
*Corresponding author. Tel.: #852-2358-6977; fax: #852-
2358-1477

E-mail address: dyyeung@cs.ust.hk (D-Y. Yeung)

Pattern Recognition 33 (2000) 375}384

An e$cient syntactic approach to structural analysis
of on-line handwritten mathematical expressions

Kam-Fai Chan, Dit-Yan Yeung*

Department of Computer Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

Received 29 September 1998; accepted 2 March 1999

Abstract

Machine recognition of mathematical expressions is not trivial even when all the individual characters and symbols in
an expression can be recognized correctly. In this paper, we propose to use de"nite clause grammar (DCG) as a formalism
to de"ne a set of replacement rules for parsing mathematical expressions. With DCG, we are not only able to de"ne the
replacement rules concisely, but their de"nitions are also in a readily executable form. However, a DCG parser is
potentially ine$cient due to its frequent use of backtracking. Thus, we propose some methods here to increase the
e$ciency of the parsing process. Experiments done on some commonly seen mathematical expressions show that our
proposed methods can achieve quite satisfactory speedup, making mathematical expression recognition more feasible for
real-world applications. (2000 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.

Keywords: De"nite clause grammar; Document processing; Mathematical expression recognition; Structural analysis

1. Introduction

Many documents in scienti"c and engineering disci-
plines contain mathematical expressions. The input of
mathematical expressions into computers is often more
di$cult than the input of plain text, because mathemat-
ical expressions typically consist of special symbols and
Greek letters in addition to English letters and digits.
With such a large number of characters and symbols, the
commonly used type of keyboard has to be specially
modi"ed in order to accommodate all the keys needed,
as done in Ref. [1]. Another method is to de"ne a set of
keywords to represent special characters, as in LATEX
[2]. However, working with specially designed key-
boards or keywords requires intensive training. Alterna-
tively, by taking advantage of pen-based computing
technologies, one can simply write mathematical expres-
sions on an electronic tablet for the computer to recog-
nize them.

Mathematical expression recognition consists of two
major stages: symbol recognition and structural analysis.
Character recognition, as the most common type of sym-
bol recognition problems, has been an active research
area for more than three decades [3]. Structural analysis
of two-dimensional patterns also has a long history [4].
However, as emphasized in Refs. [5}7], very few papers
have addressed speci"c problems related to mathemat-
ical expression recognition.

In a mathematical expression, characters and symbols
are typically arranged as a complex two-dimensional struc-
ture, possibly of di!erent character and symbol sizes. This
makes the recognition process more complicated even when
all the individual characters and symbols can be recognized
correctly. Moreover, to ensure that a mathematical expres-
sion recognition system is useful in practice, its recognition
speed is also an important factor to consider.

It is well known that parsing can be done in poly-
nomial time with Earley's algorithm [8] while most of the
other types of parsers take exponential time. However, as
Covington [9] tried to argue, exponential parsers can be
fast when the length of the sentence to parse is short.
Also, a long sentence can usually be broken up into
shorter sentences that can be parsed separately.

0031-3203/00/$20.00 (2000 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
PII: S 0 0 3 1 - 3 2 0 3 (9 9) 0 0 0 6 7 - 9

In this paper, we will mainly focus on the structural
analysis aspect of mathematical expression recognition.
First of all, we will review some related work. Then, we
will discuss some problems that have to be overcome
during the structural analysis stage. Afterwards, we will
propose to use de"nite clause grammar (DCG) as a for-
malism to de"ne a set of replacement rules for parsing
mathematical expressions. Unlike some parsers which
may take quite a long time to construct even when all the
grammar rules are available, DCG rules are already in
a readily executable form. However, a DCG parser is
potentially ine$cient due to its frequent use of back-
tracking. Thus, we will propose some methods for in-
creasing the e$ciency of the parsing process. In addition,
we will explain how our proposed approach works
through use of an illustrative example. Finally, we will
present and discuss some experimental results which are
then followed by some concluding remarks.

2. Related work

One of the earliest papers on mathematical expression
recognition was presented by Anderson [10] in 1968. He
used a purely top-down approach for parsing mathemat-
ical expressions. The algorithm starts with one ultimate
syntactic goal and tries to partition the problem (i.e. goal)
into sub-goals, until either all sub-goals have been satis-
"ed or all possibilities have been exhausted in vain. The
algorithm is syntax-directed since it is guided by some
grammar rules. However, experiments showed that the
algorithm is not very e$cient due to the partitioning
strategy used for the rules which involve two non-
terminal symbols on the right-hand side. As a result, up
to n!1 partitions can be generated by a set of n charac-
ters, and each of these partitions may further generate
more partitions.

In 1970, Chang [4] proposed a method for the struc-
tural analysis of two-dimensional mathematical expres-
sions. The algorithm mainly makes use of the ideas of
operator precedence and operator dominance. It consists
of two major steps, grouping operator sequences and
building a structure tree. E$ciency was taken into con-
sideration in the proposed algorithm. However, the
methods described are quite tedious. It is not straight
forward to understand how they actually work in practi-
cal examples.

In 1971, Martin [11] discussed some issues relating to
both computer input and output of mathematical expres-
sions. For the input case, however, not enough technical
details about the replacement rules used were provided in
the paper, but it raised the question of ambiguities found
in mathematical expressions though with no solutions
provided. In addition, it also proposed some methods to
make the parsing process more e$cient, but again with-
out real implementation.

Some papers related to this topic only dealt with some
speci"c parts of the recognition process. For example,
Wang and Faure [12] applied a statistical approach for
determining some relationships among symbols in math-
ematical expressions, such as on the same line, exponent
and subscript. Pfei!er [13] designed a parser for context-
free languages in order to parse two-dimensional struc-
tures like mathematical expressions. However, all the
discussions in that paper are limited to parsing in a the-
oretical sense with no real examples shown. Grbavec
and Blostein [14] used a graph rewriting approach for
the understanding of mathematical expressions. Their
system made use of knowledge about notational conven-
tions to avoid the need for backtracking.

Other papers in the 1980s and 1990s investigated both
the character recognition and structural analysis stages
with emphasis on some speci"c themes. BelaH id and Haton
[5] worked on some simple mathematical expressions
and elaborated more on solving the ambiguity problem
by taking advantage of contextual information. Lee and
Lee [7,15] proposed a method for recognizing symbols
in mathematical expressions. Their aim was to translate
the expressions from two-dimensional structures into
one-dimensional character strings. Dimitriadis and
Coronado [6], instead, put emphasis on the detection
and correction of errors.

Chou [16] proposed to use a two-dimensional
stochastic context-free grammar for the recognition of
printed mathematical expressions. His approach was de-
signed for handling noise and random variations. In the
grammar, each production rule has an associated prob-
ability. The main task of the process is to "nd the most
probable parse tree for the input expression. The overall
probability of a parse tree is computed by multiplying
together the probabilities for all production rules used in
a successful parse. As a result, the process is computa-
tionally quite expensive.

Okamoto and Miao [17] took advantage of some
speci"c knowledge of notational conventions of mathe-
matics. Their method can "nd the structures of expres-
sions without the need for parsing. Twaakyondo and
Okamoto [18] extended the work of Okamoto and Miao
[17] and Okamoto and Miyazawa [19] by using two
strategies, namely, top-down and bottom-up structure
processing methods. Again, with their approach, struc-
tures can be obtained without parsing. On the other
hand, Lee and Wang [20] built a symbol relation tree for
an expression and used some heuristics to correct recog-
nition errors. Like the previous two, this method also
does not require parsing.

Ha et al. [21] de"ned an expression tree as an
abstraction of a mathematical expression. The construc-
tion of such an expression tree can be done through
top-down ("nding all the primitive objects) and bot-
tom-up (resolving spatial relationships among objects)
processes.

376 K-F. Chan, D-Y. Yeung / Pattern Recognition 33 (2000) 375}384

Recently, an approach based on hidden Markov mod-
els for character recognition was proposed [22]. The
resulting mathematical expressions are recognized using
a soft-decision approach [23]. Such an approach can
ensure that alternative solutions are generated and ex-
plored under ambiguous cases.

3. Problems in structural analysis of mathematical
expressions

Mathematical expressions are two-dimensional struc-
tures. This nature and some other properties make their
recognition non-trivial in many ways. Here are two
examples:

1. The relationships among symbols in a mathema-
tical expression sometimes depend on their relative
positions. For example, in the expression `a2a, 2
is the superscript of a representing the square of a.
However, in `a

2
a, 2 is the subscript of a denoting only

a variable name. Although it is somewhat unusual,
`a2a may be used to represent the multiplication of
a by 2.

2. The same group of characters can have di!erent
meanings under di!erent contexts. For example, `dxa
has di!erent meanings in `:x2 dxa and in `cy#dxa.
In the "rst expression, `dxa is part of the integral.
However, in the second one, the same two letters
become the multiplication of two variables.

These problems have to be taken into consideration
when we process mathematical expressions in the follow-
ing steps.

3.1. Grouping symbols

Before we can interpret the symbols, we must "rst
group them properly into units. This can be done by
using as heuristics some conventions in writing math-
ematical expressions. Some of these conventions are as
follows:

1. Digits which together form a unit should be of the
same size and be written on the same horizontal line.
For example, 210 is only one unit but 210 consists of
two units, i.e., 2 and 10.

2. Some letters together may form a unit, like some
trigonometric functions such as tan, sin and cos. Be-
fore considering a group of letters as a concatenation
of variables, we have to "rst check whether they are in
fact some prede"ned function names.

3. Symbols other than letters and digits should be con-
sidered as separate units.

3.2. Determining relationships among symbols

Determining the relationships among symbols, to
some extent, can be viewed as grouping several smaller
units into one larger unit. Again, some conventions can
be used as heuristics:

1. Some fence symbols, such as parentheses, group the
enclosed units into one single unit. For example,
(a#b) is a unit which holds the sum of a and b.

2. Some binding symbols, like fraction line, J and +,
dominate their neighboring expressions. For example,
in +10

i/1
i, three units, i.e., 10, i"1, and i are bound to

the symbol + which together give meaning to the
expression as the sum of 1, 2,2, 10.

3. The ideas of operator precedence and operator domi-
nance [4] can also be used for grouping units. For
example, in a#b/c, the meaning becomes a#(b/c)
due to the fact that `/a has higher precedence than
`#a. The operator `#a is said to dominate `/a.
However, in (a#b)/c, the meaning becomes (a#b)/c
since `/a dominates `#a in this case.

4. Parsing with binding symbol preprocessing and
hierarchical decomposition

Most previous works in mathematical expression rec-
ognition did not put much emphasis on explaining how
the replacement rules are used for structural analysis, or
the explanations are too tedious and sometimes too ad
hoc [4,10,13]. To remedy such weaknesses, we propose to
use de"nite clause grammar (DCG) [24] as a formalism
to concisely and precisely describe our set of replacement
rules for parsing mathematical expressions. Note that
a grammar expressed in DCG is highly declarative and
can be directly executed by a Prolog interpreter.

However, DCG parsers are known to be potentially
ine$cient due to backtracking. In this section, we will
propose some methods for increasing the e$ciency of the
parsing process.

4.1. Basic notations for DCG

DCG is similar to BNF, with some minor notational
di!erences summarized as follows:

1. `::"a is replaced by `- -'a.
2. Non-terminals are not put inside brackets any more.

Instead, terminals are now in square brackets.
3. Symbols are separated by commas and each rule is

terminated by a full stop.

There are some major di!erences between DCG and
BNF though. In DCG, some Prolog predicates (enclosed
inside M N) can be put in the body of any rule so that the
semantics of a rule can be incorporated into its syntax. In

K-F. Chan, D-Y. Yeung / Pattern Recognition 33 (2000) 375}384 377

Fig. 1. Translating an expression from its two-dimensional form
into a one-dimensional representation.

addition, arguments can be added to non-terminal sym-
bols of the grammars.

4.2. Conventional backtracking parsing in DCG

The simplest way of parsing a two-dimensional expres-
sion is to "rst translate it into its equivalent one-dimen-
sional representation and then parse it with an existing
parser. Since there already exist many compilers or inter-
preters for parsing string-based mathematical expres-
sions, some extra work can be saved by taking this
approach. Fig. 1 shows an example of such translation.

Now, suppose that the parser we are going to use is
a DCG parser and we need to create it from scratch. How
many rules do we need?

In general, the simplest expressions are the ones that
involve arithmetic operations. As we know, all the binary
arithmetic operators are left-associative. However, top-
down parsers, such as a DCG parser, cannot handle
left-recursive grammars. This problem can be solved eas-
ily by transforming those left-recursive grammars to
right-recursive ones. However, although the strings gen-
erated by any left-recursive grammar and its correspond-
ing right-recursive grammar can be the same, their inter-
nal structures may be di!erent. Hence, some "xing e!orts
may be required subsequently.

Anyhow, the grammar rules for arithmetic operations
are extremely simple. They are as follows:

parse}equation(A) - -' equation(A).

equation([", A, B]) - -'expr(A), ["], expr(B).

expr([Op, A, B]) - -' term(A), [Op],
Mis}add}sub(Op)N, expr(B).

expr(A) - -' term(A).

term([Op, A, B]) - -' factor(A), [Op],
Mis}mul}div(Op)N, term(B).

term(A) - -' factor(A).

Note that multiplication and division have higher pre-
cedence than addition and subtraction. Such precedence
relationships can be implemented easily by having mul-

tiple levels in the grammar rules. In general, the operators
at a level always have higher precedence than the ones
above them.

Similar techniques can also be applied to the unary
operator, as well as spatial operators like implicit multi-
plication, subscr ipt, exponent and parentheses. Here are
the grammar rules:

factor([neg, A]) - -' [-], sub}expr(A).
factor(A) - -' sub}expr(A).

sub}expr(MEName) - -' sub}term(MEName).

sub}term(MEName) - -' sub}factor(A),
sub}expr(B), Mis}adjacent(A, B, MEName)N

sub}term(A) - -' sub}factor(A).

sub}factor(MEName) - -' expr}unit(A),
sub}expr(B), Mis}sub}exp(A, B, MEName)N.

sub}factor(A) - -' expr}unit(A).

expr}unit(MEName) - -' [’(’], expr(S1), [’)’],
Madd}expr}unit(S1, MEName)N.

expr}unit(A) - -' [A], Mis}expr(A)N.

In order to handle functions, inde"nite integral, frac-
tion and square root, the following rules are needed:

Notice that it usually takes comparatively longer time
for a DCG parser with the above grammar rules to
return the tree structure of an expression, because some
sub-structures may be re-generated again and again dur-
ing the backtracking steps. Therefore, the bigger the

378 K-F. Chan, D-Y. Yeung / Pattern Recognition 33 (2000) 375}384

Fig. 2. Tree structure of the mathematical expression in Fig. 1.

structure is, the longer the time it takes. Fig. 2 depicts the
tree structure for the expression shown before in Fig. 1.

4.3. Parsing with left-factored rules

Although the grammar rules in the previous section
are highly comprehensible, they are not very e$cient
from the implementation point of view. For example, in
the following two grammar rules,

we must "rst "nd term(A). If the next symbol Op is
neither an addition operator nor a subtraction operator,
we then backtrack to the second rule. However, in the
second rule, the same step of "nding term(A) is repeated
again. To tackle this problem, we can perform left factor-
ing on the same rule to give the following result:

In the above left-factored grammar rule, the result of
term(A) is passed into the next sub-goal more}term(A, B).
If the respective operator is found, we then continue to
process more terms. Otherwise, the input structure is
returned as output.

The main idea of left factoring is to rewrite some
grammar rules so that decisions can be deferred until
enough input tokens have been seen in order to make the
right choice [25]. The following is the set of grammar
rules corresponding to the rule set in the previous section,
with some of the rules replaced by left-factored ones as
shown below:

4.4. Parsing with binding symbol preprocessing

As mentioned in Section 2, binding symbols always
dominate their neighbors. For example, in the expression
shown in Fig. 1, the fraction line in (6x#4y)/2 dominates
the sub-expressions 6x#4y and 2. Instead of putting
them in a one-dimensional form for further parsing, we
can directly parse the two expressions "rst and then
construct the "nal structure of the fraction from the
intermediate results. The resulting structure will be
stored in memory, with a name introduced to denote
the fraction that the structure represents. There is no
need to generate the structure for this fraction again
during the subsequent processing.

The resulting tree structures are shown in Fig. 3. As
shown, the original tree structure is now partitioned into
two sub-structures. This eliminates some repeated gen-
eration steps, and therefore can lead to signi"cant
speedup.

The grammar rules corresponding to binding symbol
preprocessing are as follows:

4.5. Parsing with hierarchical decomposition

The above idea can be extended to further partition the
sub-structures into even smaller structures. Instead of

K-F. Chan, D-Y. Yeung / Pattern Recognition 33 (2000) 375}384 379

Fig. 3. Tree structures generated as a result of parsing with
binding symbol preprocessing.

parsing the entire expression, we will parse all the sub-
expressions "rst and then parse the resulting expression.
This idea is similar to hierarchical decomposition in AI
planning [26].

Sub-expressions are detected using the following rules:

1. Parentheses have higher precedence than the other
operators. Whatever enclosed inside a pair of paren-
theses should form an expression.

2. Some symbols in an expression, for example, : and dx
in an inde"nite integral expression, enclose a sub-ex-
pression in between.

With these, we can perform some preprocessing steps for
"nding sub-expressions. Each sub-expression is then par-
sed separately. Afterwards, we can compose the "nal tree
structure from a set of sub-structures.

Here is the list of relevant DCG rules for parsing with
hierarchical decomposition:

As mentioned before, although the strings generated
can be the same, the internal structures may be di!erent
if we rewrite some left-associative grammar rules into
right-associative ones. Hence, we need a procedure for
"xing the resulting structure to re#ect the correct asso-
ciativity between operators and their operands. The fol-
lowing is such procedure written in Prolog, which is
self-explanatory:

5. Experimental results and discussions

In this experiment, we perform tests on a number of
di!erent expressions which were extracted from Ref.
[27]. Expressions are grouped into four domains, name-
ly, elementary algebra, trigonometric functions, geometry
and inde"nite integrals. In each domain, there are three
sizes of expressions, i.e, small, medium and large. Each
size consists of "ve di!erent expressions. Totally, there
are 60 expressions.

Initially, the input is simply a sequence of points. After
some segmentation steps, we then use the character rec-
ognition method proposed in Ref. [28]. Due to the high
accuracy achieved by the method and the fact that those
0 expressions are neatly written, all the characters and
symbols in the expressions can be recognized without
errors. The recognized characters and symbols are then
converted to objects with associated attributes, including
location, size, and identity. Note that the objects can be
put in an arbitrary order for our subsequent processing.

The next step is to group the objects. Here we use
a method similar to the one used in Ref. [19]. Afterwards,
we perform parsing using di!erent techniques as de-
scribed above and then compare their e$ciency.

380 K-F. Chan, D-Y. Yeung / Pattern Recognition 33 (2000) 375}384

Table 1
Di!erences between conventional backtracking parsers with and without the use of left factoring

Expressions Number of logical inferences required for conventional backtracking parsing

Elementary algebra Without left factoring With left factoring

y"x#b/4a 89 014 1435
a2!b2"(a!b)(a#b) 258 420 2979

r"
16ab2c#256a3e!3b4!64a2bd

256a4

19 161 397 14 158

Trigonometric functions Without left factoring With left factoring

cos a"
1

sec a
56 307 1422

tan2 a"
1!cos 2a
1#cos 2a

215 795 3459

tan
(B!C)

2
"

b!c

b#c
tan

(B#C)

2

5 356 302 5390

Geometry Without left factoring With left factoring

r"Jx2#y2 164 576 1646
(x!a)y2"!x2(x#a) 411 192 3745

p"S
(ac#bd)(ab#cd)

(ad#bc)

374 511 627 7144

Inde"nite integrals Without left factoring With left factoring

:ex dx"ex 108 026 2682

P
u

v
dx"

bx

d
#

k

d2
log v

183 078 4280

P
Ja2!x2

x4
dx"!

J(a2!x2)3

3a2x3

52 307 610 10 314

Note that time may not be a very good measure of
e$ciency since it may di!er from machines to machines.
Hence, instead we use the number of logical inferences as
a machine-independent performance measure. Table 1
shows the di!erences between conventional backtracking
parsers with and without the use of left factoring.

The result shows that the set of grammar rules we used
plays an important role in terms of e$ciency. Parsing
with rules which are not left-factored gives us an ex-
ponential running time with respect to the size of the
expressions. However, with the left-factored version, the
time taken is greatly reduced since all the intermediate
results are fully utilized and there is much less repetitive
construction of intermediate structures.

For binding symbol preprocessing, saving is possible
only when such symbols appear in the expressions.

Table 2 shows the di!erences between hierarchical de-
composition parsing that uses left factoring only and that
uses binding and fence symbol preprocessing as well.

Our results show that speedup can be achieved for
those expressions that contain some binding and fence
symbols.

In order to show the potential for practical use with
hierarchical decomposition parsing, we also tabulate the
time taken for parsing di!erent sizes of expressions in
di!erent domains. Our recognition system implemented
in Prolog runs on a Sun SPARC 10 workstation. The
timer starts when the list of objects is passed to the
parsing procedure and ends when the "nal structure is
returned. Table 3 summarizes the result.

Notice that the time required for recognizing the struc-
tures of some mathematical expressions of typical sizes

K-F. Chan, D-Y. Yeung / Pattern Recognition 33 (2000) 375}384 381

Table 2
Di!erences between hierarchical decomposition parsing with and without the use of binding and fence symbol preprocessing

Number of logical inferences required for hierarchical decomposition parsing

Expressions With left factoring only With left factoring, binding
and fence symbol preprocessing

y2$Ju!p Ay!
f

2(u!p)B#
u

2
"0

6242 3772

sin A"

2

bc
Js(s!a)(s!b)(s!c)

30 271 5173

2ab

a#b
cos

1

2
C"SabA1!

c2

(a#b)2B
11 905 6317

Pxe~x
2 dx"!

1

2
e~x

2
16 000 4307

PxJ(a2!x2)3 d x"!

1

5
J(a2!x2)5

10 084 4919

Table 3
Time required for recognizing the structures of di!erent expressions with hierarchical decomposition parsing

Time required for hierarchical decomposition parsing (in seconds)

Small size Median size Large size

Expression domain Min. Median Max. Min. Median Max. Min. Median Max.

Elementary algebra 0.02 0.03 0.05 0.05 0.07 0.08 0.08 0.15 0.25
Trigonometric functions 0.02 0.02 0.05 0.05 0.07 0.07 0.08 0.10 0.15
Geometry 0.02 0.03 0.05 0.05 0.08 0.10 0.10 0.12 0.15
Inde"nite integrals 0.02 0.05 0.05 0.07 0.08 0.08 0.10 0.15 0.17

ranges from 0.02 to 0.25 s. Nevertheless, the parser used is
relatively simple. In fact, the whole parser has been listed
in the previous section.

6. Conclusion

Pen-based computing o!ers us a natural human-com-
puter interface, such as an on-line mathematical expres-
sion editor. Such an editor, however, cannot be put into
practical use without a sophisticated mathematical ex-
pression recognition subsystem.

In this paper, we have proposed and demonstrated
some methods for de"ning replacement rules in a clear
and concise manner for parsing mathematical expres-
sions. More importantly, it manages to o!er the much
needed speed for practical use. In addition, the replace-
ment rules are already in their executable form so that
no exact programming is needed for implementing the
rules.

Since our methods do not make use of stroke order
information, they may also be used for o!-line mathe-
matical expression recognition. However, some problems
in mathematical expression recognition have not been
addressed in this paper, including ambiguity resolution,
error detection, and error correction. With a clear and
concise formalism in the parsing phase, these issues will
be relatively easy to tackle, using, for example, some
error-correcting parsing techniques. Detail investigation
of these issues will be provided in a separate paper.

7. Summary

In a mathematical expression, characters and symbols
are typically arranged as a complex two-dimensional
structure, possibly of di!erent character and symbol
sizes. This makes the recognition process more complic-
ated even when all the individual characters and symbols
can be recognized correctly. Moreover, to ensure that

382 K-F. Chan, D-Y. Yeung / Pattern Recognition 33 (2000) 375}384

a mathematical expression recognition system is useful in
practice, its recognition speed is also an important factor
to consider.

In this paper, we propose to use de"nite clause gram-
mar (DCG) as a formalism to de"ne a set of replacement
rules for parsing mathematical expressions. With DCG,
we are not only able to de"ne the replacement rules
concisely, but their de"nitions are also in a readily
executable form. However, a DCG parser is potentially
ine$cient due to its frequent use of backtracking. Thus
we propose some methods here to increase the e$ciency
of the parsing process.

Some experiments are done on 60 commonly seen
mathematical expressions that are in four domains,
namely, elementary algebra, trigonometric functions, ge-
ometry and inde"nite integrals. The results show that the
set of grammar rules we used plays an important role in
terms of e$ciency. Parsing with rules which are not
left-factored gives us an exponential running time with
respect to the size of the expressions. However, with the
left-factored version, the time taken is greatly reduced
since all the intermediate results are fully utilized and
there is much less repetitive construction of intermediate
structures. In addition, we also show that our proposed
methods can achieve quite satisfactory speedup, making
mathematical expression recognition more feasible for
real-world applications.

Since our methods do not make use of stroke order
information, they may also be used for o!-line math-
ematical expression recognition. However, some prob-
lems in mathematical expression recognition have not
been addressed in this paper, including ambiguity resolu-
tion, error detection, and error correction. With a clear
and concise formalism in the parsing phase, these issues
will be relatively easy to tackle and will be addressed in
our future research.

Acknowledgements

This research work is supported in part by the Hong
Kong Research Grants Council (RGC) under Competi-
tive Earmarked Research Grants HKUST 746/96E and
HKUST 6081/97E awarded to the second author.

References

[1] F. Grossman, R.J. Klerer, M. Klerer, A language for high-
level programming of mathematical applications, in Pro-
ceedings of the International Conference on Computer
Languages, Miami Beach, FL, 1988, pp. 31}40.

[2] L. Lamport, Latex } A Document Preparation System
} User's Guide and Reference Manual, Addison-Wesley,
Reading, MA, 1985.

[3] C.C. Tappert, C.Y. Suen, T. Wakahara, The state of the art
in on-line handwriting recognition, IEEE Trans. Pattern
Anal. Mach. Intell. 12 (8) (1990) 787}808.

[4] S.K. Chang, A method for the structural analysis of 2-D
mathematical expressions, Information Sciences 2 (3)
(1970) 253}272.

[5] A. BelaH id, J.-P. Haton, A syntactic approach for hand-
written mathematical formula recognition, IEEE Trans.
Pattern Anal. Mach. Intell. 6 (1) (1984) 105}111.

[6] Y.A. Dimitriadis, J.L. Coronado, Towards an ART
based mathematical editor, that uses on-line handwritten
symbol recognition, Pattern Recognition 28 (6) (1995)
807}822.

[7] H.-J. Lee, M.-C. Lee, Understanding mathematical expres-
sions using procedure-oriented transformation, Pattern
Recognition 27 (3) (1994) 447}457.

[8] J. Earley, An e$cient context-free parsing algorithm,
Comm. ACM 13 (1970) 94}102.

[9] M.A. Covington, Natural Language Processing for Prolog
Programmers, Prentice-Hall, Englewood Cli!s, NJ, 1994.

[10] R.H. Anderson, Syntax-directed recognition of hand-
printed 2-D mathematics, in: M. Klerer, J. Reinfelds (Eds.),
Interactive Systems for Experimental Applied Mathemat-
ics, Academic Press, New York, 1968, pp. 436}459.

[11] W.A. Martin, Computer input/output of mathematical
expressions, in Proceedings of the Second Symposium on
Symbolic Algebraic Manipulation, Los Angeles, CA, 1971,
pp. 78}89.

[12] Z.X. Wang, C. Faure, Structural analysis of handwritten
mathematical expressions, in Proceedings of the 9th Inter-
national Conference on Pattern Recognition, Rome, Italy,
1988, pp. 32}34.

[13] J.J. Pfei!er, Jr., Parsing graphs representing two dimen-
sional "gures, in Proceedings of the IEEE Workshop on
Visual Languages, Seattle, WA, pp. 200}206 (1992).

[14] A. Grbavec, D. Blostein, Mathematics recognition using
graph rewriting, in Proceedings of the Third International
Conference on Document Analysis and Recognition,
Montreal, Canada, 1995, pp. 417}421.

[15] H.-J. Lee, M.-C. Lee, Understanding mathematical expres-
sions in a printed document, in Proceedings of the Second
International Conference on Document Analysis and Rec-
ognition, Tsukuba Science City, Japan, 1993, pp. 502}505.

[16] P.A. Chou, Recognition of equations using a two-dimen-
sional stochastic context-free grammar, in Proceedings of
the SPIE Visual Communications and Image Processing
IV, Philadelphia, PA, vol. 1199, 1989, pp. 852}863.

[17] M. Okamoto, B. Miao, Recognition of mathematical ex-
pressions by using the layout structures of symbols,
in Proceedings of the First International Conference on
Document Analysis and Recognition, Saint-Malo, France,
1991, pp. 242}250.

[18] H.M. Twaakyondo, M. Okamoto, Structure analysis and
recognition of mathematical expressions, in Proceedings of
the Third International Conference on Document Analysis
and Recognition, Montreal, Canada, 1995, pp. 430}437.

[19] M. Okamoto, A. Miyazawa, An experimental implementa-
tion of a document recognition system for papers contain-
ing mathematical expressions, in: H.S. Baird, H. Bunke,
K. Yamamoto (Eds.), Structured Document Image Analy-
sis, Springer, Berlin, 1992, pp. 36}53.

K-F. Chan, D-Y. Yeung / Pattern Recognition 33 (2000) 375}384 383

[20] H.-J. Lee, J.-S. Wang, Design of a mathematical expression
recognition system, in Proceedings of the Third Interna-
tional Conference on Document Analysis and Recogni-
tion, Montreal, Canada, 1995, pp. 1084}1087.

[21] J. Ha, R.M. Haralick, I.T. Phillips, Understanding
mathematical expressions from document images, in
Proceedings of the Third International Conference on
Document Analysis and Recognition, Montreal, Canada,
1995, pp. 956}959.

[22] M. Koschinski, H.-J. Winkler, M. Lang, Segmentation and
recognition of symbols within handwritten mathematical
expressions, in Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing,
Detroit, MI, Vol. 4, 1995, pp. 2439}2442.

[23] H.-J. Winkler, H. Fahrner, M. Lang, A soft-decision ap-
proach for structural analysis of handwritten mathemat-
ical expressions, in Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing,
Detroit, MI, Vol. 4, 1995, 2459}2462.

[24] F. Pereira, D. Warren, De"nite clause grammars for lan-
guage analysis } a survey of the formalism and comparison
with augmented transition networks, Artif. Intell. 13 (1980)
231}278.

[25] A.V. Aho, R. Sethi, J.D. Ullman, Compilers: Principles,
Techniques, and Tools, Addison-Wesley, Reading, MA,
1986.

[26] S.J. Russell, P. Norvig (Eds.), Arti"cial Intelligence:
A Modern Approach, Prentice-Hall, Englewood Cli!s, NJ,
1995.

[27] D. Zwillinger (Ed.), CRC Standard Mathematical
Tables and Formulae, 30th ed., CRC Press, Boca Raton,
1996.

[28] K.F. Chan, D.Y. Yeung, Elastic structural matching for
on-line handwritten alphanumeric character recognition,
in Proceedings of the 14th International Conference on
Pattern Recognition, Brisbane, Australia, 1998, pp.
1508}1511.

About the Author*KAM-FAI CHAN received his B.Sc. degree from Radford University, M.Sc. degree from the University of South
Carolina, and Ph.D degree from the Hong Kong University of Science and Technology, all in computer science. He is currently a
postdoctoral research associate in the Department of Computer Science at the Hong Kong University of Science and Technology. His
major research interests include pattern recognition, logic programming and Chinese computing.

About the Author*DIT-YAN YEUNG received his B.Sc.(Eng.) degree in electrical engineering and M.Phil. degree in computer science
from the University of Hong Kong, and his Ph.D. degree in computer science from the University of Southern California in Los Angeles.
From 1989 to 1990, he was an assistant professor at the Illinois Institute of Technology in Chicago. He is currently an associate professor
in the Department of Computer Science at the Hong Kong University of Science and Technology. His current research interests are
in the theory and applications of pattern recognition, machine learning, and neural networks. He frequently serves as a paper reviewer
for a number of international journals and conferences, including Pattern Recognition, Pattern Recognition Letters, IEEE Transactions on
Pattern Analysis and Machine Intelligence, IEEE Transactions on Image Processing, and IEEE Transactions on Neural Networks.

384 K-F. Chan, D-Y. Yeung / Pattern Recognition 33 (2000) 375}384

