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Abstract

This paper reviews model-based methods for non-rigid shape recognition. These methods model, match and classify
non-rigid shapes, which are generally problematic for conventational algorithms using rigid models. Issues including
model representation, optimization criteria formulation, model matching, and classi3cation are examined in detail with
the objective to provide interested researchers a roadmap for exploring the 3eld. This paper emphasizes on 2D deformable
models. Their potential applications and future research directions, particularly on deformable pattern classi3cation, are
discussed. ? 2002 Published by Elsevier Science Ltd on behalf of Pattern Recognition Society.
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1. Introduction

1.1. Deformable model-based recognition

Model-based recognition is a process in which an a
priori model is searched for in an input image and subse-
quently its occurrence and location are determined. This
approach has been successfully applied to recognize rigid
objects, such as machinery parts and printed characters
under noisy environment. However, its performance de-
grades signi3cantly if the shapes to be recognized are
non-rigid, such as human faces, cells, gestures and hand-
written characters. Although multiple models could be
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used for each shape in order to represent diCerent possi-
ble deformations, such an extension is generally not al-
ways feasible due to the requirement of a large model
set, implying a high computational cost, yet still with no
guarantee that all possible deformations be taken care of.
Deformable models (DM), 1 on the other hand, re-

fer to models which possess shape-varying ability, mak-
ing them suitable for representing non-rigid patterns . By
matching DMs to imagery data, target shapes with possi-
ble deformations can be extracted. As a result, multi-class
classi3cation is feasible by de3ning a set of DMs, each
containing its own pertinent shape information with an
allowable range of deformation speci3ed using a priori
information or by training.

1.2. A common formulation

For the sake of subsequent discussion, a common for-
mulation for DM-based recognition is 3rst introduced.

1 They are also often called 'exible models.
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1.2.1. Modeling
Let Hj denote a DM based on a particular repre-

sentation. The model shape is characterized by a pa-
rameter vector w, where the parameter values span the
parameter space of Hj. The model Hj with a particular
parameter vector w is denoted as Hj(w). Model defor-
mation is then speci3ed by varying w in Hj(w).

1.2.2. Matching
Let D denote the observed imagery data. Given D

and some initial model parameter vector w0, model
matching can be viewed as a search process in the
parameter space, resulting in a sequence of DMs
Hj(w0);Hj(w1); : : : ;Hj(wf), where wf denotes the pa-
rameter vector of the 3nal matched model.

Furthermore, the search process is commonly im-
plemented as a multi-criterion optimization problem,
although there are studies [1,2] which use heuristic
matching processes instead. The following de3nes the
common optimization criteria involved.
Model deformation criterion: This criterion measures

the degree of model deformation, i.e., the discrepancy
between the current model Hj(w) and the reference (i.e.,
undeformed) model Hj( Iw), where Iw is the parameter
setting of the reference model. This function is denoted
as Edef (w;Hj ; Iw), which represents the “energy” of the
current model with respect to the reference model.
Data mismatch criterion: This criterion measures the

degree of data mismatch, i.e., the discrepancy between
the current model Hj(w) and the given dataD. This func-
tion is denoted as Emis(w;Hj ;D), which represents the
“energy” of the data with respect to the current model. 2

Combined criterion function: By combining the
model deformation and data mismatch criteria, the “total
energy” of the current stage of deformation is de3ned as
Etot(w; 	; Hj ; D; Iw) = Y(Edef (w;Hj ; Iw); Emis(w;Hj ;D);
	) where 	 is a regularization parameter used to regulate
the signi3cance of model deformation relative to that
of data mismatch. The function Y denotes a speci3c
combination rule, for example, simple summation or
weighted averaging. The matching process thus attempts
to minimize the total energy Etot to obtain the 3nal so-
lution w=wf using Hj and Iw as a priori information
about the model.

1.2.3. Classi5cation
Let H= {H1;H2; : : : ;HM} denote a set of M diCer-

ent DMs. Classi3cation can be formulated as direct com-
parison of the model candidates based on the discriminant
measureZ(wf; 	;Hj ;D; Iw) associated with eachHj. The
model with the minimum value of Z(wf; 	;Hj ;D; Iw) is

2 In the literature, the data mismatch criterion is often de3ned
to take also negative values. In that case, the criterion should
be interpreted as a relative measure in the sense that its value
is only meaningful when compared with another value.

taken as the classi3ed output. If the matching and classi-
3cation processes share the same criterion, i.e., Z=Y,
then pattern matching and classi3cation may simply be
implemented as one single integrated step.

1.2.4. Bayesian framework
It has been pointed out by many researchers [3–5]

that DM-based recognition can be formulated using a
Bayesian framework. Under the framework, the defor-
mation of a model Hj(w), quanti3ed by Edef (w;Hj ; Iw),
can be interpreted as the uncertainty that it is indeed de-
formed from its reference model Hj( Iw). The data mis-
match, quanti3ed by Emis(w;Hj ;D), can be understood as
the uncertainty that the input data D indeed comes from
the model Hj(w). Using the Gibbs distribution, such un-
certainties can be represented as probabilities, where Edef
corresponds to the prior distribution of the model param-
eters and Emis corresponds to the likelihood function. Us-
ing the Bayes rule, Etot then corresponds to the posterior
distribution. Mathematically, they are written as

Prior of w: p(w|	;Hj ; Iw)

=
1

Zdef (	)
exp(−	Edef (w;Hj ; Iw);

Likelihood of w: p(D|w;Hj)

=
1

Zmis(w)
exp(−Emis(w;Hj ;D));

Posterior of w: p(w|D; 	;Hj ; Iw)

=
1

Ztot(	;D)
exp(−Etot(w; 	;Hj ;D; Iw);

where Zdef (	), Zmis(w) and Ztot(	;D) are the partition
functions for normalization and 	 is the regularization
parameter. Thus, minimizing the combined criterion
Etot(w; 	;Hj ;D; Iw) is equivalent to maximizing the pos-
terior distribution p(w|D; 	;Hj ; Iw) with respect to w.

1.3. Development milestones

The development of DM-based recognition has a his-
tory of more than two decades. The earliest works in-
clude rubber marks proposed by Widrow [6], spring
model proposed by Fischler et al. [7] and elastic match-
ing proposed by Burr [1]. The study of DMs blossomed
in late 1980s due to the work of active contour models (or
snakes) proposed by Kass et al. [8], where DM match-
ing is formulated as optimization of a combined criterion
with an internal energy (i.e., model deformation) term
Eint and an external energy (i.e., data mismatch) term
Eext . The optimization process can be equivalently rep-
resented by the dynamics of a physical process, where
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9Eint=9w acts as internal force and 9Eext=9w as external
force. The model will then deform and settle at an equi-
librium point of the dynamical system. 3

Most of the existing works on DMs are purely based
on an optimization framework, which, as mentioned in
Section 1.2.4, can have a probabilistic interpretation.
Introducing probabilistic interpretation to computer vi-
sion tasks, e.g., boundary detection, can be dated back
to Cooper’s early work [10] in 1979, where a max-
imum likelihood method was proposed for detecting
blob boundaries in noisy images. In 1992, Staib et al.
[3] formulated a DM matching problem as maximum a
posteriori (MAP) estimation using Bayesian techniques.
Also, Revow et al. [4] proposed to perform DM match-
ing using the expectation–maximization (EM) algorithm
[11], which is originated from statistics for maximum
likelihood estimation (MLE) problems with missing
data. Besides, they also combined the probabilistic in-
terpretation with MacKay’s evidence framework [12]
and formulated a DM-based classi3cation problem, pre-
viously formulated in a heuristic manner, formally as a
model selection problem.

1.4. Paper organization

In the literature, there exist, to the best of our knowl-
edge, at least two related survey papers, one by McIn-
erney et al. [13] and another one by Jain et al. [14].
McInerney et al.’s paper emphasizes 2D and 3D DMs for
medical image analysis, with particular interest in match-
ing and tracking of non-rigid biological objects in 2D and
3D medical images. Jain’s paper is focused on 2D DMs
and it provides detailed descriptions on a particular type
of DMs and their related applications. To contrast with
these two existing surveys, we attempt to provide another
survey of the 3eld from the perspective of the three main
steps of model-based pattern recognition—modeling, 4

matching (or extraction) and classi5cation. Instead of
discussing the variety of DM-based systems one by one,
we deliberately separate our discussions according to the
three main steps and discuss related issues and proposed
remedies accordingly. As the considerations for the three
steps are rather orthogonal, various combinations of the
corresponding techniques can in fact be explored accord-
ing to speci3c applications. 5 So, we believe that this
organization can help the readers to compare and contrast
diCerent approaches more easily and eventually can gain

3 In computer graphics, such physically based models are
also very useful for producing realistic animation of the interac-
tion of non-rigid natural objects. Interested readers are referred
to Ref. [9] for further details.

4 It includes model representation and criterion formulation
of DMs.

5 For some cases, however, some considerations of the three
steps are combined to a certain extent.

more insights for solving the underlying problems. Also,
since DM-based pattern recognition is by far mainly
focused on 2D problems, we restrict our discussions to
2D models. However, as there exist many inspiring and
important ideas that have been proposed for 3D DMs
only, they will also be included in this paper as far as
they can help in explaining some related ideas.

In the literature, there also exist some other related
matching algorithms like relaxation labeling [15] and
self-organizing map [16]. Since their formulations are
quite diCerent from the common framework described
in Section 1.2, they will not be further described in this
paper. The remaining paper is organized as follows.

Representative DM representations proposed in the
literature are 3rst described and categorized in Section
2. Sections 3, 4 and 5 address diCerent issues related
to criterion formulation, matching and classi3cation. In
addition, various proposed solutions are described and
compared. Current applications of DMs to pattern recog-
nition and related research problems are discussed in Sec-
tion 6. Finally, Section 7 concludes the paper.

2. Model representation

2.1. Representation dilemma between reconstruction
and recognition

The DM-based approach has been found to be an ef-
fective tool for both shape reconstruction (or recovery)
and shape recognition. However, due to their diCerent
ultimate goals, these two tasks impose contradictory re-
quirements for model representation. Shape reconstruc-
tion concerns the physical quality of the reconstructed
contours=surfaces=volumes for later visualization or
measurement. So, the required modeling scheme should
have high representational power for capturing local
shape details. This implies the need for representations
with only simple local constraints (e.g., smoothness)
plus a relatively larger number of “distributed” parame-
ters. Shape recognition emphasizes on the discriminative
quality of the salient features extracted by the model.
Thus, related representations require some “just-enough”
representation power so that intra-class variations of
some global shape properties can be eCectively de-
scribed while outliers from irrelevant classes can be
discriminated. These requirements imply the need for
representations capable of characterizing global shapes
using a small set of parameters. Related concerns are the
representation uniqueness and their ePciency [17,18].
Although reconstruction-oriented representations can
also provide a large amount of shape information for
classi3cation, they are often too redundant and hard to
be interpreted, easily leading to bad classi3cation. Hav-
ing said this, it should be noted that model representation
is just one (though important) factor aCecting DM-based
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Fig. 1. A classi3cation of DMs with citation of representative works.

recognition. There still exist successful cases where
reconstruction-oriented representations are adopted for
recognition, but then the discriminant measures to be
used in the classi3cation step (see Section 5) have to be
carefully designed.

In the following, a taxonomy of DM representations
is provided. Representative works under each of the
categories are then surveyed. We will end the discussion
by revisiting this representation dilemma regarding the
diCerent categories of DMs.

2.2. A taxonomy of DM representations

Here, we categorize DMs proposed in the literature
using two orthogonal parameterization characteristics:
(i) locally vs. globally parameterized; (ii) description-
based vs. prototype-based. Local DMs adopt parame-
terization schemes to model local shape characteristics
while global DMs model overall shape characteristics.
Description-based DMs model shape explicitly (shape
descriptive) with deformations modeled as perturba-
tions in the shape parameter space. On the other hand,
prototype-based DMs parameterize shape deformations
directly and the parameters are not shape descriptive.

Also, based on the adaptability of their topology,
description-based DMs are further categorized accord-
ing to whether the topology is 3xed or adaptive. Fig. 1
shows a 3× 2 matrix derived based on the aforemen-

tioned characteristics with representative DMs tabulated
accordingly.

2.3. Description-based DMs with 5xed topology

2.3.1. Local parameterization
Local description-based DMs are also called free-form

models, physics-based models, or distributed parameter
models. Some of them explicitly model object bound-
aries (boundary-based) while some model objects using
the local spectral properties at diCerent locations of the
objects with their spatial relationships maintained by a
grid structure (grid-based).

(a) Boundary-based. Polygonal representation is one
of the simplest ways to represent a shape, say the silhou-
ette of an object, by a linear interpolation of an ordered set
of points. It is locally parameterized, where each model
point can move freely without involving movement of the
others. Such a polygonal representation is used in Kass
et al.’s active contour model [8] and has been widely
studied by many other researchers in the 3eld [19–23],
mainly due to its simplicity.

Piecewise parametric curves are good candidates for
representating smooth objects. Using a set of local basis
functions, smooth shapes can be described with a rela-
tively small set of parameters when compared with the
polygonal representation. Examples include BQezier [24]
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and B-spline curves [4,25], which can guarantee C1 and
C2 continuities, respectively. 6 They are still local since
movement of a related control point only aCects some
immediately preceding and following curve segments.

Local aPne transform (LAT) is proposed by Waka-
hara for handwriting recognition [26] and can be viewed
as a piecewise linear approximation of the overall de-
formation using a set of localized aPne transforms. The
scheme starts with a polygonal representation and neigh-
boring model points are grouped together, where each
group is associated with a single local aPne transform.
Deformations are then modeled by perturbations in aPne
transform parameters.

(b) Grid-based. Labeled graphs with 2D regular struc-
tures were 3rst proposed by Lades et al. [27] for face
recognition and the corresponding matching process
is known as labeled graph matching. The grid repre-
sentation also includes the responses of multi-scale,
multi-orientation Gabor wavelets applied to a reference
face as grid points’ attributes (landmarks) to represent
the local spectral properties distributed over the face,
with their spatial relationship maintained by the grid
structure. The use of attributes relaxes the requirement
of the shape modeling accuracy for the grid as far as the
important “landmarks” of the interested objects can be
accurately identi3ed and represented. The regular grid
representation was later enhanced to a 5ducial graph, a
specially designed graph triangulation with grid points
(graph node) located at anatomically identi3able points
of the face for a more accurate representation [28].

2.3.2. Global parameterization
Global description-based DMs are also called param-

eteric models, geometric models or lumped parameter
models. They are normally used when some prior knowl-
edge on what shapes to be represented is known. Then,
the particularly adopted parameterization scheme deter-
mines the family of shapes that can be represented. Var-
ious related parameterizations have been proposed in the
literature, which can be further categorized into analyti-
cal or decomposition-based.

(a) Analytical. Parametric curves here refer to 2D
curves with simple analytical forms so that their shapes
can be controlled by a compact set of parameters w (e.g.,
y − w1 =w2(x − w3)2 for parabolas). They are global
shape models, as any change in one of the elements in w
results in changes in the overall shape. In general, para-
metric curves have restricted modeling capability, which
however may be good enough for speci3c applications
where only some restricted classes of shapes are of inter-
est and at the same time gain computational advantage

6 A Cn continuous piecewise curve means that the nth deriva-
tive of the curve respect to the parameter is equal at the join
points of the curve segments.

by reducing the search space for the subsequent match-
ing step. Besides, in many cases the extracted model
parameters can provide meaningful shape information
for subsequent image analysis. A good example is
the deformable template used by Yuille et al. [29] to
locate the eyes in a human face image. The template
consists of two parabolic curve segments modeling the
upper and lower eye lids and one circle modeling the iris.
The model is thus parameterized by the coePcients of
the two parabolas together with the center and radius of
the circle. The coePcients of the parabolas de3ne their
convexities and the circle’s radius provides dimensional
information about the iris.

(b) Decomposition-based. The shape decomposition
approach represents shapes of similar types via combina-
tion of a set of basis functions with global support, where
the basis can be either pre-de3ned in a priori manner or
obtained via training. Compared with analytical models,
decomposition-based models are in general less restric-
tive with respect to their representational power, which
is controlled by the corresponding basis adopted.

Fourier decomposition of contours has been adopted
in Ref. [3], where sinusoidal functions of diCerent har-
monics are used to form the basis. A parametric contour
{v(t)} is represented by the following formula:

v(t)=
[
x(t)
y(t)

]
�
[
a0

c0

]
+

B∑
k=1

[
ak bk

ck dk

] [
sin(kt)
cos(kt)

]
;

where B denotes the number of harmonics used. The
model parameters are {a0; c0; ak ; bk ; 16 k6B}, which
control the contribution of diCerent harmonics. For rep-
resenting smooth objects, B can normally be restricted
to a small number so that only the low-frequency com-
ponents are retained and the parameter set remains to be
a compact one. Also, the sinusoidal basis is orthogonal,
which makes the representation unique and thus favor-
able for recognition purpose.

Thin-plate spline kernel has also been proposed as
the basis [30], where a curve {v(t)} is represented
accordingly as v(t)= v(t) ·A + �(v(t)) ·w, assuming
that v(t) (1 × 3) is in homogeneous coordinate system,
A (3 × 3) is the aPne transform, w (K × 3) is the
warping coePcients (model parameters), �(v) is the
thin-plate spline kernel (1 × K) with its element
{�i(v)}= {c||v − di||2 log||v − di||}, di is the ith data
point and K is the total number of data points. The
kernel contains information about the model point-set’s
internal structural relationship. Again, the thin-spline
kernel is chosen in a priori manner.

Eigen decomposition is another technique commonly
used to derive a basis for representing a shape family.
Dimension reduction can be eCectively achieved by re-
taining only the signi3cant eigenvectors as the basis.
Mathematically, a shape represented by an ordered set
of point v can be approximated by a linear mixture of
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eigenvectors {qi; 1¡i¡Nq}, given as v=vref+
∑Nq

i=1 wiqi
where the mixture coePcients {wi} are the model
parameters. While Fourier and thin-plate spline de-
composition are originated from the 3elds of signal
processing and data analysis, eigen decomposition tries
to derive the basis according to the physical properties
of objects. A good example is the active shape model
(ASM) proposed by Cootes et al. [31] (also dubbed
as the point distribution model in Ref. [2]) for face
recognition, where eigenvectors are extracted from the
covariance matrix of the model points. For situations
where adequate training data are not available for com-
puting the covariance matrix, SclaroC et al.’s [32] modal
matching, according to the FEM formulation, performs
the decomposition on a matrix equal to the product of
the mass matrix’s inverse and the stiCness matrix to form
the deformation basis. Also, Wang et al. [33] proposed a
smoothness matrix which forces the neighboring model
points to be correlated throughout the model.

2.4. Description-based DMs with adaptive topology

All the aforementioned DMs are capable of repre-
senting non-rigid shapes to diCerent extents. However,
they all assume that the topology of the object of inter-
est is 3xed, which limits their applications to cases with
intra-class topology variations.

2.4.1. Local parameterization
For the local boundary-based DMs, the need for mod-

eling topology changes arises when (1) there are an
unknown number of boundaries to be extracted (e.g.,
unknown number of cells in a medical image) or, (2)
when boundaries split and merge at junction points.
Although the problem can be partially solved by using
multiple contour models, the exact number of models
required is unknown in most of the cases and hence
accurate model initialization is still hard to achieve.

So far, the split-and-merge paradigm is the only ap-
proach that has been proposed for local DMs to achieve
topology adaptation. For example, T-Snake was pro-
posed by McInerney et al. [34] as a topology-adaptive
extension of the original active contour model. The
evolution of a T-snake is de3ned together with a cell
decomposition which partitions the image into regular
triangular grids. Each grid vertex is assigned a state
value of “on” if the vertex is inside a closed contour or
“oC” if it is outside. The change of the contour topology
is triggered when some neighboring vertices of the grid
change from being in the same state to diCerent states
(occurs when a contour shrinks and eventually breaks
up) or from being in diCerent states to the same state
(occurs when two contours meet and eventually merge
together). With a similar spirit, Perera et al. [35] also
proposed a topology-adaptive active contour model. But
instead of relying on a particular grid decomposition,

they proposed some algorithms to detect contours inter-
sections directly and determine whether any topology
change is needed.

It should be noted that the topology transformation
process required by this approach is not part of the com-
mon formulation described in Section 1.2 and additional
procedures are needed for the detection and structure
modi3cation.

2.4.2. Global parameterization
Topology adaptation for global DMs can be achieved

either using the split-and-merge approach or via
topology-free representation.

(a) Split-and-merge. Other than local DMs, the
split-and-merge approach can also be applied to global
DMs for topology adaptation. The diCerence lies in the
shape primitives involved. The primitives for local DMs
are simply line segments while those for global DMs
are geometric models with 3xed topology. Shapes with
various topologies are then represented via primitive
blending. The blended DMs proposed by DeCarlo et al.
[36,37] requires 3rst going through a splitting process
of a single initial model where the splitting locations are
detected through analysis of the “force” distribution of
the converged models (see Section 4). After splitting,
the separated primitives are allowed to deform indepen-
dently but are joined together via a blending function.
The shape parameters of the individual primitives to-
gether with the parameters of the blending function form
the parameter set of the blended DM.

(b) Topology-free representation. An implicit way
to address the topology adaptation issue is to adopt a
topology-free representation. 7 As mentioned above, the
split-and-merge approach requires an additional proce-
dure to detect and modify the representation. The use of
topology-free representations is attractive as the topol-
ogy adaptation mechanism is implicitly embedded in the
representation and thus no additional processes are re-
quired. However, in general those representations are rel-
atively more complicated.

Level set is one of the topology-free examples where
a 2D contour is represented by the zero set of a func-
tion z =f(x; y;w). By varying the coePcients w, the
topology of the zero set changes accordingly (but not the
topology of z =f(x; y;w)). This representation has been
adopted in geodesic active contours [38,39] and is highly
related to shape modeling with front propagation [40].
Also, this representation is very similar to implicit poly-
nomials, studied by Subrahmonia et al. as well as some
other researchers from the perspective of data 3tting [41].

7 Note that similar techniques do not exist for locally para-
meterized DMs as it is hard to couple the overall shape topology
with some localized parameterizations.
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Pedal curve is another tool borrowed from diCeren-
tial geometry for deriving topology-free shape repre-
sentations. It is de3ned with respect to a prede3ned
planar curve 	 (generator) and a prede3ned pedal point
p, and is formed by tracing the locus of the intersection
points between the tangents of 	 and the perpendicular
line drawing from p to the tangents. Vemuri et al. [42]
modi3ed the pedal curve by associating the generator 	
with a corresponding snake which replaces the role of
p and proposed snake pedals. 8 By using discontinuous
(or multiple open) snakes, curves of diCerent topologies
can be represented. However, it is not mentioned how
the splitting of the snake can be achieved.

2.4.3. Hybrid parameterization
To gain the advantages of both local and global param-

eterizations, DMs using hybrid parameterization schemes
have been proposed. One can pick one global and one
local parameterization schemes and combine them to
form hybrid models. The snake pedal is one of the exam-
ples, which consists of global shape parameters forming
the planar curve 	 (	 being an ellipse in Ref. [42]) and
local shape parameters driving the shape of the snake. By
combining B-spline curves and thin-plate splines, Amini
et al. proposed a DM for analyzing 2D tissue deforma-
tion in medical images [43]. Mignotte et al. [44] integrate
parameteric displacement 3elds with local perturbations.
Similar ideas have also been widely used in 3D DMs.
One of the interesting examples is the deformable su-
perquadric (DS) [45]. The DS consists of a superquadric
which is parameterized by a compact set of parameters
so that it can deform from an ellipsoid to a cube contin-
uously. A linear combination of some basis functions is
superimposed on it for capturing local deformation de-
tails. Further extensions of the DS include [36,46,47].
The idea of superimposing local deformations has also
been applied to global parameteric models like general
cylinders [48] and hyperquadric [49] for increasing their
local representational power.

2.5. Prototype-based DMs

One major characteristic of description-based DMs is
to use explicit shape abstractions for representing objects.
In contrast, prototype-based DMs are fundamentally dif-
ferent in that the building blocks of the models are sim-
ply images or shape prototypes (cf. non-parametric) and
the underlying deformation process is parameterized in-
stead. Using the prototype-based paradigm, the model
construction step is unnecessary. This, however, implies
that the global shape information cannot be easily cap-
tured without further post-processing steps.

8 Note that with the introduction of the snake, the snake
pedal is no longer a global DM but should instead be classi3ed
as a hybrid one. See Section 2.4.3.

2.5.1. Deformation transform of a single prototype
One way to model the deformation process is by us-

ing background displacement 3elds (deformation trans-
form). Denote Iprototype(x; y) as the intensity pro3le of a
prototype, where each pixel takes the intensity value of
0–255 for gray-level images or 0–1 for binary images.
A particular prototype can be deformed according to
the equation Ideform = Iprototype(x + u(x; y); y + v(x; y))
where u(: ; :) and v(: ; :) denote the horizontal and vertical
displacement 3elds, respectively. To represent smooth
deformations, two sets of eigenfunctions {’u

i (x; y)}
and {’v

i (x; y)} can be used to de3ne the displacement
3elds, where T’u

i (x; y) ˙ wu
i ’

u
i (x; y) and T’v

i (x; y) ˙
wv

i ’
v
i (x; y). The displacement 3elds u(x; y) and v(x; y)

can then be expressed as linear combinations of the
eigenfunctions such that u(x; y)=

∑
i w

u
i ’

u
i (x; y) and

v(x; y)=
∑

i w
v
i ’

v
i (x; y). The parameters of the corre-

sponding DM are the set of weights {wu
i } and {wv

i }.
How well deformations can be modeled depends on the
choices of the eigenfunctions. This approach to model
shape deformations has been proposed by Grenander et
al. under their pattern theory developed for studying
biological shapes [50–52]. Similar ideas have also been
adopted in Refs. [5,53,54]. So far, to the best of our
knowledge, all the displacement 3elds adopted in the
literature are global ones and there does not exist any
work using some kind of localized displacement 3elds
(which accounts for the empty upper left cell in Fig. 1).

By adding one more dimension (intensity) to the 2D
displacement 3elds, Moghaddam et al. [55] proposed a
deformable intensity model for image matching where
a reference image is warped onto an input image via
the mapping h(x; y; I)= (x + u(x; y; I); y + v(x; y; I); I +
l(x; y; I)). This modi3cation can allow the model to cap-
ture also the variations due to pose changes and lighting
conditions.

2.5.2. Mixture of multiple prototypes
Instead of explicitly modeling the deformation process,

one can use a mixture of prototypes pi to represent a shape
v such that v=

∑
i wipi. 9 The prototypes are basically

deformed versions of a reference shape and the model pa-
rameters are the mixing coePcients (

∑
i wi =1). Thus, v

is bounded within the simplex with the prototypes being
its vertices. The corresponding representational power
is determined accordingly. This approach is originated
from Ullman et al.’s work [56] which uses linear com-
binations of object canonical views (pi) to represent an
arbitrary view of the object due to rigid 3D transforma-
tions. Tanaka et al. [57] used images of carefully chosen
deformed patterns for pi and their mixtures for represent-
ing arbitrarily deformed patterns. The mixing process can

9 Note that the correspondence between the prototypes is
assumed but not the correspondence of the model and the input
image, which is to be established in the matching step.
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be understood as stacking up the prototype images and
summing up their pixel values weighted by correspond-
ing wi, whose values are determined via matching.

2.6. Representation dilemma revisited

Generally speaking, global DMs are more often pro-
posed for shape recognition while local ones are found
to be more applicable to shape reconstruction. Whether
hybrid DMs are needed depends on speci3c applica-
tions. If the nature of the recognition task requires
detailed examination of the local shape properties or
an application 3rst requires a recognition step and then
a reconstruction step (e.g., model-based compression
[58]), hybrid models seem to be inevitable. For the issue
of prototype-based versus description-based approaches,
both have been adopted for recognition as well as recon-
struction. Although it is beyond the scope of this paper
to argue which approach is more suitable for recogni-
tion or reconstruction, a general comment is that the
prototype-based approach is worth trying for applica-
tions, like signature recognition where description-based
representations are hard to construct accurately.

2.7. Geometric invariance

The geometric invariance property, though largely
ignored in boundary detection, is vital to viewpoint-
independent object recognition. If an object is moved
along a plane perpendicular to the optical axis of the cam-
era, along that axis or is allowed to be tilted, the corre-
sponding shape change can be approximated by an a=ne
transform which includes scaling, shifting, rotation and
shearing [59]. By factoring out the underlying transfor-
mation or using a representation invariant to aPne trans-
formation, the DM becomes viewpoint-independent, or
called geometrically invariant. 10

2.7.1. A=ne transform incorporation
For a contour v parameterized by w such that

v=H(w), one can incorporate the aPne transform A
such that v=AH(w), where A and w are to be de-
termined in the matching step. The deformation eCect
due to A can be factored out by using only w for com-
puting the amount of shape deformation. An additional
advantage is that the estimated aPne transform some-
times may be needed for further analysis. This approach
normally involves a higher computational complexity
due to the increased number of parameters and possibly
more complicated (non-linear) formulations. Under cer-
tain representations, however, this approach can still be
eCectively applied to achieve aPne invariance [4,25,29].

10 But, it should be noted that, for some applications, not all
aPne transforms are equally common and the rare ones should
be restricted via a proper prior [60].

2.7.2. A=ne invariant representations
Choosing a geometrically invariant parameterization is

an implicit alternative to achieve aPne invariance. The
approach can in general enjoy computational gain as no
additional aPne transform parameters are required. One
example is the G-Snake (a contour model) proposed by
Lai et al. [23], which uses a shape matrix for shape rep-
resentation. The matrix is created by 3rst substracting
the coordinates of all the contour points by an arbitrar-
ily 3xed reference to form a set of vectors {ui}. Then,
each ui can be expressed as 	iui−1 + &iui+1 (except for
the boundary cases). The shape matrix is formed based
on {	i} and {&i} and can be shown to be rotation. Scale
invariance can also be achieved by normalization. An-
other example is the implicit polynomial adopted by Sub-
rahmonia et al. [41]. It uses algebraic invariants, which
are functions of the implicit polynomial coePcients and
are derived to be invariant to aPne transformations. The
trade-oC is the loss of the estimated aPne transform.

3. Criteria formulation

Given a model constructed based on a chosen model
representation, the model deformation process is mainly
controlled by formulating a criterion function which com-
bines amodel deformation criterion and a data mismatch
criterion, which is to be optimized for model match-
ing. The criterion functions can be interpreted as soft
constraints (penalties) for restricting the resultant model
shape. 11

3.1. Model deformation criterion

A model deformation criterion measures the degree of
model deformation for a DM. The related criterion in
Kass et al.’s active contour models [8] is called internal
energy, 12 given as∫ 1

0
	1(s)

∣∣∣∣9v9s
∣∣∣∣
2

+ 	2(s)
∣∣∣∣92v
9s2

∣∣∣∣
2

ds; (1)

where v(s) denotes the contour parameterized by
s∈ [0; 1]. Spatial derivatives of the criterion function
can be interpreted as some internal forces exerted on
the model to restore it back to its reference (or unde-
formed) shape. Although a relatively large portion of
the discussion in the following section is related to the
active contour model or its variants, most of them can
be easily generalized by plugging in some other repre-
sentations. The only diCerence is the associated physical
interpretation for the criteria.

11 Hard constraints can also be incorporated for controlling
the deformation. See Section 4.2.

12 Terms with similar meanings are also called deformation
energy in Ref. [4], strain energy in Ref. [32], etc.
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3.1.1. A summary of deformation criteria
Based on Eq. (1), the 3nite diCerence technique can be

used to discretize s and the integral can be approximated
by a quadrative form [8].

(a) Inter-point distance

Edef 1
(w;Hj ; Iw)=

k∑
i=1

||vi − vi+1||2 (2)

is a discrete version of the 3rst term in Eq. (1) where
wt =(vt0; v

t
1; v

t
2; : : : ; v

t
k=2) and || · ||2 denotes an L2 norm.

It can be expressed using a quadratic form wtAw where
A is a tri-diagonal matrix. TwEdef 1

= 2Aw act as some
internal forces pulling the contour points together.

(b) Curvature-related measure

Edef 2
(w;Hj ; Iw)=

k∑
i=1

||vi−1 − 2vi + vi+1||2 (3)

is a discrete version of the second term in Eq. (1) which
can be expressed as wtBw where B is a penta-diagonal
matrix. TwEdef 2

act as some internal forces preventing
the model from being bent too much.

(c) Normalized curvature The criteria in Eqs. (2) and
(3) favor a shorter curve to a longer one with the same
curvature. To achieve scale invariance, a new criterion
can be de3ned as the ratio of Edef 2

to Edef 1
[61].

(d) Distance from reference For recognition purpose,
instead of measuring the intrinsic properties of the model,
it is more appropriate to de3ne model deformation as
some distance between the current model parameter vec-
tor w and its reference value Iw in the corresponding pa-
rameter space. It is typical to use a quadratic form for
the distance, such that

Edef 3
(w;Hj ; Iw)= (w− Iw)t�(w− Iw); (4)

where � could be a diagonal matrix (resulting in a
weighted Euclidean distance in the parameter space),
or the inverse of the covariance matrix of w learned
from a set of training data (resulting in the Mahalanobis
distance [4]), or a manually de3ned stiCness or smooth-
ness matrix [2,32,62]. For physical interpretation, the
use of diagonal � assumes that the model points can be
moved independently, while non-diagonal � introduces
interaction among the model points.

3.2. Data mismatch criterion

The data mismatch criterion measures the data discrep-
ancy given the current model. The spatial derivatives of
this criterion can be interpreted as some external forces
exerted on the model to deform it to match with some
regions of interest of the input data. Based on diCerent
types of preprocessing on the input, various data mis-
match criteria have been proposed. To further improve

the matching accuracy, criteria which combine diCerent
types of extracted features can also be used [63–65].

3.2.1. A summary of mismatch criteria based on
features

The following provides some criteria which have been
proposed in the literature for describing data mismatch.
The list is by no mean exhaustive but to help readers to
understand how diCerent types of extracted features can
be used.

(a) Image-based

Eimg1 (w;Hj ;D)= −
k∑

i=1

I(vi(w);D) (5)

was proposed in Ref. [8] for matching bright pixels in a
gray-level image, where I(vi;D) denotes the intensity of
the image D at vi and k denotes the number of elements
in {vi}.
Eimg2 (w;Hj ;D)

= −
N∑
l=1

log
1
k

k∑
i=1

&
2+

exp
−&||vi(w) − yl||2

2
(6)

was proposed in Ref. [4] for matching black pixels in a
binary image, where yl is the location of an individual
black pixel, & is a signal-strength parameter, and N is the
number of black pixels.

(b) Edge-based

Eedge1
(w;Hj ;D)= −

k∑
i=1

||G(vi(w);D)|| (7)

was proposed in Ref. [8] for matching edges, where
G(vi;D) denotes the gradient vector of D at vi.

Eedge2
(w;Hj ;D)

= −
k∑

i=1

|(cos, cos  Gx; sin, sin  Gy)| (8)

was proposed in Ref. [66] for utilizing also the gradient
direction information, where Gx and Gy are the x and
y components of G(vi;D), respectively, , is the normal
angle of the contour at vi and  is the gradient angle
there. Such a formulation tries to avoid matching to some
undesirable edges caused by irrelevant objects in the
neighborhood. Similar ideas have also been adopted in
Ref. [61,67].

Eedge3
(w;Hj ;D)= − 1

k

k∑
i=1

| ||G(vi(w);D)|| − IG| (9)

was proposed in Ref. [68] to favor boundaries with a
constant gradient, where IG= 1

L

∑k
i=1 ||G(vi(w);D)|| is

the average gradient magnitude.
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(c) Region-based

Ereg1 (w;Hj ;D)= −
k∑

i=1

F(vi(w);D) (10)

was adopted in Ref. [69,70], where F is an indica-
tor function for foreground pixels and can be computed
using some standard region-based segmentation algo-
rithms. This criterion tends to direct the model to enclose
regions with homogeneous grey level, which however
relies heavily on the accuracy of F.

Ereg2 (w;Hj ;D)

= −
∑
s∈R(w)

[(
I(s;D) − /

0

)2

− fs

]
(11)

was used in Ref. [71] to tolerate noisy homogeneous
regions, where R(w) denotes the set of pixels enclosed
by the model contour, I(s;D) is the pixel intensity at s, /
is the mean of the foreground intensity, 0 is the standard
deviation and fs is some adaptively estimated oCset.

(d) Motion-based

Emot(w;Hj ;D)= −
∑

i

Mv(vi(w);D) (12)

was proposed in Refs. [64,72] to facilitate object seg-
mentation using motion information, where Mv is an in-
dicator function for moving pixels computed based on
consecutive image frames.

(e) Landmark-based

Elandmark(w; f ;Hj ;D)= −
∑

i fif̂(vi(w);D)√∑
i f

2
i
∑

i f̂(vi(w);D)2

(13)

was proposed in Ref. [27] for their landmark-based de-
formable grids, 13 where fi denotes the landmark feature
associated to vi and f̂(vi(w);D) denotes the landmark
feature extracted at the location of vi.

3.2.2. Noise modeling and robust statistics
As mentioned in Section 1.2.4, the data mismatch cri-

terion can be interpreted as the likelihood of the input
data based on some noise model. For example, we can
modify Eq. (5) by adding the value 255 to all the terms
in the summation so that each term can be interpreted as
measuring the deviation (or noise) of the actual intensity
from the ideal value 255. The corresponding noise model
then follows a Laplacian distribution such that

pimg1 (w;Hj ;D)˙ exp

(
−

k∑
i=1

|255 −I(vi(w);D)|
)

:

(14)

13 Here a negative sign is added to the original similarity
measure to make a mismatch criterion.

A similar argument applies to Eq. (11), which cor-
responds to a Gaussian noise model for the intensities
of the pixels enclosed by the contour model. Also, for
Eq. (6), the noise model for the location of the black pix-
els is a mixture of Gaussians. The introduction of proba-
bilistic interpretation implies that the data mismatch cri-
terion can in fact be formulated from the perspective of
modeling the underlying noise process of the problem,
which, under the context of computer vision, is related
to the imaging environment. For example, Poisson dis-
tribution has been reported to be better for describing
noise in images at low photon levels, like astronomi-
cal images. Following this line of thinking, noise mod-
els of diCerent members in the exponential family (e.g.,
Poisson, Rayleigh, Bernoulli, etc.) have been studied in
Ref. [73] for formulating data mismatch criteria.

Even though there exist many diCerent sophisticated
noise models, there are still cases where the use of any
noise models may not be suPcient, especially when the
input data contain outliers. Robust statistics [74] can be
used to modify the data mismatch criterion to discount the
eCect caused by outliers [75]. In particular, for the appli-
cation of extracting characters from handwritten cursive
script using DMs, it is quite unreasonable to treat the out-
lier data using, say a simple uniform noise model. Using
a robust statistical technique called M -estimation, Che-
ung et al. [76] has showed that non-rigid characters can
be correctly extracted even in the presence of outliers.

3.3. Regularization

Model deformation and data mismatch are two often
conVicting criteria. The most common way to achieve
a trade-oC is to de3ne a combined criterion function
by a (possibly adaptively) weighted sum of the two.
Such a technique, called regularization [77], has long
been used for computer vision tasks [78]. Let 	 de-
note the regularization parameter. The combined criterion
function is

Etot(w; 	;Hj ;D; Iw) = 	Edef (w;Hj ; Iw)

+Emis(w;Hj ;D): (15)

Properly setting the value of 	 is vital for good match-
ing, especially when the imagery data is noisy. Either
too small or too large the value of 	 will result in bad
matching (Fig. 2). Finding an input-independent optimal
value of 	 either through training or by trial and error
is one solution. Better matching can also be achieved by
carefully decreasing the value of 	 from large to small,
or in other words, allowing the model to be rigid at the
beginning to obtain a rough match and then increasingly
Vexible towards the end for a 3ne match [1,4,29,79].
To achieve adaptive regularization, cross-validation has
been adopted by Shahraray et al. [80], which however
is rather computationally expensive. Another approach
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Fig. 2. ECects of diCerent values of regularization parameter 	. For the noiseless cases (a) (	= 0:02) and (c) (	= 0:001), too large
the value of 	 is less preferable because sharp corners, which in many situations serve as salient features, cannot be detected. For
the noisy cases (b) (	= 0:02) and (d) (	= 0:001), too small the value of 	 is less preferable as the model then cannot smooth out
the noise and becomes very sensitive to it.

used by Cheung et al. [81] is to treat 	 as the hyperpa-
rameter and use Bayesian techniques to obtain its MAP
estimate.

Besides the standard way of regularization, it is inter-
esting to note that a minimax criterion can also be used
[61,82] with Etot(w; 	;Hj ;D; Iw)= max{Emis(w;Hj ;D);
Edef (w;Hj ; Iw)} instead of a weighted combined crite-
rion. It has been shown that under certain convexity
assumptions, minimizing such a criterion (which imple-
ments the matching process to be discussed in the next
section) is equivalent to minimizing the weighted sum
criterion with optimal regularization.

Before ending this section, it should be stressed that if
global parameterization is adopted for model representa-
tion, the corresponding regularization will become rela-
tively easier. This is mainly due to the reduced degree of
freedom by introducing more a priori knowledge which
implicitly results in a better control over the resultant
model shape [83].

4. Matching

Matching a DM to the data is performed by minimiz-
ing a combined criterion function Etot . From the point of
view of a dynamic system, the matching process can be
understood as 3nding an equilibrium point in the pres-
ence of internal and external forces derived from the de-
formation criterion Edef and the data mismatch criterion
Emis (Fig. 3).

4.1. Optimization

For the minimization of Etot , it is often the case that
Etot is a highly non-linear function and hence contains
many spurious local minima. In order for the model to
3nally converge to the optimal solution, i.e., wf =w∗
where w∗ = arg minw Etot(w; 	;Hj ;D; Iw), either a lo-
cal minimizer with good initialization or otherwise a
global minimizer is required. Furthermore, coarse-to-3ne

Fig. 3. Illustration of DM matching as force balancing in a
physical system.

multi-resolution optimization forms a good trade-oC be-
tween global and local optimization methods regarding
the matching quality and ePciency. This section provides
a summary of various related issues.

4.1.1. Initialization
To achieve optimal matching, good model initializa-

tion is known to be important (Fig. 4). If user interac-
tion is allowed, the simplest way is to manually place the
initial model close enough to the region of interest, e.g.,
the object boundary. To semi-automate the initialization
step, Berger et al. [84], for example, proposed to ini-
tialize an active contour model by starting with a short
snake placed on the desired boundary. The snake then
“grows” towards the two ends to extract the whole bound-
ary. With a similar idea, Neuenschwander et al.’s ap-
proach [85] starts with a complete snake whose end
points are accurately placed at some desired positions.
Then, image forces due to the data come into eCect pro-
gressively, starting from the two end points towards the
middle portion of the snake. Such semi-automatic tech-
niques, though useful for some speci3c applications, con-
sider only a small part of the model at a time and fail
when the noise level is high or when subjective con-
tours exist. For robust and fully automatic initialization,
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Fig. 4. ECects of diCerent initializations. The object boundary can be successfully extracted only when initialization is good.
(a) Bad initialization. (b) Final match of (a). (c) Good initialization. (d) Final match of (b).

rigid feature-based model matching can be used [27,86].
Also, MacCormick et al. [87] demonstrated using ran-
dom sampling together with a feature-based model to lo-
cate objects of interest ePciently, but with the assump-
tion of small degree of scale variation. Other than the
feature-based approach, the use of invariant moments has
been suggested by Blake et al. [88]. Lai [61] proposed
using generalized Hough transform with promising re-
sults. Garrido et al. [89] used a modi3ed Hough trans-
form which can tolerate a higher degree of deformation.
Williams et al. [90] and Rowley et al. [91] succeeded in
training arti3cial neural networks to achieve reasonably
good initialization.

4.1.2. Optimization in continuous domain
Among diCerent continuous optimization methods,

steepest descent in the continuous parameter space
[3,8,29] is one of the most common ones. Based on Kass
et al.’s formulation, it is equivalent to solving the Euler
equation [8]. To improve the convergence rate, more
complex gradient-based methods like conjugate gradi-
ent [3], Newton’s method and Levenberg–Marquardt
method [92] can also be used. Besides, Powell’s direc-
tion set method [3] and iterated condition mode [71,72]
have also been proposed. The aforementioned methods
are for local optimization, where only sub-optimal solu-
tions can be guaranteed. To achieve optimal matching,
methods, like simulated annealing [5,72,93] and genetic
algorithms [94] have been used.

4.1.3. Optimization in discrete grid domain
If the model parameters are simply a set of x–y coordi-

nates in the image plane, matching algorithms can also be
derived based on the discrete grid of the sampled image.
By placing search windows at diCerent locations of the
model, some discrete local search methods, e.g., greedy
search algorithm [20], can be used for criterion function
optimization. The advantages of searching in the discrete
grid domain include numerical stability and the ease of
incorporating hard constraints. Besides, optimizing a cri-
terion with a very complex non-diCerential functional

form in the continuous domain is often a nightmare, but
can still be eCectively done by some search methods in
the discrete grid domain.

To achieve optimal matching, techniques like dynamic
programming [21,95] and the A∗ algorithm [10] can be
used. However, the optimality is limited to the search
space de3ned by the search windows. True optimality can
only be obtained if each search window can be extended
to the whole image and the resolution of the search win-
dow grid is down to pixel level. However, these require-
ments make the algorithm too computationally expensive
to be practical. Good model initialization can solve part
of the problem, but the solution optimality and the com-
putational ePciency are still two conVicting factors in
determining the size of the search windows.

4.1.4. Multi-resolution optimization
Coarse-to-3ne multi-resolution optimization has been

found to be more appealing in practice, as on one hand
it can escape from many of the local minima and on
the other hand the total computational cost required is
much less than that of global optimization. The standard
way of a multi-resolution optimization is 3rst to create
an image pyramid by consecutive sub-sampling and per-
form optimization from the coarsest level to the 3nest
level where the optimal solution at a particular level is
passed to the next level for model initialization. Exam-
ples of using the coarse-to-3ne paradigm can be found in
Refs. [5,61,96,97]. Other than using the standard pyra-
mid, Akgul et al. [98] proposed to use the external energy
to segment the images into levels using some ePcient
algorithm. The discrete grid for the optimization is then
formed by the centroids of the segments with similar ex-
ternal energy as the grid points. Superior performance
in term of matching optimality has been reported when
applied to medical image analysis.

4.2. Constraint incorporation using prior knowledge

The main goal of incorporating (hard) constraints is
to limit a DM from deforming to some irrelevant shapes.
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From an optimization point of view, adding correct con-
straints into the search space can avoid a lot of spu-
rious local minima. Deriving such constraints normally
requires a priori knowledge speci3c to applications. In
fact, one can consider that carefully choosing a global
shape parameterization based on the application-speci3c
knowledge is one implicit way to incorporate the re-
lated constraints. 14 For explicit ways to incorporate con-
straints, the deformable template proposed by Yuille et al.
[29], which uses parametric curve components for com-
posing an eye template, restricts the upper lid parabola to
be always convex upwards and the lower lid to be always
convex downwards. Dubuisson et al. [64] used a set of
hand-drafted constraints to explicitly restrict the defor-
mation of a deformable polygon for representing cars of
diCerent types. Besides, Olstad et al. [99] used syntacti-
cal approaches to incorporate constraints, where a priori
information about object shape can be encoded into an
active contour model as a set of grammar rules. Also,
Fua et al. [100] con3ned the model parameter search in
the orthogonal subspaces of some given hard constraint
surfaces.

Although adding constraints to avoid sub-optimal
matching is well understood to be important for DM-
based pattern recognition, there exists another subtle
reason for incorporating constraints for classi3cation
applications, which may aCect the steps for deriving
constraints. See Section 5.2 for more details.

5. Classi�cation

5.1. A summary of discriminant measures

DiCerent discriminant measures have been adopted
for DM-based classi3cation. In general, they can be
categorized as follows.

(a) Ad hoc distance measures. Using prior knowl-
edge about speci3c problems, ad hoc distance measures
can sometimes be derived with reasonably good dis-
criminating power. For example, Burr’s elastic match-
ing [1] for line drawings used a distance measure based
on directional and positional incompatibilities between
model and data for classi3cation. SclaroC et al. [32] de-
3ned a strain energy, which measures model deforma-
tion (equivalent to a model deformation criterion) for

14 Global parameterization transforms the original parameter
space of a higher dimension (concatenation of coordinates of
model instances in the image plane) to a space of a much lower
dimension (spanned by a compact set of basis functions) for
representation. Such a transformation limits the shapes in the
image plane to be within the sub-space or manifold de3ned by
the global shape basis.

classifying the adopted FEM models. A similar idea has
also been adopted by Cootes at el. for face recognition
[101].

(b)Combined criterion functions. There is a major dif-
ference between an ad hoc distance measure and a com-
bined criterion function. Although both of them can be
seen as distance measures, a combined criterion function,
besides for classi3cation, also serves as the optimiza-
tion criterion for matching. This tightly integrates pattern
matching and classi3cation into a single step. In fact, it
is quite natural and common to use combined criterion
functions as discriminant measures [5,27,64], though it
is not fully theoretically justi3ed.

(c) Class posterior probabilities. A theoretically
sound and disciplined classi3cation method is by com-
paring the posterior probabilities Pr(Hj|D) computed
for diCerent classes [61,102]. If all the model candidates
are assumed to be equally probable, then maximizing
Pr(Hj|D) is equivalent to maximizing the likelihood
p(D|Hj). Using the Bayes rule, p(D|Hj) can be ex-
pressed as

p(D|Hj)=
∫

p(D|w;Hj)p(w|	;Hj)
p(w|D; 	;Hj)

p(	|Hj) d	:

(16)

As the exact computation of Eq. (16) is very often ei-
ther too diPcult or too computationally demanding, ap-
proximation based on optimal matching and regulariza-
tion results is generally required [12].

(d) Measures based on discriminative classi5ers. For
model-based classi3cation, any inaccuracies in the mod-
eling and criterion function formulation steps can lead to
serious performance degradation. Rather than correcting
the inaccuracies which sometimes may not be that easy,
the values of Edef and Emis for diCerent models can be
considered as some (possibly noisy) high-level features
to be fed into an arti3cial neural network (ANN) [4,103]
or a statistical classi3er [104] for subsequent classi3ca-
tion. The classi3cation performance is optimized by train-
ing the classi3er so that the eCect of the inaccuracies can
be reduced. The limitations are the requirement of large
quantity of training data for the classi3er and the need
for re-training whenever there is a new class.

5.2. Classi5cation accuracy and e=ciency

No matter what sophisticated approaches are adopted
for pattern classi3cation, the ultimate concerns remain
unchanged, namely, accuracy and ePciency.

5.2.1. Accuracy
Using DMs, classi3cation is done by measuring the

dissimilarity of an input pattern to all the optimally de-
formed candidate models and identifying the one with
the smallest dissimilarity as the output. DiPculties arise
if the model of a particular class is “too” Vexible and
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can be deformed to shapes that resemble those of the
other classes. Taking handwritten digit classi3cation as
example, the “5” model can be readily deformed to the
shape of “6”. So, controlling the Vexibility of DMs with
the objective to minimize inter-class confusion is one of
the most crucial issues to achieve highly accurate classi-
3cation systems.

The three most important steps related to the Vexibil-
ity control are: (1) model training, (2) regularization,
and (3) constraint incorporation. Model training is used
together with a set of training data such that a priori
knowledge on the possible variations can be captured
(e.g., in the form of a covariance matrix [4]). ML estima-
tion techniques are often used for training, where each
model is trained independently. For the case with a lim-
ited amount of training data so that accurate parameter
estimation cannot be achieved, discriminative training
methods have been proved to be superior, at least when
applied to speech recognition [105,106] and image re-
trieval [107]. For regularization, adaptive techniques
sometimes result in exceedingly high model Vexibility
for some of the candidate models. Either a proper prior
distribution can be imposed on the regularization param-
eters under a Bayesian framework or some constraints
on the value of the regularization parameter obtained
from the training data can be used [102]. Using prior
knowledge on the easily confused classes, hard con-
straints can be incorporated accordingly into models
in a bruce-force manner. However, generating those
constraints sometimes can be very time-consuming,
especially when there are a large number of models.

5.2.2. E=ciency
The ePciency of a DM-based recognizer is another

major challenge to face. Even though a very ePcient
matching algorithm can be derived, the recognition time
is still linear to the size of the model base as long as se-
quential machines are used, hindering the practical use of
this approach for real-time applications. There are at least
two diCerent ways to improve the situation. In Ref. [81],
it was shown that signi3cant speedup without much per-
formance degradation can be achieved if some competi-
tion process is introduced at the early stage of matching to
eliminate some unlikely model candidates. Such a com-
petition process is believed to be a promising direction
to eliminate the unnecessary computational power used
for matching irrelevant models to an input image. An-
other approach is to use some indexing algorithms, such
as Hough transform [108] and geometric hashing [109].
The approach is known to be ePcient for model-based
recognition and the general idea is to gain computational
advantage by using additional memory to store precom-
puted values. The development of indexing algorithms
has mostly been based on rigid models, where all the
object transformations can be solely described by aPne

transformation. Rigoutsos et al. [110] proposed a modi-
3ed version which can allow a tiny amount of deforma-
tion. For some applications involving non-rigid shapes
that can be parameterized by a compact set of parame-
ters, the indexing approach may also apply.

6. Discussions

6.1. Current applications in pattern recognition

DMs are known to be capable of accurately locating
and tracking non-rigid objects in noisy images through an
image sequence [22,46,72,111–115]. Such properties are
found to be especially useful for medical image analy-
sis, e.g., locating and tracking a shape-varying biological
object in a sequence of echocardiographic (ECG), mag-
netic resonance (MR) or X-ray images [47,71,116–119].
Other related applications include precise measurement
of some shape-related parameters for medical diagnosis
[120] and industrial automatic inspection [121], image
registration [122,123], etc.

Object correspondence (also called signal matching)
is a non-trivial but important component in many com-
puter vision tasks, like stereopsis, motion analysis, and
constructing 3D models from 2D image slices. The diP-
culties in obtaining the correspondence between a pair of
images lie in the fact that the objects of interest can be
non-rigid, occluded, or very noisy. Using two 2D DMs
for the left and right images, which interact either through
a true 3D model [124], aPne epipolar geometry [125] or
a smoothness constraint on the disparity between them
[8,126], promising results on stereo matching have been
demonstrated. Other examples of applying DMs to object
correspondence include Witkin et al. [96] and SclaroC
et al. [32].

DMs have been applied to the recognition of diCerent
non-rigid objects with promising results. The domains in-
clude human faces [27,58,101,127,128], gestures [50,72],
handwriting [1,4,26,54,81,104,129,130], etc. See Fig. 5
for a handwriting recognition illustration.

6.2. Research problems

McInerney et al.’s survey paper [13] provides very
good discussions on research issues related to the con-
tinuous development of the DM approach. Although the
context is speci3c to medical image analysis, most of the
issues discussed there are common to DM-based pattern
recognition regarding the modeling and matching steps.
Without repeating them, here we try to focus only on
the issues related to the classi3cation step and discuss
some related open research problems that are worth future
exploration.
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Fig. 5. Handwritten digit recognition using deformable models. The caption MX=ZZZZ under each sub-3gure is read as: X-model
class and ZZZZ-mismatch measure. For this example, model M6 is found to have the lowest mismatch value and thus the input
is classi3ed to be “6”. See Ref. [81] for more details. (a) M0=6.39. (b) M1=7.03. (c) M2=6.49. (d) M3=6.76. (e) M4=6.30.
(f ) M5=6.19. (g) M6=6:06∗. (h) M7=7.19. (i) M8=6.48. ( j) M9=6.60.

6.2.1. Automatic model construction and training
In most DM-related works, the models involved are

usually assumed to be constructed manually with spe-
cial care. For extracting a pre-de3ned shape from the
input image, such a manual process is still tolerable,
even though the model is very complicated. However, for
classi3cation, at least one model has to be constructed for
each class. Such a construction process may not be too
trivial. To automate the process, an algorithm for con-
structing the shape abstraction for each training exam-
ple is 3rst needed. Also, we need another algorithm for
summarizing the set of constructed abstractions based on
certain criteria. Related research problems include:

• how to automatically construct the abstraction for an
input with unknown topology (examples with diCerent
topologies can exist within a class, e.g., digit recog-
nition [102]), where the topology adaptive representa-
tion should play an important role;

• how model complexity should be taken into account
for constructing optimal shape abstractions with
“just-enough” representational power to avoid over-
or under-3tting;

• how to automatically summarize the constructed ab-
stractions with possibly diCerent topologies, where
some special clustering algorithms should be needed
[131];

• what criteria should be used for the summarization
(or clustering) such that the resultant set of reference
models is optimal for classi3cation;

• can the whole construction process be implemented
in an incremental manner so that abstractions

created earlier can facilitate the construction process
that follows.

6.2.2. E=cient implementations
As mentioned in Section 5.2.2, ePcient implemen-

tations for alleviating the scale-up problem can follow
two approaches: (1) using a compete-and-reject process
at earlier iterations, and (2) using indexing techniques,
where the two approaches are non-exclusive to each
other. Related research issues include:

• can the competitive process be enhanced by consid-
ering inter-class dependency to achieve improvement
in both speed and accuracy (say inter-related classes
are grouped for the competition 3rst and then followed
by another competition among the classes within the
winner group);

• how can the DM-based pattern recognition be imple-
mented using some indexing schemes, where the dis-
cretization of the shape parameter space should be a
major issue to be studied;

• can some randomized algorithms similar to those used
in Ref. [132] be adopted for further boosting the system
ePciency.

7. Conclusion

An extensive review of various DM methods for mod-
eling, matching and classifying non-rigid shapes has been
presented and compared. Future research directions of the
3eld, particularly on the classi3cation step, are discussed
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in detail. As of today, the state of the art of DM-based
pattern matching is close to full maturity for real-world
applications in some con3ned problem domains, while
much more research and experience is still required for
the development of DM-based pattern classi3cation.
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