrusions.

For HMM-based dynamic modeling, fixed-length sequences are extracted
from each trace of the threshold determination set in the same way as before for
the training data. The sample likelihood of each sequence with respect to the
model can then be computed. For the static modeling approach, each trace of
the threshold determination set is used to compute a distribution as well as the
cross entropy between this distribution and the reference distribution computed
from the training data.

For each chosen FDR for the threshold determination set, a corresponding
threshold value can be obtained. In our experiments, different threshold values
were tried by choosing different FDR, values.

6.4 Model Testing

To test whether a trace in the test set is intrusive, fixed-length sequences ex-
tracted from the trace are presented to a trained HMM to compute the likeli-
hood values. If at least one sequence has a likelihood value that is lower than the
threshold, the trace is said to be intrusive. In other words, we can conclude that
a trace under investigation is intrusive as soon as the first intrusive sequence is
found inside the trace.

For the static modeling approach, in order to perform timely detection of
possible intrusions, it would be desirable if a decision could be made as soon as
sufficient data have been collected to compute a reasonably reliable distribution.
Since a trace may be very long (if a user login session is long), we do not want
to make a decision only after the trace ends. Instead, a distribution is computed

User Profiling for Intrusion Detection VII

for each sub-trace sequence. The cross entropy between this distribution and
the reference distribution of the model will be compared with the threshold to
determine whether it is an intrusive sequence. The extraction of variable-length
sequences from a trace is illustrated in Figure 1 below. The detection of possible
intrusions in a trace can be performed immediately after the first K events have
arrived. We refer to K as the minimum sequence length.

Trace | | Levents
Sequencel [] K events
Sequence2 [] K + 1 events
. . .
. . .
Sequence L-K+1 | | Levents

Fig. 1. Extraction of variable-length sequences from a trace

6.5 Hypothesis Testing Perspective

In this section, we will justify the scheme above from a hypothesis testing per-
spective. Although our explanation is based on HMM:s, it also holds for the static
modeling method.

Let M denote an HMM learned from the training data. Given a sequence S
from the test set, we want to decide whether it is likely to be generated by M
and hence is a normal sequence. This problem can be formulated as applying
a statistical test [3]. Let us generate a sufficiently large sample R of (normal)
sequences from M. For an arbitrary sequence R € R, the log-likelihood of R with
respect to M is denoted as L(R) = log Pr(R|M). Similarly, the log-likelihood
of S is denoted as L(S) = logPr(S|M). Based on the empirical probability
distribution of L(R) over R, we then test the hypothesis that L(S) is drawn
from the probability distribution of the log-likelihood of the sequences in R,
i.e.,, Pr(L(R) < L(S)) > 4, for some threshold 0 < ¢ < 1. We reject the null
hypothesis if the probability is not greater than 1, implying that S is not a
normal sequence with respect to model M.

In our case, the threshold determination set of normal data plays the role
of R although R is not actually generated by M. If M is a well-trained model
representing the training set, the underlying distributions of the training and
threshold determination sets are close enough to each other, and the threshold
determination set is sufficiently large, then it is reasonable to use the threshold
determination set as R. Apparently, we can see that the threshold ¥ is just the
FDR chosen for the threshold determination set.

VIII Dit-Yan Yeung and Yuxin Ding

7 Experiments

7.1 Results

Table 2 shows the results. For each method, only two choices of the sequence
length or minimum sequence length are included to show the effect of varying
the parameter, although more choices were actually tried. The threshold was
chosen such that the FDR of the threshold determination set was equal to 5%,
10%, 15% or 20%. For each FDR. value, the TDR shown is the average over the
individual TDR values with the data from other users treated as intrusion data.
The number of states shown is the minimum value that maximizes the TDR.

Table 2. Results for shell command data

TDR (%) of FC-HMM TDR (%) of FC-HMM
(sequence length = 10) (sequence length = 30)
No. of[FDR| FDR | FDR | FDR [No. of[FDR| FDR | FDR | FDR
User |states|=5%|=10%|=15%|=20% |states |=5%|=10%|=15%|=20%
0 10 |31.9] 50.3 | 62.3 | 67.2 10 [45.0| 52.8 | 60.9 | 66.6
1 50 |[57.9| 80.9 | 84.0 | 90.1 5 73.1| 79.4 | 89.5 | 93.7
2 30 [46.1| 62.6 | 70.1 | 79.1 20 |49.8| 63.1 | 83.3 | 89.4
3 10 |34.2] 45.7 | 54.8 | 64.4 10 (40.7| 64.4 | 73.9 | 75.8
4 20 11.1| 18.9 | 36.8 | 44.5 20 [24.8| 27.5 | 45.3 | 52.0
5 20 [49.2| 71.4 | 73.8 | 78.0 20 |57.1]| 70.8 | 79.1 | 82.3
6 20 13.0| 26.2 | 42.4 | 53.6 20 14.3 | 43.0 | 58.1 | 60.6
7 20 |[28.7| 44.5 | 61.2 | 75.0 20 [39.9| 55.8 | 65.7 | 81.0
[Average] [34.0] 50.1 | 60.7 | 69.0 | [43.1] 57.1 | 69.5 | 75.2 |
TDR (%) of LR-AMM TDR (%) of LR-AMM
(sequence length = 30) (sequence length = 50)
No. of[FDR| FDR | FDR | FDR [No. of[FDR[FDR | FDR | FDR
User |states|=5%|=10%|=15%|=20%|states |=5%|=10%|=15%|=20%
0 5 40.8 | 48.2 | 64.0 | 68.0 5 45.1| 60.3 | 64.7 | 68.3
1 10 |71.3| 79.1 | 87.2 | 89.7 30 |73.5| 81.4 | 82.4 | 83.8
2 5 43.2| 62.1 | 79.6 | 88.0 10 |61.8]| 69.4 | 79.4 | 82.9
3 10 |23.9] 59.9 | 71.7 | 76.4 10 |35.5| 58.5 | 73.4 | 78.4
4 20 21.1| 22.4 | 37.4 | 49.4 20 14.8 | 36.0 | 38.8 | 52.3
5 10 |59.0| 67.7 | 77.5 | 83.5 5 49.6 | 63.3 | 69.7 | 76.3
6 10 |12.0] 39.8 | 50.3 | 55.8 10 |[15.5| 19.7 | 21.1 | 44.6
7 5 32.7| 47.2 | 56.8 | 74.7 10 [52.9| 63.6 | 72.4 | 75.0
[Average] [38.0] 53.3 | 65.6 | 73.2 | [43.6] 565 | 62.7 [70.2 |
TDR (%) of cross entropy | TDR (%) of cross entropy
(min. sequence length = 30)|(min. sequence length = 50)
FDR| FDR | FDR FDR |[FDR|FDR |FDR FDR
User [=5%|=10%|=15%| =20% |=5%|=10%|=15%| =20%

0 52.9| 62.7 | 79.3 82.2 46.2 | 78.5 | 80.5 81.1
56.0| 81.2 | 93.2 95.4 54.4| 71.4 | 89.8 92.7
43.3| 49.4 | 73.4 95.9 43.3| 49.4 | 73.4 96.0
46.8| 76.5 | 90.7 95.1 46.8| 76.5 | 88.5 95.1
48.4| 76.1 | 85.7 88.0 55.0| 73.9 | 81.0 82.2
56.7| 74.3 | 78.7 82.8 50.3| 70.2 | 81.2 89.4
25.6 | 44.0 | 57.2 58.8 36.1| 40.1 | 56.0 60.0
7 60.8 | 85.7 | 93.9 97.1 83.4| 95.4 | 97.6 99.5

[Average[48.8] 68.7 | 81.5 | 86.9 [51.9] 69.4 [8.0 | 87.0 |

| O i[O Df =

User Profiling for Intrusion Detection IX

Increasing the sequence length always increased the discrimination power of
both FC-HMM and LR-HMM in detecting intrusions. Since traces shorter than
the sequence length chosen were eliminated and there exist many short shell
command traces in the datasets, increasing the sequence length would eliminate
the shorter traces which could be partially responsible for the performance im-
provement because these traces could not model the behavior well. This is also a
possible reason for the observed performance improvement of the static modeling
method as the minimum sequence length increases.

7.2 Discussions

In our experiments, the static modeling method performed significantly better
than both FC-HMM and LR-HMM, typically 10%-20% higher in the TDR. A
possible reason is that the temporal dependencies between shell commands are
weak and hence are not very useful for intrusion detection. The static shell
command distribution seems to be sufficient for many users.

Although FC-HMM is usually slightly better than LR-HMM, increasing the
number of states in an LR-HMM can approach the performance of an FC-HMM
with fewer states. For example, the FC-HMM with sequence length 30 is similar
in performance to the LR-HMM with sequence length 50. Note that the time
complexity of each training iteration of an FC-HMM is O(W?2T) for W states
and sequence length T'. As a comparison, the time complexity of each training
iteration of an LR-HMM is only O(WT).

We also measured the CPU execution time for different methods. All the
tasks were run on a Sun UltraSPARC 30 workstation with 256MB memory.
Table 3 shows the CPU time required for the training and testing stages in the
experiments reported in Table 2. Due to page limit, only the average statistics
over all users are reported. It can be seen that LR-HMM is faster than FC-
HMM for both the training and testing stages. Our static modeling method is
impressive in that its training time is always negligible because it simply requires
the computation of a distribution based on the training data. The testing time is
also comparable to that for HMMs. Our method would be particularly attractive
if new models have to be built regularly due to changes in the system behavior.

7.3 Comparison with Previous Work

We also compared our results with those from previous work. To facilitate com-
parison, we performed another experiment using the same setup as in [15,16].
The datasets were partitioned into training, parameter selection, and test sets
as shown in Table 4. Moreover, in their work, the TDR and FDR were com-
puted based on sequences. We think it makes more sense to measure TDR and
FDR according to traces as in our earlier experiments. However, to facilitate
comparison here, we used the same scheme as theirs for this experiment.

Table 5 shows the classification results obtained by [15] using instance-based
learning (IBL), giving an average TDR of 34.2% with an average FDR of 5.3%, as
well as our results using the static modeling method. The average TDR is 35.6%

Dit-Yan Yeung and Yuxin Ding

Table 3. Execution time statistics for shell command data

CPU time (sec.) of FC-HMM
(sequence length = 10)

CPU time (sec.) of FC-HMM
(sequence length = 30)

Training] Testing

Training] Testing

14537 | 143

19932 | 14.4

CPU time (sec.) of LR-HMM
(sequence length = 30)

CPU time (sec.) of LR-HMM
(sequence length = 50)

Training] Testing

Training] Testing

12518 | 5.8

15591 | 8.9

CPU time (sec.) of cross entropy
(min. sequence length = 30)

CPU time (sec.) of cross entropy
(min. sequence length = 50)

Training] Testing
0 | 12.9

Training] Testing
0 | 11.8

at an average FDR of 5.5%. Thus, it can be concluded that the two methods
can achieve very similar performance in terms of the TDR and FDR measures.
However, there are major differences between the two methods in terms of
computational and storage requirements. Although data reduction techniques
can alleviate the problems to a certain extent, the high computational and stor-
age requirements are still the major limitations of IBL methods. Our method is
clearly superior in this aspect because the training examples are summarized as
a distribution, the storage requirement of which does not depend on the training
set size. Similarly, during testing, the computational requirement is very low.

Table 4. Data partitioning for shell command datasets in comparative study

Training Parameter Test
set selection set set
No. of[No. of[No. of[No. of| No. of[No. of
User|tokens|traces |tokens|traces|tokens|traces
0 | 1557 | 49 1487 | 37 |11992| 356
1 1502 64 1714 63 11833 | 442
2 | 1995 76 1137 | 39 [11877| 330
3 1551 42 1474 40 12696 | 314
4 | 1500 45 1739 7 12255 | 311
5 | 1555 35 1507 | 55 [11980| 558
6 | 1500 90 1508 | 111 [11277| 1138
7 | 1590 52 1423 52 [12250| 456

8 Concluding Remarks and Future Research

In this paper, we have presented two different anomaly detection approaches for
a host-based intrusion detection problem based on shell command sequences. It
was found that static behavioral models can give better results. It can be specu-
lated that temporal dependencies are not very useful or may even be harmful for

User Profiling for Intrusion Detection XI

Table 5. Results for shell command data in comparative study

Tested [User model (instance-based learning) || User model (cross entropy) |

user [0JT T2 34567][0T [2][3J4[5][6]7]
99.3|57.0(31.7|61.0|75.1]| 0.6 [38.5(10.1{[99.0|71.1|26.6|27.8(20.9| 2.0 {11.4|44.8
14.9192.9(12.4|64.2|{16.3| 0.9 | 4.0 | 6.0 ||25.2|92.8]|50.6|56.5(43.1|12.0|27.0|75.8
41.3|58.7|94.7|43.6|71.1| 0.3 |47.9| 8.3 || 8.7 |54.3(94.7(48.5|17.6| 2.3 |12.6(43.6
64.8|91.7(46.7|90.0|86.4| 0.6 (69.0(15.1{|21.3|87.2|56.8|90.0(29.5|12.0{16.7|19.9
34.4|21.2(18.6|72.1|92.7| 1.3 | 8.6 | 3.0 ||24.2|75.4|66.6|30.2(92.5|17.9|16.6|16.1
50.4|68.3(39.7|70.3|78.0{99.9(57.2(29.4|| 9.7 {68.0|15.9|25.1(15.2{99.0| 8.6 |56.9
41.8(15.4(17.7|82.3|48.7| 0.6 |91.7| 4.7 ||22.7|77.4|44.6|54.4|27.5| 8.2 |91.7|76.2
24.7|11.0| 8.7 |40.7|22.1| 0.6 | 5.8 [96.2{32.4|99.8|73.2|20.3(16.1|12.0|53.6|96.1
[_FDR__ [[07[71]5.3][10.0]7.3[01][8.3]3.8][1.0]7.2][53][10.0[7.5[1.0][8.3]3.9]
[Average TDR||38.9]46.2|25.1]62.0/56.8] 0.7 |33.0]10.9][20.6]76.2|47.8|37.5/24.3] 9.5 [20.947.6]

N oo s wf=o

this problem. Our information-theoretic static modeling method based on cross
entropy is simple and computationally cheap, yet it can outperform the more so-
phisticated dynamic modeling method based on HMMs. A lesson to learn is that
one should be careful in finding the best match between problems and methods.

A closer look at Table 5 reveals the fact that IBL is better for some users
(0, 3, 4, 6) while the cross-entropy method is better for other users (1, 2, 5, 7).
This shows that the two methods are complementary to each other. A potential
future research direction is to combine these two methods and possibly also some
other methods to further improve the discrimination power. Besides host-based
intrusion detection problems, we are also conducting research on network-based
intrusion detection. Some of the ideas learned from this research may also be
relevant to network-based intrusion detection.

References

1. L.E. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization technique occurring
in the statistical analysis of probabilistic functions of Markov chains. Annals of
Mathematical Statistics, 41(1):164-171, 1970.

2. C.M. Bishop. Novelty detection and neural network validation. IEE Proceedings:
Vision, Image and Signal Processing, 141(4):217-222, 1994.

3. P.R. Cohen. Empirical Methods for Artificial Intelligence. MIT Press, Cambridge,
MA, USA, 1995.

4. W.J. Daunicht. Autoassociation and novelty detection by neuromechanics. Science,
253(5025):1289-1291, 1991.

5. A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete
data via the EM algorithm (with discussion). Journal of the Royal Statistical
Society, Series B, 39:1-38, 1977.

6. D.E. Denning. An intrusion-detection model. IEEE Transactions on Software
Engineering, 13(2):222-232, 1987.

7. D. Endler. Intrusion detection: applying machine learning to Solaris audit data. In
Proceedings of the Fourteenth Annual Computer Security Applications Conference,
pages 268-279, Phoenix, AZ, USA, 7-11 December 1998.

XII

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Dit-Yan Yeung and Yuxin Ding

S. Forrest, S.A. Hofmeyr, A. Somayaji, and T.A. Longstaff. A sense of self for Unix
processes. In Proceedings of the IEEE Symposium on Security and Privacy, pages
120-128, Oakland, CA, USA, 6-8 May 1996.

. D. Gunetti and G. Ruffo. Intrusion detection through behavioral data. In Pro-

ceedings of the Third International Symposium on Intelligent Data Analysis, pages
383-394, Amsterdam, Netherlands, 9-11 August 1999.

G.G. Helmer, J.S.K. Wong, V. Honavar, and L. Miller. Intelligent agents for in-
trusion detection. In Proceedings of the 1998 IEEE Information Technology Con-
ference - Information Environment for the Future, pages 121-124, Syracuse, NY,
USA, 1-3 September 1998.

N. Japkowicz, C. Myers, and M. Gluck. A novelty detection approach to classifica-
tion. In Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence, volume 1, pages 518-523, Montréal, Quebec, Canada, 20-25 August
1995.

R.W. Johnson and J.E. Shore. Comments on and correction to ‘axiomatic deriva-
tion of the principle of maximum entropy and the principle of minimum cross-
entropy’ (Jan 80 26-37). IEEE Transactions on Information Theory, 29(6):942—
943, 1983.

S. Kullback and R.A. Leibler. On information and sufficiency. Annals of Mathe-
matical Statistics, 22:79-86, 1951.

T. Lane. Hidden Markov models for human/computer interface modeling. In
Proceedings of the IJCAI-99 Workshop on Learning about Users, pages 35-44,
Stockholm, Sweden, 31 July 1999.

T. Lane and C.E. Brodley. Temporal sequence learning and data reduction for
anomaly detection. In Proceedings of the Fifth ACM Conference on Computer and
Communications Security, pages 150-158, San Francisco, CA, USA, 2-5 November
1998.

T. Lane and C.E. Brodley. Temporal sequence learning and data reduction for
anomaly detection. ACM Transactions on Information and System Security,
2(3):295-331, 1999.

W. Lee and S.J. Stolfo. Data mining approaches for intrusion detection. In Pro-
ceedings of the Seventh USENIX Security Symposium, pages 79-93, San Antonio,
TX, USA, 26-29 January 1998.

W. Lee, S.J. Stolfo, and K.W. Mok. A data mining framework for building intrusion
detection models. In Proceedings of the IEEE Symposium on Security and Privacy,
pages 120-132, Oakland, CA, USA, 9-12 May 1999.

L.R. Rabiner. A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2):257-286, 1989.

J. Ryan, M.J. Lin, and R. Miikkulainen. Intrusion detection with neural networks.
In M.I. Jordan, M.J. Kearns, and S.A. Solla, editors, Advances in Neural Informa-
tion Processing Systems 10, pages 943-949. MIT Press, 1998.

M. Schonlau and M. Theus. Detecting masquerades in intrusion detection based
on unpopular commands. Information Processing Letters, 76(1/2):33-38, 2000.
J.E. Shore and R.W. Johnson. Axiomatic derivation of the principle of maxi-
mum entropy and the principle of minimum cross-entropy. IEEE Transactions on
Information Theory, 26(1):26-37, 1980.

C. Warrender, S. Forrest, and B. Pearlmutter. Detecting intrusions using system
calls: alternative data models. In Proceedings of the IEEE Symposium on Security
and Privacy, pages 133-145, Oakland, CA, USA, 9-12 May 1999.

