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A Bayesian Framework for Deformable
Pattern Recognition With Application to
Handwritten Character Recognition

Kwok-Wai Cheung, Student Member, IEEE, Dit-Yan Yeung,
Member, IEEE, and Roland T. Chin, Member, IEEE,

Abstract—Deformable models have recently been proposed for many
pattern recognition applications due to their ability to handle large shape
variations. These proposed approaches represent patterns or shapes as
deformable models, which deform themselves to match with the input
image, and subsequently feed the extracted information into a classifier.
The three components—modeling, matching, and classification—are
often treated as independent tasks. In this paper, we study how to
integrate deformable models into a Bayesian framework as a unified
approach for modeling, matching, and classifying shapes. Handwritten
character recognition serves as a testbed for evaluating the approach.
With the use of our system, recognition is invariant to affine
transformation as well as other handwriting variations. In addition, no
preprocessing or manual setting of hyperparameters (e.g., regularization
parameter and character width) is required. Besides, issues on the
incorporation of constraints on model flexibility, detection of subparts,
and speed-up are investigated. Using a model set with only 23
prototypes without any discriminative training, we can achieve an
accuracy of 94.7 percent with no rejection on a subset (11,791 images
by 100 writers) of handwritten digits from the NIST SD-1 dataset.

Index Terms—deformable models, Bayesian inference, handwriting
recognition, expectation-maximization, NIST database.
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1 INTRODUCTION

1.1 Deformable Pattern Recognition

MODEL-BASED recognition is a process in which a prior model is
searched for in an input image, its occurrence and location are
determined, and subsequently its identity is classified. With the
use of deformable models (DM) which possess shape-varying ability,
the approach can be applied to nonrigid patterns, such as human
faces, cells, gestures, and handwritten characters. To extract non-
rigid shapes by deformable matching, model deformation and data
mismatch are quantified by two criterion functions: one measuring
the degree by which the model is deformed and the other meas-
uring how much the data differ from the deformed model. Opti-
mal matching is achieved by minimizing a weighted sum of the
two criteria. The weighting factor is the so-called regularization
parameter, which provides a trade-off between model deformation
and data mismatch. Multiclass classification is achieved by defin-
ing a set of such models, each containing its own pertinent shape
information with an allowed range of deformation specified using
a priori information or by training. In the literature, these various
steps of the recognition process are often treated separately as if
they are independent components.

1.2 Previous Works on Deformable Model-Based
Handwriting Recognition

Due to the availability of a vast amount of real-world data and the

high variability of handwriting styles, handwriting recognition has
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been used as an excellent testbed for DM-based recognition and is
also used in this paper for evaluating our proposed system.

In the literature, there already exist some good studies on DM-
based handwritten digit recognition. Wakahara [9] proposed local
affine transform (LAT) for matching skeleton shapes of characters,
each of which is represented by interpolating a set of points. Shape
deformation is measured by the smoothness of neighboring local
affine transform parameters, and such a measure is invariant to
global affine transform. Data mismatch is measured by the sum of
the minimum feature distance from each data point to the set of
model points. Least-squares fitting is used for minimization, and the
regularization parameter is set manually. Classification is based on a
dissimilarity measure. The number of prototypes per class is one.
Based on a test set with 2,400 digit images, the achieved recognition,
substitution, and rejection rates were 96.8 percent, 0.2 percent, and
3 percent, respectively. Another study was conducted by Revow et al.
[8], where digits are modeled using elastic spline models. Model
deformation is measured by the Mahalanobis distance of the spline
control points from a reference vector. The input is assumed to be
binary, and the distribution (likelihood) of black pixels is modeled
by a mixture of Gaussians with their means uniformly placed
along the spline. Data mismatch is defined as the negative log
likelihood function. Minimization is performed using the expecta-
tion-maximization (EM) algorithm [3], with the regularization
parameter manually set. Classification is performed by a back-
propagation neural network, where some extracted measures, such
as model deformation, data mismatch and affine transform pa-
rameters, are the network inputs. The number of prototypes per
class is one. Based on the CEDAR database, the best result achieved
was a subsitution rate of 1.5 percent for the test set of goodbs and 3.14
percent for bs, at 0 percent rejection. In a separate study, Jain et al. [5]
modeled digits by pixelwise digit boundary templates. Model de-
formation is measured by the sum of the squared values of a set of
displacement function coefficients. Data mismatch is defined by an
edge dissimilarity measure between the model template and the
input. Minimization is done by a deterministic gradient algorithm,
again with the regularization parameter manually set. Classification
is based on a weighted sum of two dissimilarity measures. The
number of prototypes per class is around 200, which is signifi-
cantly large to give this method a nonparametric flavor character-
istic of nearest neighbor classifiers. Based on a subset of the NIST
SD-1 dataset with 2,000 digit images, the lowest substitution rate
achieved at 0 percent rejection was 0.75 percent.

The short summary above is by no means exhaustive, but it
does show that

1) the DM-based approach is promising for such applications
as handwriting recognition and

2) the different components of DM-based recognition are often
treated separately as independent components, instead of
being integrated into a complete, unified computational
framework.

1.3 Paper Summary

In this paper, we use the DM-based recognition system proposed
by Revow et al. [8] as a base and study how DMs can be integrated
seamlessly into a Bayesian framework to give a complete, unified
computational framework for modeling, matching, and classifying
isolated handwritten characters. To differentiate our system from
that of Revow et al., our newly introduced integration does not
require any preprocessing of input and manual setting of hyper-
parameters. The parameter values are determined automatically as
part of the integrated framework. Such a modification can make
our system more adaptive and portable to other applications. Also,
instead of using discriminative classifiers like back-propagation
neural networks, the model likelihood (or later called evidence)
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p(D]H;) is also used as the metric for classification which fits
naturally into the Bayesian framework. Besides, issues on the
incorporation of constraints on model flexibility, detection of sub-
parts, and speed-up are also further investigated.

The rest of the paper is organized as follows. Details of the Bay-
esian framework are described in Section 2. The procedure of ap-
plying the framework to character recognition can be found in
Section 3. Section 4 shows the experimental results. The strengths
and limitations of our approach are discussed in Section 5. Sec-
tion 6 concludes the paper.

2 BAYESIAN FRAMEWORK FOR DEFORMABLE PATTERN
RECOGNITION

The following provides a brief overview of the Bayesian frame-
work in the context of deformable pattern recognition for hand-
written character recognition.

2.1 Three Levels of Inference

Let H; denote the model of the ith character class, D the input im-
age, w the model parameter vector describing character shape, a
the regularization parameter, and Sthe character stroke width. The
parameters a and Bare referred to as hyperparameters.

Level 1. Modeling: A number of reference models {H;}, one for
each class i, are constructed based on some model representa-
tion scheme that requires prior knowledge.1 Training is typi-
cally involved in model specification.

Level 2. Matching: Optimal parameters {w", @', 8} for each model
H; are estimated by a best match of H; with the input image D.
The process is equivalent to first maximizing the posterior
probability density p(a, 81D, H;) and then maximizing p(w|D,
a, B, H;), resulting in a maximum of p(w, a, 8| D, H)).

Level 3. Classification: The best model is determined by selecting
the model H; with maximum posterior probability Pr(H;]D)
among all the possible i.

According to Level 3, Pr(H;] D) of each model has to be com-
puted for classification. Using the Bayes rule and assuming equal
prior probabilities Pr(H;),

arg max Pr(Hi | D) = arg max p(D| Hi)Pr(Hi)
= arg m_axp(D| Hi), e\
1

where p(D | H;) is called the evidence” of model H;.
Expanding p(D|H;) according to the Bayes rule again and as-
suming that D is independent of a and w is independent of ,8

(ol -
p(D|w. B, H, Jp(w| e, H;)
” p(w|D, e B, H,)

p(ov, B[ H, )dadB, @

where p(w] a, H;) is the prior parameter distribution, p(D |w, 8, H;)
is the likelihood function, and p(w|D, a, B H;) is the posterior
parameter distribution given the data D.

By Laplacian approximation, (2) becomes

(o)~

p(D|W, B, Hi)p(w|a*, Hi)

—— p(a*,ﬁ*|Hi)ZnAIogaAlogﬂ, (3)
p(W|D,oc*,/3"’,Hi)

1. In general, there can be more than one model for each digit class, espe-
cially if the within-class shape variation is morphological (see Section 3.1).

2. The evidence p(D|H,) obtained at Level 2 is referred to as the likeli-
hood for Bayesian classification at Level 3.

3. These assumptions can be easily justified by their definitions.
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) Hidden Stroke

Fig. 1. A “4” digit model with one hidden stroke. There is no pixel on the
hidden stroke.

where Aloga and Alogp are the effective ranges of a and S, respec-
tively, and the maximum a posterlorl (MAP) estimates {w', a’, 5}
are computed in Level 2 mference using the models derived as a
result of training in Level 1.

3 DEFORMABLE MODEL-BASED CHARACTER
RECOGNITION

In this section, DMs are formulated under a Bayesian framework
to yield a unified computational approach to modeling, matching,
and classification for deformable pattern recognition.

3.1 Model Representation

As in [8], handwritten digits are represented as cubic B-splines,
each of which is parameterized by a small set of k control points
and the corresponding model parameter vector w [J 0% is formed
by concatenating the x and y coordlnates of all the k control points,
i.e., W= (Xq, Y1, X2, Yo, oy X yk) To achieve affine invariance, each
character model in the model frame is mapped to the image frame of
the input character image by an affine transform with parameters
represented as {A, T}, where A is a 2 x2 matrix and T is a two-
dimensional vector.

To represent digits with separate strokes like [0 and | for the
digit “4,” the above single-spline model can still be used by con-
necting the disjoint strokes together using hidden strokes, along
which no black pixels are placed. Fig. 1 shows a “4” digit model
with one hidden stroke.

Using the spline representation, at least one reference model is
constructed for each class. Different people often write very differ-
ently even for the same digit, let alone digits from different classes.
The variation is sometimes morphological and cannot be satisfac-
torily represented by elastic deformation of a single digit model,
e.g., “7” and “z” for the digit class “seven.” Moreover, the distri-
bution of the model parameters for a class may not be represented
well by a single mean reference vector. Both suggest that using
multiple reference prototypes for each class is inevitable for get-
ting better results. Deriving such categorization automatically
from the training data is nontrivial. In this study, we examined the
common variations found in real-world handwriting data and
constructed the initial models manually (see Section 5.1 for further
discussions).

The model parameters to be learned (or estimated) for charac-
terizing a deformable spline include the number of control points k
and the mean vector and covariance matrix of w. Using a priori
knowledge, a fixed value of k is carefully chosen for each digit
model so that the digit shape can be readily represented. Training
based on maximum likelihood (ML) methods, as in [8], then follows
to refine the model parameters using real handwriting data. To
categorize the training data automatically to multiple within-class
prototypes, we match each training example with all the within-
class prototypes and assign it to the prototype with the highest
value of model evidence p(D | H;). Fig. 2 shows all the digit models
after training.

4. The MAP estimate w' is needed for approximating p(w|D, a, 8, H).
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Fig. 2. Digit models after training.

3.2 Formulation of Optimization Criteria

3.2.1 Model Deformation Criterion

The degree of deformation, quantified by the model deformation
criterion E,(w) of the ith model H;, is defined as the Mahalanobis
distance of the vector w of control points from a predefined mean
vector h 0 0% as follows:

1
E, (W)= 5 (w - h)' S (w-h), @
where X is the 2k x 2k covariance matrix of w for H; and w' denotes

the transpose of w. Subsequently, the prior probability distribution
of w is given by

p(w| a, Hi) = exp(—oE, (w)) (5)

Z,(a)
where

2r k 12
2.t0) - 5| ©

|Z] is the determinant of X, and a is the regularization parame-
ter. The components of h and X, as discussed in Section 3.1, are
computed by ML estimation during the training stage (Level 1
inference).

3.2.2 Data Mismatch Criterion

Let the input image be binary. The distribution of black pixels is
modeled using a uniformly weighted mixture of Gaussians with
their means uniformly placed along the visible portions of the
spllne Mismatch between the model and the data is measured by
the data mismatch criterion, defined as

"mj(w,A, T)- y|||2
2

Ep(W,A,T;D) = ng Zexp (D
9 j=1
The likelihood function is then given by
1
p(D|W,A,T,ﬁ,Hi):z—(mexp(—ED(w,A,T;D)) ®)
D
where
2\
20)-(% ] ©

S; is a 2k x 2 matrix containing the corresponding cubic B-spline coeffi-
cients, A and T are a 2k x 2k block diagonal matrix with k A sub-
matrices placed on its diagonal and a 2k x 1 vector formed by concate-
nation of k T subvectors, respectively, m,(w, A, T) = S;(ﬂw +T)is

5. Note that in Revow et al.’s study, an additional uniform noise process
is used to model some structure noises caused by bad segmentation. As the
dataset we used is relatively well-segmented, whether to introduce the
noise process or not does not make a difference. For a more detailed study
on badly segmented cases, readers are referred to [2].

the mean of the jth Gaussian, N is the number of black pixels in the
image, Ny is the number of Gaussians along the spline,6 B is the
inverse of the variance of the Gaussians for modeling the character
stroke width, y, is the location vector of an individual black pixel,

and D denotes the set {y,] 1 < | < N}. The use of a single global Sfor
all the Gaussians results in an implicit assumption that the char-
acter stroke is of uniform width.

For simplicity, the prior distribution of the affine transform pa-
rameters is assumed to be uniform throughout the paper, except
that those affine transform parameters that can lead to very large
shearing or shrinking (i.e., illegible characters) are prohibited and
the corresponding model configuration is rejected before classifi-
cation. This avoids the models from degenerating into a line seg-
ment which then often matches well with the character “1.” Such
excessive shearing or shrinking is not commonly found in real
handwriting.

3.2.3 Combined Criterion Function

Combining the model deformation criterion and the data mis-
match criterion, the overall criterion function is given by

Eu(w, A, T; D) = gk, (W) + Ep(w, A, T; D) (10)
where a is the regularization parameter. The joint posterior distri-
bution of w and {A, T} is defined as

p(W,A,T|D,a,ﬁ, Hi) = exp(-Ey(W,A, T;D))  (11)

1
Zy (e p)

where
Zy(, B)= [ exp(~Ey(w, A", T"; D) jdw (12)

with the assumption that p(w, A, T|D, a, B, H) = p(w, A", T'| D,
a, 5, H;) and A" and T" are the ML estimates of A and T.

3.3 Matching

3.3.1 Estimation of Optimal Control Points and Affine
Transform Parameters

The MAP estimates of the spline control point vector w and the
affine transform {A, T} are obtained by maximizing p(w, A, T|D,
a, B, H;) in (11) (or equivalently by minimizing Ey(w, A, T; D) in
(10)). The EM algorithm [3], similar to the one in [8] but with an
affine transform initialization step added, is used here. Apply-
ing the EM algorithm to our application, the E-step and the M-
step are given by (13), (14), (15), and (16), respectively:

6. Note that the value of N, will change accordingly as the value of
(hence the stroke width estimate) changes.
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Fig. 3. lllustration of the importance of affine transform initialization. The small character near the upper left corner in each figure is the model
before affine transformation. (a) Initial position of the model. (b) Model initialization using the proposed EM procedure for the affine transform pa-
rameters. (c) and (d) Final match with and without the proposed affine transform initialization step.

Fig. 4. (a), (b) The value of a” is estimated automatically based on the degree of deformation of the input character, where B* = 0.9 for both
cases. (a) a* = 3.54. (b) a* = 0.89. (¢), (d) The stroke width of the character increases as the estimated value B (inversely related to the square of

the stroke width) decreases. (c) g+ = 1.72. (d) 8* = 0.52.

exp| —B 7“mj(wg)iyluz
hi(W,, A, Tory)) = . (13)
X, exp| B Hmp(w;)_YIH
E,’D(W,A,T,Wn,An,'i'n,D):
N Ng (W, A ,'i'n;yl)"mj(w)_yluz
EH 5 (14)
Q(W,A,T,wn,An,fn,D)z
—aE, (W) - BES(w, A, T, W,, A, T,.D) (15)
{WM,AM,T'M} = arg max Q(W,A, Tw,, AT, D) (16)

where W, and {An,'i'n} are the estimates of the control point vec-

tor and the affine transform obtained in the nth EM iteration. Fig. 3
illustrates the advantage of using the added affine transform ini-
tialization step with which global deformation can be better de-
tected, and subsequently a better final match results.

3.3.2 Estimation of Regularization and Stroke Width
Parameters
By maximizing the posterior probability density p(a, 8] D, H;), the
MAP estimates o and S can be determined. As in [7], it relies on
the approximation of Zy,(a, §), which can be approximated as
Zu(d, B) =
exp(-En(wW', A", T D)2 | O, OWEnw', A, T5 D) 772 (17)

where 0,,0,,Eu(w, A, T; D) = as ™t + OwOwEp(w, A, T; D). By ap-
proximating O,,0,Ep(w, A, T; D) by ﬁVWVWEE)(W,A,T,W,A,'i', D)

and assuming that the value of h; (W,A, T, yl) remains constant for

all jand | when w is near its MAP estimate w', it can be shown that
the MAP estimates @ and § must satisfy
2N -1

* E

o = _ B . (8
2€,, (W) 2, (W', A" T, W,A T, D)
where
y=2k- aTrace(VWvWE;A(w*,A*,T*,w,A,f, D)’l) (19)
VoV Eu(w' A" T W, A, T,D) =
ol + BV, Y, Ep(w', AT W,A,T,D). (20)

Since there exist no closed-form solutions for a" and 5, the {w’,
A", T’} estimation step and the {a’, 5} estimation step are imple-
mented in an iterative fashion, with (18) serving as the conver-
gence criteria. Some initial values of a and g are required.7 The
overall matching algorithm is summarized in Fig. 5.

Fig. 4 illustrates the effect of different degrees of deformation
resulting in different values of a" and the effect of different
stroke widths resulting in different values of S. Note that a
smaller value of o’ is the result of a higher degree of deforma-
tion. This is consistent with the notion that a smaller weighting
factor for the model deformation criterion gives the model
greater flexibility for a better match with the image data. Also, a
smaller value of the automatically estimated 8 implies a wider
stroke.

3.3.3 Model Flexibility Constraints

The flexibility of a deformable spline model is controlled by both
the covariance matrix X, which is obtained via training, and by the
regularization parameter a, which is estimated adaptively based
on the input. In the framework, a is assumed to have a uniform
prior distribution, i.e., all the values of a are equally probable.
This however is undesirable as extremely small values of a may

7. From our experiments, the convergence of the algorithm was found to
be not very sensitive to the initial values of aand .
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For each character model from the candidate model set:

1. Set the spline control points w to some predetermined (via
training) locations.

2. Compute the character image frame and hence a rough initial
guess of the affine transform {A, T} by scaling the model ac-
cordingly.

3. Initialize {A, T} using an EM procedure.

a) E-step: Compute hj! (W,A,f, yl) as defined in (13) for all j
and |,

b) M-step: Fix w in the model frame and compute {A, 'i'} by
maximizing the Q-function defined in (15),

c) Iterate this initialization process until convergence.

4. Match the model with the image data using an EM proce-

dure.

a) E-step: Compute hj!(\iv,A,'T',yl) foralljand |,

b)M1-step: Fix {A, T} and compute W by maximizing the Q-
function,

¢) M2-step: Fix w in the image frame and compute {A, 'T'} by

maximizing the Q-function with respect to {;\, ﬂ where
A=A"and T= AT,
d)lterate this matching process until convergence.

5. Compute @ and S according to (18).
6. Iterate Steps 4 and 5 for the particular character model until
convergence.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 12, DECEMBER 1998

(b)

Fig. 6. Avoiding an unfavorable match by imposing model flexibility
constraints. (a) Unconstrained match. (b) Constrained match.

Fig. 5. The matching algorithm.

result in good matches between severely deformed models and
input characters that do not belong to the model classes (see Fig. 6).
This observation implies that the uniform prior assumption for a
is inappropriate, allowing too much flexilibility for the models.
While obtaining an accurate prior distribution for a is in general
not easy and may result in a more complicated matching proce-
dure, constraining the value of a, according to (18), can be indi-
rectly achieved by constraining the value of the model deforma-
tion criterion E,(w). This implies that the flexibility restriction
can be imposed by putting a hard constraint directly on E,(w)
for each individual model. Any matching iteration that results in
a value of E,(w) greater than the threshold will be forbidden. For
each individual model, such a threshold can be precomputed as
the upper bound of E,(w) based on its training data. Fig. 6 illus-
trates how the incorporation of constraints on model flexibility
can avoid an unfavorable match of a “5” model to a digit image
of “4.”

3.4 Classification
3.4.1 Evidence Comparison

Classification involves approximating the evidence p(D | H;) based
on{w’, A", T", @', B} obtained for each of the candidate models. By
substituting (5) and (8) into (3), it can be shown that

p(D|H,) x%\p/—mzﬂm -7).

The quantities Z,(a"), Zp(8), and Zy(a’, F) can be computed ac-
cording to (6), (9), and (17), respectively. Finally, classification is
determined by finding i" = argmax;p(D|H,), and the character is
classified as H;». Ambiguous input rejection is done by computing
the posterior class probability P(H;] D), given by

(21)

For any input character: (h = image height; w = image width)

1) create a vertical projection profile p[i] of black pixels, where
the profile is computed by counting the number of black pix-
els in the first continuous black pixel segment for each top-
to-bottom vertical scan;

2) compute Il and rl by detecting the left and right margins
where p[i] > 0.6 x h;

3) if 11 > 0.5 x w, return “Not thick ONE”; /* To avoid confusion
with “7” */

4) else
a) thickness := 0,

b) for each location from Il to rl,

i) if p[i] > 0.6 x h, increment thickness by one; else break;

5) if thickness > 6, return “Thick ONE”; else return “Not thick
ONE”.

Fig. 7. The thick “1” filtering algorithm.

P(H, D)——p(D| P (22)

Y
jz_}p(D| H;)P(H;)
and comparing it with a predefined confidence threshold.

3.4.2 Likelihood Inaccuracy

The success of Bayesian inference greatly relies on model accuracy.
In our experiments, it is found that any inaccuracy in Sestimation,
and, hence, the likelihood estimation, can easily confuse the evi-
dence comparison among the best few candidates. To correct such
an inaccuracy, the classification rule can be modified by first com-
puting the maximum evidence value P(D|H;.) and then forming a
short-list of model candidates, each with its value of P(D | H;) close
enough (determined by a predefined threshold) to P(D|H;:). To
come up with the short list, we assume that the difference in data
mismatch among the model candidates is negligible and, hence,
the candidate with the greatest value of the prior p(w]H;) is then
the classified output.

3.4.3 Filtering Normalized “1”

According to the report by the NIST group [4], all the segmented
character images in the NIST SD-1 dataset are normalized first to
20 x 32 and then put to the center of a 32 x 32 image. This leads to
the existence of many thick “1” digits in the database and causes
serious misclassification as all models can find good fits to them.
As the normalization step causes the above-mentioned difficulty
and normalization is in fact not required at all for our approach,
instead of collecting new data for class “1,” we derived a simple
filter to preclassify all the thick “1” digits. The algorithm is de-
scribed in Fig. 7.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 12, DECEMBER 1998

(b)

Fig. 8. lllustration of the subpart problem. See Section 3.4.4 for expla-
nation. (a) Model “0.” (b) Model “2.”

3.4.4 Subpart Detection

The subpart problem arises when some models in the model set
are subparts of some others. For example, the model “0” and “2”
sometimes can fit almost equally well to a “0” digit image (see
Fig. 8). By noting the obvious difference that the “2” model has
several Gaussians resting on the white space, the situation can be
detected by incorporating the following detection rule: If the first
ranked class is “2” but with Gaussians on the white space while the next
ranked class is “0” without any Gaussians on the white space, then the
output class is “0.” In our study, using some prior knowledge, we
create a rule base containing four rules to distinguish between the
following pairs of digits:

1) “0” and “27;

2) “4” and “9”;

3) “7” and “9”; and

4) “3”and “8,”
where each former character model is a subpart of the latter.

4 EXPERIMENTAL RESULTS ONTHE NIST
HANDWRITTEN DIGITS

The proposed framework has been applied to recognize isolated
handwritten digits in the NIST Special Database 1 for performance
evaluation. Three subsets of the NIST data, denoted as S1, S2, and
S3, respectively, are used in our experiment. S1 is the training set
which contains 11,660 digits (32 x 32 binary pattern each) written
by 100 different individuals (£0000-£0099 in NIST SD-1). S2 and
S3 are two test sets which contain digits written by another group
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of 100 individuals (£0100-£0199 in NIST SD-1). Their sizes are
1,000 and 11,791 respectively. The testing result is summarized in
Table 1.

The proposed methods increase the recognition accuracy to
different extents, where the model flexibility constraint incorpo-
ration is the most effective one based on our experience. By com-
bining all of them, we achieve an accuracy of 94.7 percent at 0
percent rejection.

5 LIMITATIONS AND FUTURE WORK

5.1 Model Set Construction

Although the proposed framework is generic for any shape recogni-
tion applications, porting it to other applications requires a manual
and intelligent process of creating the class reference shapes. In or-
der to automate the process, we are still lacking

1) an algorithm to construct shape representations (cubic B-
splines in our case) for different classes and
2) an algorithm to create an optimal set of reference models.

For the extreme case with all the training data used as reference
models, a 99.25 percent accuracy has been achieved by Jain et al.
[5] on a subset of handwritten digits from NIST. However, this
nearest-neighbor-type approach is computationally too expensive
for practical applications. For our case, by using only 23 models
(which is, of course, by no means optimal), a 94.7 percent accuracy
is achieved (though based on another subset of NIST data but of
much larger size than that in Jain et al. [5]).

5.2 Fast Implementation

The iterative deformable matching procedure is known to be
computationally expensive. Also, if a multiclass DM-based rec-
ognition system is implemented directly on sequential comput-
ers, it is apparent that this approach will further suffer due to the
scale-up problem, i.e., computation increases linearly with the
number of candidate models. Other than hardware solutions like
parallelization or special-purpose hardware, some efficient soft-
ware techniques such as geometric hashing [6] have been pro-
posed to tackle this problem. However, most of these techniques
require the object to be represented by a set of pre-extracted sali-
ent points, like corners, and the deformation allowed is, so far,
very restricted.

For fast matching, by noting the information redundancy in the
input image, subsampling techniques are expected to help. We
have tested two subsampling techniques:

TABLE 1
RECOGNITION ACCURACY OBTAINED BASED ON COMBINATIONS OF DIFFERENT METHODS
Methods “0” “1” ‘2" “3” “4” “5” “6” “r" “8” “9” Overall
Training set: S1 (11,660 digits) Test set: S2 (1,000 digits)
B 99% 54% 79% 84% 82% 83% 76% 66% 82% 84% 78.8%
B+R 99% 69% 96% 96% 95% 94% 96% 90% 92% 94% 92.1%
B+R+0O 99% 91% 96% 96% 95% 94% 96% 90% 92% 94% 94.3%
B+R+O+P 99% 91% 96% 96% 95% 94% 98% 94% 93% 95% 95.1%
Training set: S1 (11, 660 digits) Test set: S3 (11,791 digits)
B+R+0O 98.5% 95.1% 94.9% 94.9% 92.7% 94.8% 93.0% 925% 90.1% 91.5% 93.8%
B+R+0O+P 99.3% 94.6% 95.6% 94.7% 93.2% 95.7% 948% 92.9% 91.4% 92.9% 94.4%
B+R+O+P+S 99.4% 94.6% 955% 94.6% 94.0% 95.7% 948% 93.3% 925% 92.6% 94.7%
B+R+O+P+S+Rj-4.9 99.4% 97.5% 959% 952% 96.1% 957% 95.6% 95.3% 94.7% 93.8% 95.9%
B+R+0+N2 99.5% 97.3% 98.2% 97.7% 96.5% 985% 982% 96.8% 94.0% 97.5% 97.4%
B+R+O+N3 99.7% 98.1% 98.8% 98.7% 97.8% 99.3% 99.5% 98.1% 97.5% 99.1% 98.7%
B+R+0+N4 100%  98.2% 99.3% 99.3% 98.2% 99.6% 99.8% 98.9% 98.8% 99.6%  99.2%

The abbreviations stand for: B—basic framework (Section 3.4.1), R—restriction on model flexibility (Section 3.3.3), O—thick “1” filtering (Section
3.4.3), P—considering prior in final decision (Section 3.4.2), S—subpart penalty (Section 3.4.4), Rj-4.9—rejection at 4.9 percent, Nn—correct class
within best n models. The thresholds used in method R are obtained via training.
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1) uniform random sampling (50 percent of data sampled) and
2) same uniform random sampling plus all boundary pixels.

The achieved speed-up factors are 1.69 and 1.2 with approximately
0.9 percent and 0.2 percent accuracy sacrificed, respectively.

To alleviate the scale-up problem, we have also tested a com-
petitive mixture of DMs which is basically using the early elimi-
nation approach to save unnecessary computation resulting from
the matching with irrelevant models. For a particular experiment
[1], implementing this idea where seven of the 10 models are
eliminated after the affine initialization step, we have achieved a
speed-up factor of 1.9 at the expense of 1.2 percent accuracy
drop. It is believed that some better competitive process should
be worth investigating to achieve higher speed-up and lower
accuracy drop.

6 CONCLUSION

A unified framework based on Bayesian inference is proposed
for modeling, matching, and classifying patterns which exhibit
large variations in shape. DMs are incorporated as an important
component in this Bayesian framework. Handwritten character rec-
ognition is used to provide a meaningful and realistic testbed for this
DM framework. For handwritten digits from the NIST SD-1 dataset,
by using only 23 prototypes, we have achieved an accuracy of 94.7
percent on 11,791 test examples. No discriminative training is used
at all in the whole framework, and the same approach can readily
be applied to other shape recognition problems. Developing an
automatic model set construction algorithm and a fast implemen-
tation of the matching and classification step will be of interest to
further research.

Using this approach, the obvious next step is to formulate char-
acter segmentation of cursive handwritten words [2] as a compo-
nent of the overall framework so that character segmentation and
isolated handwritten character recognition can be tightly coupled
together for better interaction and feedback to achieve a higher
level of performance.
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