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AbstractÐTo achieve integrated segmentation and recognition in complex

scenes, the model-based approach has widely been accepted as a promising

paradigm. However, the performance is still far from satisfactory when the target

object is highly deformed and the level of outlier contamination is high. In this

paper, we first describe two Bayesian frameworks, one for classifying input

patterns and another for detecting target patterns in complex scenes using

deformable models. Then, we show that the two frameworks are similar to the

forward-reverse setting of Hausdorff matching and that their matching and

discriminating properties are complementary to each other. By properly combining

the two frameworks, we propose a new matching scheme called bidirectional

matching. This combined approach inherits the advantages of the two Bayesian

frameworks. In particular, we have obtained encouraging empirical results on

shape-based pattern extraction, using a subset of the CEDAR handwriting

database containing handwritten words of highly varying shape.

Index TermsÐModel-based segmentation, deformable models, Bayesian

inference, bidirectional matching, Hausdorff matching.

æ

1 INTRODUCTION

TO achieve integrated segmentation and recognition in complex
scenes, the model-based approach has widely been accepted as a
promising paradigm. For example, one can search for the presence
of a rigid object in an input image by optimizing some data
mismatch measure with respect to the geometric transformation
applied to the model. However, if the object of interest is nonrigid,
the potential shape variations can no longer be described by a
compact set of transformation parameters. Instead, more flexible
representations, commonly called deformable models, are required.
Extracting nonrigid shapes using deformable models is known to
be highly ill-posed. Very often, regularization techniques are used
to alleviate the problem, where some model smoothness criteria
are added to the data mismatch measure to form the overall
optimization criterion [8], [9].

Even with the introduction of smoothness regularizers, the

performance of deformable matching is sometimes still far from

satisfactory, especially when the shape of the target object is highly

deviated from the reference model and the level of outlier

contamination is high. One possible direction to reduce the outlier

influence is to enhance the model adequacy. For example, domain-

specific constraints obtained via careful design can be imposed on

shape variations for the particular application [13], [6]. Also, some

model statistics obtained via learning can be incorporated to
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enhance the model formulation if sufficient training data are
available [11]. In parallel with the use of enhanced models, seach
windows with carefully set window size are also commonly used
to prevent the outlier data from affecting the matching results.

In this paper, we propose to achieve robust deformable

matching using a new approach which has been inspired by the

ªforward-reverseº idea in Hausdorff matching [7]. The proposed

approach is orthogonal to the model enhancing direction and does

not require the use of explicit search windows. In the following,

two Bayesian frameworks, one for deformable pattern classifica-

tion and another for deformable pattern detection, are first

described together with their relationships to Hausdorff matching.

Then, we show that the strengths and shortcomings of the two

frameworks regarding their shape matching and discriminating

properties are complementary to each other. By combining the two

frameworks, a robust matching algorithm called bidirectional

deformable matching is proposed. To evaluate its performance,

we have adopted a particular spline model and have applied the

proposed approach to extract characters from the handwritten city

name images in the bb and bs data set of the CEDAR database. To

the best of our knowledge, there is no prior work on deformable

matching where the forward-reverse idea is used.

2 BAYESIAN FRAMEWORKS FOR MODEL-BASED

PATTERN RECOGNITION

In this section, we first review the background of Hausdorff

matching. Then, from the perpective of generative models, we

draw the relationship between Hausdorff matching and two

different Bayesian frameworks, one for pattern classification and

the other for pattern detection.

2.1 Hausdorff Matching: Background

Hausdorff matching [7] is a robust algorithm proposed for

matching two sets of points, say, M : fmjg (model points) and

D : fylg (data points). Its robustness relies on the underlying

matching criterion called the Hausdorff distance, which is formu-

lated as the maximum of two asymmetric distances, namely the

forward distance and the reverse distance. The forward distance

measures the maximum distance from any model point to its

closest data point, given as H�M;D� � maxj minl kmj ÿ ylk, which

is small when each model point in M can find a match to some data

point in D. The reverse distance H�D;M� is defined simply by

reversing the role of M and D and is small when each data point in

D can find a match to some model point in M. When both the

forward and reverse distances are small, the corresponding

Hausdorff distance is small and one can conclude that the two

sets of points are close to each other. In the literature, the

Hausdorff distance has been shown to be a robust indicator for

detecting patterns in complex scenes [12]. But, so far, only rigid

object matching with translation and scaling has been considered.

2.2 A Dual View of Generativity

A typical way to apply the generative model approach to
deformable model-based pattern recognition [11] is to assume that
the input data are generated according to a likelihood function
given a model instance, which in turn is generated according to a
prior distribution of the model class. Optimal matching is then
achieved via Bayesian inference. The notion that all the data are
generated from the model is in fact analogous to the definition of
the reverse distance. We call this Bayesian approach the reverse
framework, which has been applied to pattern classification [3] and
object matching (with the use of search windows) [8]. However, if
we consider the scenario of detecting patterns in complex scenes

where many outliers exist,1 it is unlikely that the model can

generate the outliers well and, thus, bad matching is usually

resulted. Under such a situation, we argue that it could be more

reasonable to exchange the roles of the model and the data and

assume that the model instance is generated from a portion of the

input data, which resembles the model shape. We call this

Bayesian approach the forward framework. However, the data-

generating-model assumption fails when occlusion occurs. By

adopting a similar idea used in Hausdorff matching, these two

frameworks can be combined in such a way that the model

converges to a spatially localized subset of data with a high

probability that the model and the data subset can generate back

each other (cf. Helmholtz machine by Dayan et al., [4]). See

Section 4 for more details.

2.3 Reverse Framework

Applying the reverse framework to pattern classification has been

described in detail in [3]. For the sake of completeness, it is briefly

reviewed here. Let Hi denote the shape model of the ith class, D

the input image, w the model parameter vector describing shape, �

the regularization parameter, and � the noise level parameter.

According to [3], the classified output can be computed by finding

the ith class that maximizes the evidence p�DjHi�, which is

approximated as

p�DjHi�� / p�Djw; �
�; Hi�p�wj��; Hi�

p�wjD; ��; ��; Hi� p���; ��jHi�� log�� log�;

�1�
where p�wj�;Hi� is the prior parameter distribution, p�Djw; �;Hi�
is the likelihood function, p�wjD;�; �;Hi� is the posterior

parameter distribution given the data D, and � log� and � log�

are the effective ranges of � and �, respectively. Parameters with the

superscript ª*º denote their maximum a posteriori (MAP) estimates.

2.3.1 Representation and Criterion Formulation

While the framework is generic and can be applied to different

representations, here we model 2D binary patterns using cubic

B-splines, each of which is parameterized by a small set of k

control points w and affine transform parameters fA;Tg. The

distribution of the black pixels is represented by a mixture of

Gaussians placed along the spline.2 The prior parameter

distribution and the likelihood function are defined by two

criterion functionsÐmodel deformation Ew and data mismatch ED,

respectively. They are given as

Ew�w� � 1

2
�wÿ h�t�ÿ1�wÿ h�; �2�

p�wj�;Hi� � 1

Zw��� exp�ÿ�Ew�w��; �3�

ED�w;A;T; �;D� �

ÿ
XN
l�1

log
1

Ng

XNg

j�1

exp
ÿ�kmj�w;A;T� ÿ ylk2

2

 !" #
;

�4�

p�Djw;A;T; �;Hi� � 1

ZD��� exp�ÿED�w;A;T; D��; �5�
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1. Outliers in images often appear in the form of cluttered objects or the
background.

2. One can extend the data representation to include a feature vector for
each pixel to allow also gray-level or color images. An additional generation
process is then required to model the per-pixel feature distribution.



where Zw��� � 2�
�

ÿ �k
�j j1=2, ZD��� � 2�

�

� �N
, h is the mean control

point, � is the covariance matrix of w, Sj is a matrix containing

cubic B-spline coefficients, A and T are composed of A

submatrices and T subvectors respectively, mj�w;A;T� �
Stj�Aw� T � is the mean of the jth Gaussian, N is the number of

black pixels, Ng is the number of Gaussians along the spline, � is

the regularization parameter, � is the inverse of the Gaussians'

variance for modeling the noise level, yl is the location vector of an

individual black pixel and D denotes the set fylj1 � l � Ng.

2.3.2 Reverse Matching

Model matching is done through MAP estimation of the
parameters fw;A;Tg, where the posterior distribution is given as

p�w;A;TjD; �; �;Hi� � 1

ZM
exp�ÿEM�w;A;T;�; �;D��; �6�

EM�w;A;T;�; �;D� � �Ew�w� � ED�w;A;T; �;D� and ZM is the

corresponding partition function. The expectation-maximization

(EM) algorithm [5] is used. In the E-step, an h-function defined as

hlj�ŵn; Ân; T̂n; �;yl� �
exp ÿ� kbfmj�ŵn;Ân;T̂n�ÿylk2

2

� �
PNg

j�1 exp ÿ� kmj�ŵn;Ân;T̂n�ÿylk2

2

� � �7�

is involved where ŵn and fÂn; T̂ng are the parameter estimates

obtained in the nth EM iteration. Intuitively speaking, hlj can be

intrepreted as the responsibility of the jth Gaussian to the lth data

point and has a high value when the Gaussian center mj is close to

the data point yl. In the M-step, the criterion function E0M �
�Ew�w� � �E0D�w;A;T; ŵ; Â; T̂;D� is minimized, where

E0D�w;A;T; ŵ; Â; T̂;D� �XN
l�1

XNg

j�1

hlj�ŵn; Ân; T̂n;�;yl�kmj�w;A;T� ÿ ylk2=2:
�8�

It should be noted that E0D can be interpreted as a ªsoftº version of

the reverse distance used in Hausdoff matching (See the Appendix

for more detailed explanation). The E-step and the M-step then

alternate until convergence. The MAP estimates of � and � are then

computed after each EM iteration using the following formula:

�� � 


2Ew�w�� ; �� � 2N ÿ 

2E0D�w�;A�;T�; ŵ; Â; T̂;D�

; �9�

where 
 is the effective number of parameters computed

according to [10].

2.3.3 Classification

Referring to (1), the classification step is based on p�DjHi�, which

requires the matching results and the effective ranges of � and �,

given by � log� � ��������
2=


p
and � log � � ������������������������

2=�2N ÿ 
�p
.

2.4 Forward Framework

We now proceed to the forward framework which is newly

proposed by us for pattern detection. Using the same notations

adopted in the reverse framework and given an input image Di, a

shape model H is said to be detected in it when Pr�HjDi� > �,

where � is some prespecified threshold parameter. We call

Pr�HjDi� the evidence in the forward framework. Expanding

Pr�HjDi� using the Bayes rule, it gives

Pr�HjDi� �
Z
Pr�Hj�; �;Di�p��; �jDi�d�d�: �10�

Assuming that the model parameter w is independent of � when

the input Di is given3 and H is independent of Di and � when w is

given, Pr�HjDi� becomes

Pr�HjDi� �
Z
p�wj�;H�Pr�Hj��

p�wj�� p�wj�;Di� dwp��; �jDi�d�d�:

�11�
Further assuming that Pr�Hj�� and p�wj�� are constants,

Pr�HjDi� can be approximated as

Pr�HjDi� / p�w�j��; H�p�w�j��;Di�p���; ��jDi��w� log�� log �:

�12�
In (12), it is noted that the first factor, p�w�j��; H�, is simply the

prior distribution in the reverse framework. The second factor,

p�w�j��;Di�, is new and it represents the distribution of the model

parameters w given the data Di. To formulate this factor using the

data-generating-model assumption, we use the same spline model

and the mixture of Gaussians formulation as before in the

following section.
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TABLE 1
Comparing the Major Formulae of the Two Frameworks

3. This assumption can be justified by the argument that w is generated
by Di and without knowing H, there is no reference for measuring the
deviation of w and thus no information about the degree of regularization.



2.4.1 A New Data Mismatch Criterion

To impose the data-generating-model notion, a new data mismatch
criterion based on the mixture of Gaussians formulation can be
derived by interchanging the two summations in (4), that is

E
x
D�w;A;T; �;Di� �

ÿ
XNg

j�1

log
1

N

XN
l�1

exp ÿ� kmj�w;A;T� ÿ ylk2

2

 !" # �13�

and the new ªlikelihoodº becomes

p�w;A;Tj�;Di� � 1

Z
x
D���

exp�ÿExD�w;A;T;�;Di��; �14�

where Z
x
D��� � 2�

�

� �Ng

. According to (13), each point mj along the

spline is modeled by a uniformly weighted mixture of Gaussians

with their means being the data Di. In this new definition of data

mismatch, � is no longer interpreted as the noise level as in [3], but

is related to the effective search area for each model point.

2.4.2 Forward Matching

According to (11), the optimal shape parameters fw�;A�; T �g, can

readily be estimated by maximizing p�wj�;H�p�w;A;Tj�;Di�,
which is equivalent to minimizing �Ew�w� � ExD�w;A;T;�;Di�.
The optimal � and �, according to (10), are estimated by

maximizing Pr�Hj�; �;Di�p��; �jDi� with respect to � and �.

The EM algorithm is used again for the maximization problem.

Due to the page limit, we only tabulate below (Table 1) the major

formulae of the forward framework and compare them with those

of the reverse framework. More details can be found in [2].

3 PROPERTIES OF THE REVERSE AND FORWARD

FRAMEWORKS

For the sake of further discussion, the matching processes of the
reverse and forward frameworks are referred to as reverse matching
and forward matching, respectively. Similarly, the evidence mea-
sures of the two frameworks are referred to as reverse evidence and
forward evidence. In the following, we compare in particular the
matching and discriminating properties of the two frameworks
using intuitive examples. Theoretical proofs of the properties can
be found in [2].

Proposition 1 (Shape Matching Property). Reverse matching has
good data exploration capability while forward matching is good at
finding some localized match.

As illustrated in Fig. 1, this proposition reveals a dilemma
between reverse and forward matching. Reverse matching
manages to deform the model to a great extent so as to ªexploreº
and ªexplainº all the input data, where outliers are also included.
This implies that reverse matching is essential for extracting highly
deformed shapes but is very sensitive to outliers, even though the
outliers are distant from the target object. On the other hand,
forward matching only deforms the model to match to some
neighboring data points and is thus relatively insensitive to distant
outliers. However, the consequence is that its data exploration
capability is greatly reduced.

Proposition 2 (Shape Discriminating Property). The reverse
evidence does not penalize partially matched models but the forward
evidence does.

This proposition is illustrated intuitively in Fig. 2. It is noted
that the unmatched model points do not contribute much in the
overall reverse evidence but they do dominate in the calculation of
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Fig. 1. Illustration of Proposition 1. The arrows indicate the major attracting forces acting on the model points. Note that reverse matching succeeds in extracting the lower

portion of the data but is sensitive to the outlier, while forward matching only extracts the data neighboring to the model.



the overall forward evidence. In other words, the reverse frame-
work can easily misclassify some input which just happens to
resemble a portion of the model shape (e.g., misclassify ªCº as
ªOº), resulting in a high false alarm rate (also called the subpart
problem in [3]). Nevertheless, this framework is good for
extracting patterns containing broken lines or occluded parts. On
the contrary, the forward framework penalizes models matching to
target objects which are occluded but has the advantage that the
subpart problem is solved implicitly.

4 BIDIRECTIONAL MATCHING ALGORITHM

Many existing deformable matching algorithms are similar to the

approach adopted by the reverse framework and thus suffer from

the problem of high sensitivity to outliers. Localization of search is

then achieved by confining each model point to a search window of

some predetermined size. Based on the duality relationships

between the reverse and forward frameworks, we argue that given

sufficiently good model initialization, forward matching should be

able to ensure that the search is localized while reverse matching can

allow the model to explore neighboring data points, especially for

those connected to the matched data points. The success of

Hausdorff matching gives the cue that taking the maximum of the

data mismatch criteria of the two frameworks can be a good way to

combine the two frameworks. Based on the idea, we propose an

algorithm called bidirectional matching outlined in Fig. 3, in which the

matching process alternates between the two frameworks according

to the values of ED and E
x
D until some convergence criterion is

satisfied. According to our experimental results, the forward

framework ªwinsº most of the time during the earlier iterations

until a localized shape is identified. During the later iterations,

switching between the two frameworks occurs more often. An

annealing schedule on the parameter � is required for convergence,

the proof of which can be found in [2]. Fig. 4 illustrates a particular

case showing the limitations of the two frameworks and the strength

of the proposed bidirectional approach.

5 EXPERIMENTAL RESULTS AND DISCUSSION

We have performed experiments to evaluate and compare the
matching performance of the forward, reverse4 and bidirectional
matching algorithms. In particular, character extraction from
handwritten words is chosen as the test-bed since the shape of
handwritings is highly nonrigid. Images sampled from the bb and
bs subsets5 of the CEDAR database are used as the test set. The
data set altogether contains 633 handwritten city name images
with stroke anamalies, closely cluttered characters and the printed
background. As our focus is to test whether some target character
shape can be detected and located in the input image, we assume
that the identity of the leftmost character is known6 and, thus, the
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Fig. 2. Illustration of Proposition 2. The dashed lines indicate the major distance measures contributed to the overall model evidence value. It is clearly revealed that the

unmatched model points are not penalized in the reverse evidence but are heavily penalized in the forward evidence.

Fig. 3. Bidirectional matching algorithm.

4. A search window of fixed size is applied to each of the model points so
that the model point will only be attracted by black pixels within the
window. Otherwise, reverse matching will try to fit the model to the whole
input image.

5. In our experiments, all the images in the data set were preprocessed by
simple thresholding and thinning, and rescaled to be of 50-pixel high.

6. Note that the handwriting of a particular alphabet can have very
different shapes or even topologies, e.g., ªMº and ªmº and their identities
are considered to be different here.



corresponding model can be used. Chamfer-like matching was
adopted for model initialization and the three matching algorithms
were then applied for subsequent matching. A successful match is
defined as the case where the majority of the model points lie on
the target character shape, which was judged by human visually.
Some matching results are shown in Fig. 5. They reveal that reverse
matching was highly sensitive to outliers due to cluttered
characters and forward matching missed important character
strokes for many cases, especially for highly deformed characters.
By using bidirectional matching, the successful matching rate
given a correct initialization is as high as 92.5 percent (88.5 percent
for the bb data set and 95.3 percent for the bs data set). The overall
matching results are tabulated in Table 2. Some failure cases for
bidirectional matching are shown in Fig. 6. We believe that some
additional smoothness constraints can be introduced to further
enhance the matching accuracy.

In our experiments, the correct model initialization rate is

92.5 percent for the bb data set and 89.6 percent for the bs data set.

The sources of errors include handwritings highly distorted from

the target character shape, the scene being too complex, and the

target character shape being subparts of some other characters (e.g.,

ªCº is a subpart of ªOº). Further research effort on model

initialization for nonrigid shape is needed. For the computational

time, based on our current implementation run on a Pentinum II-

MMX (266 MHz) machine, the initialization step and the bidirec-

tional matching step take about 3-7 seconds and 2-3 seconds,

respectively, for each image. The speed variation is mainly due to

different degrees of model complexity of the input shapes. We

believe that the computational performance can further be enhanced

via either some careful data structure design for efficient imple-

mentation or some domain-specific heuristics for pruning the search

space.

6 CONCLUSION

Two Bayesian frameworks for deformable pattern classification and

detection are described in this paper and their matching and

discriminating properties have been carefully analyzed. Based on
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Fig. 5. Some matching results. (a) Forward matching, (b) reverse matching, and (c) bidirectional matching.

Fig. 4. Comparison of matching performance. (a) For forward matching, it is noted that the model ªnº correctly locates the character ªnº in the input data but cannot extract

the character's fine details. (b) For reverse matching, the model is found to be severely deformed to fit the data as much as possible, including the undesirable outlier

data. (c) For the proposed bidirectional matching, the highly nonrigid character ªnº can be successfully extracted from the input data.

TABLE 2
Performance Comparison of the Three Matching Algorithms

(Given correct model initializations.)



the relationships between the two frameworks and Hausdorff
matching, we integrated the two frameworks using the idea of
Hausdorff distance and proposed a new robust matching algorithm
called the bidirectional deformable matching. The proposed
algorithm can be considered as a deformable version of Hausdorff
matching. For the bb and bs data sets in the CEDAR database with
altogether 633 handwritten city name images, we were successful in
achieving an overall accuracy of around 92 percent for matching the
first characters of the city names.

APPENDIX

SIMILARITY BETWEEN THE MIXTURE-OF-GAUSSIANS

FORMULATION AND THE HAUSDORFF DISTANCE

The mixture-of-Gaussians formulation used to describe data
mismatch can in fact be considered as a ªsoftº version of the
Hausdorff distance. Recall that, the reverse distance from D to
M H�D;M� is equal to maxl minj kmj ÿ ylk. Let elj 2 f0; 1g
denote an indicator variable which takes the value of only
when j � arg minj kmj ÿ ylk. Then, H�D;M� can be rewritten as
maxl

P
j e

l
jkmj ÿ ylk. Furthermore, if we use the L1 norm as

the distance between mj and yl, H�D;M� becomesP
l

P
j e

l
jkmj ÿ ylk1. By comparing it with the criterion used

in the M-step for the reverse matching (according to (8))
E0D �

P
l

P
j h

l
jkmj ÿ ylk2=2, it can be shown that they are very

similar to each other. The formulation of hlj, according to its
definition is in fact a soft-min function on kmj ÿ ylk. Instead of
using the L1 norm, the L2 norm is used instead in E0D. When
the model and the data are close to each other, H�D;M� and
E0D also become close to each other. Due to the symmetry of
the problems, similar analogy also applies to the forward
distance and the criterion used in forward matching.
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Fig. 6. Some failure cases for bidirectional matching.
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