
Host�Based Intrusion Detection Using Dynamic and Static

Behavioral Models

Dit�Yan Yeung Yuxin Ding

Department of Computer Science

Hong Kong University of Science and Technology

Clear Water Bay� Kowloon� Hong Kong

dyyeung�cs�ust�hk

November ��� ����

Abstract

Intrusion detection has emerged as an important approach to network security� In this paper�
we adopt an anomaly detection approach by detecting possible intrusions based on program
or user pro�les built from normal usage data� In particular� program pro�les based on Unix
system calls and user pro�les based on Unix shell commands are modeled using two di�erent
types of behavioral models for data mining� The dynamic modeling approach is based on
hidden Markov models �HMM� and the principle of maximum likelihood� while the static
modeling approach is based on event occurrence frequency distributions and the principle of
minimum cross entropy� The novelty detection approach is adopted to estimate the model
parameters using normal training data only� as opposed to the classi�cation approach which
has to use both normal and intrusion data for training� To determine whether or not a
certain behavior is similar enough to the normal model and hence should be classi�ed as
normal� we use a scheme that can be justi�ed from the perspective of hypothesis testing�
Our experimental results show that the dynamic modeling approach is better than the static
modeling approach for the system call datasets� while the dynamic modeling approach is
worse for the shell command datasets� Moreover� the static modeling approach is similar
in performance to instance�based learning reported previously by others for the same shell
command database but with much higher computational and storage requirements than our
method�

Keywords� anomaly detection� computer security� data mining� hidden Markov model�
intrusion detection� maximum likelihood� minimum cross entropy� pro�ling� shell command�
system call

�

� Intrusion Detection Problems

Intrusion detection� which refers to a certain class of system attack detection problems� is a
relatively new area in computer and information security� Many intrusion detection systems
built thus far are based on the general model proposed by Denning in a seminal paper ����
From a high�level view� the goal is to �nd out whether or not a system is operating normally�
Abnormality or anomaly in the system behavior may indicate the occurrence of system intrusions
that are the consequences of successful exploitation of system vulnerabilities�

One aspect for the categorization of intrusion detection systems is the target environment for
detection� which is related to where such systems are used� Host�based intrusion detection sys�
tems detect possible attacks into individual computers on which the intrusion detection systems
run� Such systems typically make use of information speci�c to the operating systems of the
target computers� On the other hand� network�based intrusion detection systems monitor net�
work behavior by examining the content as well as the format of network data packets� which
typically are not speci�c to the exact operating systems used by individual computers as long
as these computers can communicate among themselves using the same network protocol� For
both types of intrusion detection systems� one may use a data mining approach by �mining�
through the host�based or network�based data collected to detect possible attacks from internal
or external intruders�

Another aspect for categorization is the modeled behavior for detection� which is related to
the methods used for implementing such systems� Misuse detection systems detect evidence of
attacks based on knowledge about abnormal behavior acquired from known attacks� Anomaly

detection systems� on the other hand� model normal system behavior to provide a reference
against which deviations are detected and alerted as possible intrusions� In other words� the
major di	erence between the two approaches is on whether normal or abnormal
i�e�� intrusive�
behavior is modeled explicitly� Misuse detection and anomaly detection systems are sometimes
also referred to as knowledge�based and behavior�based systems� respectively ����

Since misuse detection systems typically require known intrusive scenarios to be hand�coded a

priori and such scenarios are usually very speci�c to the operating systems if this approach is
used for host�based systems� the anomaly detection approach is often the preferred choice for
host�based intrusion detection systems because many pattern recognition and machine learning
methods� such as density estimation methods ��� may be used for modeling normal system
behavior�

In this paper� data mining methods based on the anomaly detection approach are proposed for
host�based intrusion detection� We consider both normal program pro�ling based on system

calls ��� �� �� �� �� and normal user pro�ling based on shell commands ��� ��� ��� ��� �� ���� In
operating systems such as Unix� the privileged processes that only the superuser is authorized
to execute make use of system calls to access privileged system resources or services� Thus such
privileged processes are often a major target for intruders� To monitor user behavior on systems
that accept shell commands from users� shell command sequences from audit logs can be used
for user pro�ling�

The remainder of this paper is organized as follows� We will �rst discuss in Section � two di	er�
ent paradigms for building behavioral models� followed by discussions on two general categories

�

of behavioral models in Section � We will then present two speci�c methods� one based on the
dynamic modeling approach
Section �� and the other based on the static modeling approach

Section ��� In Section �� the system call and shell command datasets ��� ��� used in our exper�
iments will be described� Methods for preprocessing the data for use by the dynamic and static
models will also be explained� In Section �� we will present details of the model construction
and performance evaluation aspects� Justi�cation of the procedure from a hypothesis testing
perspective will be given� We will then present some experimental results in Section �� In Sec�
tion �� our contributions will be summarized and some possible future research issues will be
outlined�

� Classi�cation versus Novelty Detection

Typical classi�cation problems studied in pattern recognition can be formulated as building a
classi�er that classi�es each pattern into one of c � � classes with as low classi�cation error
as possible� To build such a discriminative classi�er� training examples from all c classes are
needed� If the classi�er is built using machine learning techniques� this approach is often referred
to as supervised learning�

While this formulation is commonly used in pattern recognition� there also exists another for�
mulation� called novelty detection ���� ��� ���� which is much less explored than classi�cation�
Simply put� novelty detection refers to the detection of novel or abnormal events or patterns� In
a probabilistic sense� it is equivalent to deciding whether an unknown test pattern is produced by
the underlying data distribution that corresponds to the training set of normal patterns� While
novelty detection problems appear to be similar to ��class classi�cation problems� with the two
classes corresponding to normal and abnormal patterns respectively� a major di	erence is that
novelty detection methods typically use only training examples from the class corresponding to
normal patterns to build a generative model of normal behavior� Table � summarizes this ma�
jor di	erence� The novelty detection approach is particularly attractive under situations where
novel or abnormal patterns are expensive or di�cult to obtain for model construction� If the
model is built using machine learning techniques� we refer to this as an unsupervised learning

approach� In this paper� the novelty detection approach is adopted because it is superior to the
classi�cation approach when intrusion data are scarce�

� Dynamic versus Static Behavioral Models

Normal program or user behaviors are pro�led by building behavioral models using data collected
from normal operations� There are generally two categories of behavioral models� Dynamic mod�
els explicitly model temporal variations that are essential for discriminating abnormal system
behavior from normal behavior� Static models� on the other hand� do not explicitly model tempo�
ral variations� They could be used for anomaly detection problems if the normal system behavior
does not exhibit signi�cant temporal variations� or if the temporal sequences are �rst converted
into some non�temporal representation typically in the form of multidimensional feature vectors
with no time dimension� In general� dynamic models are more powerful in representing subtle
temporal regularities and hence should be used if possible�

Di	erent anomaly detection methods have been applied� They include instance�based learning
���� ���� multi�layer perceptrons ��� ��� decision trees ����� hidden Markov models
HMM� ���� ���
frequent episodes ���� correlation analysis ���� statistical likelihood analysis ���� rule learning
��� �� ��� and uniqueness method ����� Of these methods� only HMMs are intrinsically dynamic
in nature� Also� not all of them are based on the preferred novelty detection approach and hence
they have to make use of both normal and intrusion data for model construction�

In this paper� intrusion detection systems based on pro�ling system call sequences and shell
command sequences are �rst studied with the dynamic modeling approach using HMMs� These
systems can be seen as extensions and variants of previous HMM�based intrusion detection sys�
tems� Afterwards� we will propose an information�theoretic static modeling approach based on
the usage frequencies of system calls or shell commands� Comparative studies of the two mod�
eling approaches on di	erent intrusion detection problems under di	erent operating conditions
are then performed�

� Dynamic Modeling Approach Based on Hidden Markov Mod�

els and Maximum Likelihood

��� Hidden Markov Models

HMMs are stochastic models of sequential data that have been used successfully for many
applications in knowledge discovery� pattern recognition� and speech recognition� Each HMM
contains a �nite number of unobservable
or hidden� states� State transitions are governed by a
stochastic process to form a Markov chain� i�e�� a stochastic �nite state machine� At each state�
some state�dependent events can be observed� The emission probabilities of these observable
events are determined by a probability distribution� one for each state� Of interest here are
discrete HMMs in which the observed events
system calls or shell commands� are discrete
symbols� as opposed to other models not studied here� called continuous�density HMMs�

Based on the connectivity topology between states� two types of HMMs can be distinguished
����� Fully�connected or ergodic HMMs allow state transitions between all state pairs� On the
other hand� left�to�right HMMs do not allow state transition back to any state to the left of
the current state� In fact� most left�to�right HMMs used in practice only allow state transition
from a state to itself
called self�transition�� to the immediate neighbor to the right� and to the
neighbor two steps to the right� In this paper� our left�to�right HMMs are further restricted to
only the �rst two types of state transition� as shown in Figure � below�

To estimate the parameters of an HMM for modeling normal system behavior� sequences of
normal events
system calls or shell commands in our case� collected from normal system usage
are used as training examples� An expectation�maximization
EM� algorithm ���� known as
the Baum�Welch re�estimation algorithm ���� for mixture density estimation is used to �nd the
maximum�likelihood
ML� parameter estimate� More details of the algorithm can be found in
�����

�

��� Sample Likelihood With Respect to Model

Given a trained HMM M � the sample likelihood of an observation sequence S with respect to
M can be computed using either the forward algorithm or the backward algorithm ����� From
a generative point of view� this can be seen as computing the probability that a given observa�
tion sequence is generated by the model� Alternatively� we can also consider it as providing a
quantitative measure for assessing how well the model matches the sequence�

Ideally� a well�trained HMM can give su�ciently high likelihood values only for sequences that
correspond to normal behavior� Sequences that correspond to intrusive behavior should give
signi�cantly lower likelihood values� By comparing the sample likelihood of S with respect to
M against a certain threshold� one can decide whether S deviates signi�cantly fromM and hence
should be considered a possible intrusion� We will describe how to determine the threshold in
Section ���

� Static Modeling Approach Based on Occurrence Frequency

Distributions and Minimum Cross Entropy

��� Occurrence Frequency Distributions

Suppose the occurrence frequencies of di	erent events
system calls or shell commands� are
measured during a certain period of time� A probability distribution
i�e�� a probability mass
function de�ned over the space of all possible events under consideration� can be used to rep�
resent the overall occurrence pattern during that period� Since the order in which di	erent
events occur is not taken into account in the distribution� we refer to this as a static modeling
method� Using this representation scheme� a normal program or user behavioral model is simply
represented as occurrence frequency distribution� which is the basis on which possible system
intrusions can be detected�

Let P
M� denote the probability distribution characterizing the behavior of a normal model
M and let Pi
M�� i � �� �� � � � � N denote the occurrence probability of event i among a total of
N possible events� Similarly� Q
S� and Qi
S�� i � �� �� � � � � N denote the probability distribu�
tion and individual event probabilities� respectively� for some behavior S being monitored� In
what follows� the dependencies on M and S are not explicitly shown for the sake of notational
simplicity�

��� Cross Entropy Between Distributions

To characterize how di	erent two distributions P and Q are� we need a measure for quantifying
the dissimilarity between them� An information�theoretic measure that can serve this purpose
is known as cross entropy ���� ��� which is also related to Kullback�Leibler information measure

�����

�

For our purpose� we use the following de�nition of cross entropy�

C
P�Q� �
NX

i��

Qi � Pi� log
Qi

Pi

Note that changing the roles of P and Q does not a	ect this measure� i�e�� the measure is
symmetric with respect to the two distributions involved�

C
P�Q� � C
Q�P �

Moreover� it can be shown that the following two properties always hold�

C
P�Q� � �

C
P�Q� � � � P � Q

Thus� by checking whether the cross entropy between P and Q is larger than a certain threshold�
one can decide whether S should be considered a possible intrusion with respect to the model
M � We will describe how to determine the threshold later in Section ���

� Data Preprocessing and Partitioning

��� Preprocessing of System Call Data

The system call datasets are available at the public�domain archive in the Department of Com�
puter Science of the University of New Mexico�� In this paper� we report results for four Unix
programs� ps� login� named� and sendmail� In general� executing a single program may lead
to multiple processes� For system calls that are issued by the same process� we group them
together to form a trace� For example� Table � shows several system calls together with the
corresponding process IDs� The system calls can be grouped into two traces� � �� � �� � � �
and �� �� � � �� In general� di	erent traces are of di	erent lengths�

The intrusion data were generated by running programs intruded according to public advisories
posted on the Internet� Both ps and login used Trojan intrusions� which allow unauthorized
access to the system through a built�in �back�door�� For the named data� the intrusion used was
bu	er over�ow ���� For sendmail� the intrusions were sunsendmailcp and a decode alias attack
����

Note that the ground truth of intrusion data is more di�cult to vet than one might expect�
Although an intruded program contains anomalous code� a particular execution of the program
may not involve the anomalous code at all and hence it can still generate a trace of system
calls that is entirely normal� In fact� as will be discussed later in Section ������ we have found
evidence in the datasets
with the exception of ps� that could possibly be attributed to this�
Ideally one would like to have intrusion datasets that contain truly intrusive data only� However�
this would require the implementation of some �ltering mechanism for the data generated from
an intruded program� which in general is not easy to materialize�

�The URL is http���www�cs�unm�edu��immsec�data��

�

��� Preprocessing of Shell Command Data

The shell command datasets are available at the public�domain KDD archive maintained by
the Department of Information and Computer Science of the University of California at Irvine��

They were contributed by some researchers from Purdue University ����� Since it is di�cult to
obtain real intrusion data� only normal data were collected via the history �le mechanism from
eight di	erent Unix users over a period of more than two years� For each user login session
i�e��
from login to logout�� each word typed by the user was recorded as a token� Since many Unix
commands are followed by parameters
e�g�� ls �laF Paper Notes letterhead�tex�� the set
of all distinct tokens would become too large to be manageable� To reduce the size of the token
set� only a count of the �les or directories is represented as a token instead of the actual �le
or directory names
e�g�� ls �laF ����� Similar to the case of system calls� all the tokens in a
login session also form a trace�

Note that the datasets contain no real intrusion data because it is di�cult to collect such data
in real applications� This holds in general for this kind of intrusion detection problems� In our
experiments�
normal� data from other users were used as if they were �intrusive� data for a
given user� Thus� by its very nature� this problem is more like a classi�cation problem than
a novelty detection problem� although we still use a novelty detection approach as it is more
desirable in practice�

��� Partitioning of Datasets

In general� each set of data is partitioned into three subsets that are used for di	erent purposes�

�� Training set
normal data only�

�� Threshold determination set
normal data only�

� Test set
both normal and intrusion data�

The training set of data is for estimating the parameters of a behavioral model� Only normal
data are needed when the novelty detection approach is used� As the model is built using normal
data only� we need a criterion to decide when a new behavior observed should be considered
normal or intrusive� In particular� it corresponds to �nding a threshold for some similarity

e�g�� likelihood� or dissimilarity
e�g�� cross entropy� measure� The threshold determination set

cf�� validation set for cross validation in statistics� of normal data is used for determining this
threshold��

After the model parameters and the threshold have been estimated using the training and
threshold determination sets� respectively� the test set can be used for evaluating the performance
of the model� More details about the performance measures used will be discussed in Section ����

Table shows the dataset sizes of the system call data used in our experiments� Since the
available data for programs ps and login are quite limited and the similarity between normal

�The URL is http���kdd�ics�uci�edu�databases�UNIX user data�UNIX user data�html�
�Determining the threshold using a set of data di�erent from the training and test sets is just a special case

of model selection� In general� the threshold determination set is called validation set or parameter selection set�

�

traces is usually quite high for system call data as con�rmed by our preliminary investigations�
we used all the normal data for training with no separate threshold determination set and test
set� We tried to use a separate threshold determination set for named but we found that the
result was better by using the training set to determine the threshold� However� separate test
sets were available for programs named and sendmail�

Table � summarizes the dataset sizes of the shell command data used in our experiments� As
discussed above� for each user� the
normal� data of all other users were treated as if they were
�intrusive� data for that user� Whereas the test data of a user can be used for measuring
the false detection rate
FDR�� the test data of all other users can be used for measuring the
true detection rate
TDR��
These two performance measures will be explained in detail in
Section ����� Since the available datasets are quite large� we used disjoint sets of data for
training� threshold determination� and testing� Partitioning of the datasets is as follows� For
each user� the shell command traces recorded in chronological order are partitioned into two
groups such that the tokens in the �rst group are roughly twice as many as those in the second
group� The second group forms the test set� To minimize the di	erences between the training
and threshold determination sets� the traces in the �rst group are assigned to two sets in an
interleaved manner� i�e�� the odd�numbered traces are assigned to one set and the even�numbered
traces are assigned to another set� Thus the two sets have roughly the same number of traces�
Table � shows the number of distinct tokens found in the data for each user� When the datasets
for all eight users are combined together� the total number of distinct tokens is equal to ����

� Model Construction and Performance Evaluation

��� Performance Criteria

For performance evaluation� we de�ne two measures� namely� true detection rate
TDR� and
false detection rate
FDR��

TDR � Pr
intrusive j intrusive�

�
number of intrusive testing traces detected as intrusive

number of intrusive traces in test set

FDR � Pr
intrusive jnormal�

�
number of normal testing traces detected as intrusive

number of normal traces in test set

In other words� TDR is the probability that an intrusive trace is correctly detected� and FDR
is the probability that a normal trace is incorrectly reported as intrusive� We prefer these two
measures because both relate reporting the occurrence of an intrusive event to the ground truth

i�e�� normal or intrusive nature� of that event� This is in line with the convention used in ���
although they refer to the two measures as true positives and false positives� respectively� We use
the term �detection� to make the meaning of detecting intrusions more explicit� Hit rate and false
alarm rate can also be used in place of TDR and FDR� respectively� Note that the commonly
used term� called false acceptance rate or false negatives� for expressing Pr
normal j intrusive�
can be computed simply by subtracting TDR from ��

�

��� Model Training

To train an HMM� �xed�length sequences of events are extracted from each trace of the training
set by moving a window of the speci�ed width
i�e�� sequence length� through the entire trace
with a step size of �� Identical sequences extracted are represented by only a single copy in the
training set� Both fully�connected and left�to�right HMMs were used in our experiments� In
what follows� we will refer to these two types of HMMs as FC�HMM and LR�HMM� respectively�

For the static modeling approach� all traces from the training set are used to create a distribution�
based behavioral model�

��� Threshold Determination

After the parameters of a model have been estimated from the training data� the threshold
determination set is used to determine an appropriate threshold which will subsequently be
used as a criterion for detecting possible intrusions�

For HMM�based dynamic modeling� �xed�length sequences are extracted from each trace of the
threshold determination set in the same way as before for the training data� The sample likeli�
hood of each sequence with respect to the model can then be computed� For the static modeling
approach� each trace of the threshold determination set is used to compute a distribution as well
as the cross entropy between this distribution and the reference distribution computed based on
the training data�

For each chosen FDR for the threshold determination set� a corresponding threshold value can
be obtained� Note that in the case of HMMs� a trace is said to be intrusive if it contains at least
one intrusive sequence� In our experiments� di	erent threshold values were tried by choosing
di	erent FDR values�

��� Model Testing

To test whether a trace in the test set is intrusive� �xed�length sequences extracted from the
trace are presented to a trained HMM to compute the likelihood values� If at least one sequence
has a likelihood value that is lower than the threshold� the trace is said to be intrusive� In other
words� we can conclude that a trace under investigation is intrusive as soon as the �rst intrusive
sequence is found inside the trace� even though the end of the trace has not been reached�

In the case of the static modeling approach� in order to perform timely detection of possible
intrusions� it would be desirable if a decision could be made as soon as su�cient data have
been collected to compute a reasonably reliable distribution� Since a trace may take a very long
time to complete
if a program that generates system calls runs for a long time or if a user
login session is long�� we do not want to wait until the end of the trace to make a decision�
Instead� a distribution is computed for each sub�trace sequence� The cross entropy between
this distribution and the reference distribution of the model computed based on the training
data will be compared with the threshold to determine whether it is an intrusive sequence� The
extraction of variable�length sequences from a trace is illustrated in Figure � below�

�

The detection of possible intrusions in a trace can be performed immediately after the �rst K
events
i�e�� system calls or shell command tokens� have arrived� We refer to K as the minimum
sequence length� If this value is small� it implies that possible intrusions can be detected with
small time delay and hence is favorable� However� the value cannot be set too small or else there
is insu�cient information for making reliable decisions� Thus the choice of an appropriate value
for K has to be a tradeo	 between these two considerations�

��� Hypothesis Testing Perspective

In this section� we will justify the scheme above from a hypothesis testing perspective� Although
our explanation is based on HMMs� it also holds for the information�theoretic static modeling
method based on cross entropy�

Let M denote an HMM learned from the training data� Given a sequence S from the test
set� we want to decide whether it is likely to be generated by M � In other words� we want
to determine whether S is a normal sequence� This problem can be formulated as applying a
statistical test ����� Let us generate a su�ciently large sample R of
normal� sequences from
M � For an arbitrary sequence R in R� the log�likelihood of R with respect to M is denoted as
LR� which is equal to log Pr
R jM�� Similarly� the log�likelihood of S is denoted as LS � which
is equal to log Pr
S jM�� Based on the empirical probability distribution of log Pr
R jM� over
the sample R� we then test the hypothesis that LS is drawn from the probability distribution
of the log�likelihood of the sequences in R� i�e�

Pr
LR � LS� � �

for some threshold � � � � �� We reject the null hypothesis if the probability is not greater
than �� implying that S is not a normal sequence with respect to model M �

In our case� the threshold determination set of normal data plays the role of R although R is
not actually generated by M � If M is a well�trained model representing the training set� the
underlying distributions of the training and threshold determination sets are close enough to
each other� and the threshold determination set is su�ciently large� then it is not unreasonable
to use the threshold determination set as R� Apparently� we can see that the threshold � is just
the FDR chosen for the threshold determination set�

	 Experimental Results and Discussions

��� Experiments for System Call Data

����� Results

Experiments were conducted on the system call data using both the dynamic modeling approach

FC�HMM and LR�HMM� and the static modeling approach� Tables � and � below show some
results for the programs ps� login� named� and sendmail�

��

Di	erent choices of sequence length and number of states were tried for HMMs� For each
sequence length chosen� the HMM with the smallest number of states that maximizes the TDR is
shown� For FC�HMM� the maximum number of states tested is approximately equal to the total
number of di	erent system call categories in the corresponding program
� for ps� �� for login�
�� for named� and �� for sendmail�� We found that FC�HMM almost had no discrimination
power in detecting intrusions when the number of states was set too small
smaller than ���
Generally speaking� the performance could be improved by increasing the sequence length and
the number of states� although this was not always the case� For LR�HMM� the maximum
number of states tested is equal to the sequence length� The performance was found to be
very sensitive to the sequence length� Increasing the sequence length always improved the
discrimination power of the model� Similarly� for the static modeling method� di	erent values
of minimum sequence length were tried�

Recall that all normal data for ps and login were used for training� leaving no separate data for
threshold determination� For HMMs� the threshold was chosen to be the minimum likelihood
among all training sequences� For the case of distribution�based static modeling� a cross entropy
value was computed between the entire training set and each trace in the training set� The
threshold was chosen to be the maximum cross entropy among all traces in the training set�
Thus the FDR of the training set is always equal to �� Since no separate normal data were
available for testing� the FDR entries for these two programs are marked as ��� in Table ��

For named� since the traces within a set are all very similar� we found that a slight change of the
threshold value could lead to a great change in TDR� As a result� we determined the threshold
using the training set instead of a separate threshold determination set of normal data�

For sendmail� we determined the threshold using a separate set of normal data
i�e�� threshold
determination set�� Four di	erent threshold values were chosen for each model con�guration
by making the FDR of the threshold determination set equal to ��� ���� ���� and ���� We
found that the FDR of the test set was always very close to that of the threshold determination
set� As discussed before� this practice of using a separate set of normal data to determine the
threshold can be justi�ed from a hypothesis testing perspective and should be used if at all
possible� Hence sendmail is a good example of the general case for the system call data�

We found that the TDR for login and named could never go beyond ����� and ������ respec�
tively� After examining the training set
with normal traces only� and the instruive traces in
the test set of each program� we discovered that the intrusive traces that failed to be detected
as intrusive are in fact identical to some normal traces in the training set� As mentioned in Sec�
tion � above� a possible reason for this is that sometimes the execution of an intruded program
can still generate a normal trace if the execution does not involve any anomalous part of the
program� Thus the above TDR values are the best that one could obtain� For the sendmail

data� we also found one intrusive trace to be identical to one normal training trace�

����� Discussions

From the experimental results shown above� we can see that the information�theoretic static
modeling method was consistently inferior to HMM�based dynamic modeling for the intrusion
detection problem involving system calls� In particular� the model constructed for the ps pro�

��

gram was unable to detect any intrusive trace� We speculate two possible reasons for this� First�
di	erent traces from the same dataset are usually quite similar in their distributions� making it
di�cult to distinguish normal traces from intrusive ones simply by basing on the cross entropy
values induced by di	erent distributions� Second� as system calls are generated through the exe�
cution of a program which can be modeled by a �nite state machine� the temporal dependencies
between system calls are salient features for intrusion detection and hence should be captured
using some dynamic modeling techniques�

��� Experiments for Shell Command Data

����� Results

Tables ���� show the results for the shell command data using three di	erent methods�

For each method� only two choices of the sequence length or minimum sequence length are
included in the table to illustrate the e	ect of varying the parameter� although more choices
were actually tried in our experiments� As before for the sendmail example� the threshold
was chosen in such a way that the FDR of the threshold determination set was equal to some
prespeci�ed value
��� ���� ��� or ����� For each chosen FDR value� the TDR shown is the
average taken over the individual TDR values by treating the data from other users as intrusion
data� The number of states shown is the minimum value that maximizes the TDR�

Increasing the sequence length always increased the discrimination power of both FC�HMM and
LR�HMM in detecting intrusions� Since traces shorter than the sequence length chosen were
eliminated and there exist many short shell command traces in the datasets corresponding to
short login sessions
unlike system call traces which are rather long typically with more than
�� system calls per trace�� increasing the sequence length had the consequence of eliminating
the shorter traces which could be partially responsible for the performance improvement be�
cause these traces could not model the behavior well� This is also a possible reason for the
observed performance improvement of the static modeling method as the minimum sequence
length increases�

����� Discussions

In our experiments� the information�theoretic static modeling method performed signi�cantly
better than both FC�HMM and LR�HMM� typically ������� higher in the TDR� A possible
reason is that the temporal dependencies between shell commands are much weaker and hence
are not particularly useful for intrusion detection� Instead� the static shell command distribution
seems to be su�cient for many users�

��� General Discussions

From our experiments� we conclude that the HMM�based dynamic modeling approach is better
suited for the intrusion detection problem based on system calls� but the information�theoretic

��

static modeling approach is a better choice for that based on shell commands�

Although FC�HMM usually gives slightly better performance than LR�HMM� increasing the
number of states in an LR�HMM can approach the performance of an FC�HMM with fewer
states� For example� the FC�HMM with sequence length � in Table � is similar in performance
to the LR�HMM with sequence length �� in Table �� Note that the time complexity of each
training iteration of an FC�HMM is O
W �T �� where W denotes the number of states and T
denotes the sequence length� As a comparison� the time complexity of each training iteration of
an LR�HMM is only O
WT ��

We also measured the CPU execution time for di	erent methods� All the tasks were run on an
UltraSPARC � workstation with ���MB memory� Tables ���� show the CPU time required
for the training and testing stages measured for each user in the experiments as reported before

Tables ������ It can be seen that LR�HMM is faster than FC�HMM for both the training and
testing stages� Our information�theoretic static modeling method based on cross entropy is im�
pressive in that its training time is always negligible because it simply requires the computation
of a distribution based on the training data� The testing time is also comparable to that for
HMMs� Our method would be particularly attractive if new models have to be built regularly
due to frequent changes in the system behavior�

��� Comparison with Previous Work

We also compared our results with those from previous work� To facilitate comparison� we
performed another experiment using the same experimental setup as that used by ���� ����
The datasets were partitioned into training� parameter selection
or threshold determination in
our case�� and test sets as shown in Table �� below� Moreover� in their work� the TDR and
FDR were computed based on sequences� We think it makes more sense to measure TDR and
FDR according to traces as in our experimental results reported earlier� However� to facilitate
comparison here� we used the same scheme as theirs for this experiment�

Table �� shows the classi�cation results obtained by ���� using instance�based learning
IBL��
giving an average TDR of ���� with an average FDR of ���� Table �� shows the classi�cation
results obtained by us using the static modeling method based on cross entropy� The average
TDR is ���� at an average FDR of ����� Thus� it can be concluded that the two methods can
achieve very similar performance in terms of the TDR and FDR measures�

It should be noted� however� that there are major di	erences between the two methods in terms of
computational and storage requirements� Apparently IBL has much higher storage requirement
because all training examples have to be explicitly stored� Also� each unknown test case has to
be matched against all the stored examples and hence the computational overhead is also very
high� Although data reduction techniques can alleviate the problems to a certain extent� the
high computational and storage requirements are still the major limitations of IBL methods�
Our method is clearly superior in this aspect because the training examples are summarized as
a distribution� the storage requirement of which does not depend on the size of the training set�
Similarly� during testing� the computational requirement is very low as discussed above�

�

 Conclusion

	�� Concluding Remarks

In this paper� we have presented two di	erent anomaly detection approaches for two di	erent
host�based intrusion detection problems� For the intrusion detection problem involving system
call sequences� the use of dynamic behavioral models is superior� A possible reason is that
temporal dependencies are salient features for this problem� This is in line with other sequence
learning problems with subtle temporal relationships� which have found HMMs to be among the
best methods� On the other hand� the use of static behavioral models can give better results
for the intrusion detection problem involving shell command sequences� It can be speculated
that temporal dependencies are not very useful or may even be harmful for this problem� Our
information�theoretic static modeling approach based on cross entropy is simple and computa�
tionally cheap� yet it can outperform the more sophisticated dynamic modeling approach based
on HMMs� A lesson to learn is that one should be careful in �nding the best match between
problems and methods� Apparently the static modeling approach based on cross entropy is a
better match to the problem than the dynamic modeling approach based on HMMs�

	�� Contributions

The contributions of this paper are two�fold� First� although HMMs and cross entropy are not
new� using them for solving novelty detection problems
as opposed to classi�cation problems�
is still an area that is far from being su�ciently explored� By formulating the detection problem
under a hypothesis testing framework� this paper presents and demonstrates the use of theoret�
ically justi�ed methods for solving novelty detection problems� It is our hope that this e	ort
could lead to more research along the same line�

Second� intrusion detection is an important topic with signi�cant practical implications� Our
contribution to this application area is that we have proposed some practically feasible methods
for solving two types of host�based intrusion detection problems with extensive experiments
performed on real�world data� This serves as an e	ort to broaden the applications of pattern
recognition techniques�

	�� Future Research

A closer look at Tables �� and �� above reveals the fact that IBL is better for some users
�� � ��
�� while the cross�entropy method is better for other users
�� �� �� ��� This shows that the two
methods are complementary to each other� A potential future research direction is to combine
these two methods and possibly also some other methods to further improve the discrimination
power� In addition to host�based intrusion detection problems� we are also conducting research
on network�based intrusion detection� Some of the ideas learned from the current research may
also be relevant to network�based intrusion detection�

��

Acknowledgments

The research reported in this paper has been supported in part by the Hong Kong Innovation
and Technology Commission
ITC� under project AF������ and the Hong Kong University
Grants Committee
UGC� under Areas of Excellence research grant AoE������EG���

References

��� D�E� Denning� An intrusion�detection model� IEEE Transactions on Software Engineering�
�
���������� �����

��� H� Debar� M� Dacier� and A� Wespi� Towards a taxonomy of intrusion�detection systems�
Computer Networks� �
����������� �����

�� R�O� Duda� P�E� Hart� and D�G� Stork� Pattern Classi�cation� Wiley� New York� NY� USA�
�nd edition� �����

��� S� Forrest� S�A� Hofmeyr� A� Somayaji� and T�A� Longsta	� A sense of self for Unix
processes� In Proceedings of the IEEE Symposium on Security and Privacy� pages ����
���� Oakland� CA� USA� ��� May �����

��� D� Endler� Intrusion detection� applying machine learning to Solaris audit data� In Proceed�
ings of the Fourteenth Annual Computer Security Applications Conference� pages ��������
Phoenix� AZ� USA� ���� December �����

��� G�G� Helmer� J�S�K� Wong� V� Honavar� and L� Miller� Intelligent agents for intrusion de�
tection� In Proceedings of the ���� IEEE Information Technology Conference � Information

Environment for the Future� pages �������� Syracuse� NY� USA� �� September �����

��� W� Lee and S�J� Stolfo� Data mining approaches for intrusion detection� In Proceedings

of the Seventh USENIX Security Symposium� pages ����� San Antonio� TX� USA� �����
January �����

��� C� Warrender� S� Forrest� and B� Pearlmutter� Detecting intrusions using system calls�
alternative data models� In Proceedings of the IEEE Symposium on Security and Privacy�
pages ������ Oakland� CA� USA� ���� May �����

��� J� Ryan� M�J� Lin� and R� Miikkulainen� Intrusion detection with neural networks� In M�I�
Jordan� M�J� Kearns� and S�A� Solla� editors� Advances in Neural Information Processing

Systems ��� pages ������� MIT Press� �����

���� D� Gunetti and G� Ru	o� Intrusion detection through behavioral data� In Proceedings of the
Third International Symposium on Intelligent Data Analysis� pages ����� Amsterdam�
Netherlands� ���� August �����

���� T� Lane� Hidden Markov models for human�computer interface modeling� In Proceedings

of the IJCAI��� Workshop on Learning about Users� pages ����� Stockholm� Sweden� �
July �����

��

���� T� Lane and C�E� Brodley� Temporal sequence learning and data reduction for anomaly
detection� ACM Transactions on Information and System Security� �
�������� �����

��� W� Lee� S�J� Stolfo� and K�W� Mok� A data mining framework for building intrusion
detection models� In Proceedings of the IEEE Symposium on Security and Privacy� pages
������� Oakland� CA� USA� ���� May �����

���� M� Schonlau and M� Theus� Detecting masquerades in intrusion detection based on unpop�
ular commands� Information Processing Letters� ��
�������� �����

���� W�J� Daunicht� Autoassociation and novelty detection by neuromechanics� Science�
��
���������������� �����

���� C�M� Bishop� Novelty detection and neural network validation� IEE Proceedings� Vision�

Image and Signal Processing� ���
����������� �����

���� N� Japkowicz� C� Myers� and M� Gluck� A novelty detection approach to classi�cation�
In Proceedings of the Fourteenth International Joint Conference on Arti�cial Intelligence�
volume �� pages ������� Montr�eal� Quebec� Canada� ����� August �����

���� T� Lane and C�E� Brodley� Temporal sequence learning and data reduction for anomaly
detection� In Proceedings of the Fifth ACM Conference on Computer and Communications

Security� pages �������� San Francisco� CA� USA� ��� November �����

���� L�R� Rabiner� A tutorial on hidden Markov models and selected applications in speech
recognition� Proceedings of the IEEE� ��
����������� �����

���� A�P� Dempster� N�M� Laird� and D�B� Rubin� Maximum likelihood from incomplete data
via the EM algorithm
with discussion�� Journal of the Royal Statistical Society� Series B�
������ �����

���� L�E� Baum� T� Petrie� G� Soules� and N� Weiss� A maximization technique occurring in
the statistical analysis of probabilistic functions of Markov chains� Annals of Mathematical

Statistics� ��
����������� �����

���� J�E� Shore and R�W� Johnson� Axiomatic derivation of the principle of maximum entropy
and the principle of minimum cross�entropy� IEEE Transactions on Information Theory�
��
�������� �����

��� R�W� Johnson and J�E� Shore� Comments on and correction to �axiomatic derivation of the
principle of maximum entropy and the principle of minimum cross�entropy�
Jan �� ������
IEEE Transactions on Information Theory� ��
���������� ����

���� S� Kullback and R�A� Leibler� On information and su�ciency� Annals of Mathematical

Statistics� ��������� �����

���� P�R� Cohen� Empirical Methods for Arti�cial Intelligence� MIT Press� Cambridge� MA�
USA� �����

��

Figure �� Left�to�right HMM with two state transition types

��

L events

K events

K + 1 events

L events

Trace

Sequence 1

Sequence 2

Sequence L − K + 1

Figure �� Extraction of variable�length sequences from a trace

��

Table �� Classi�cation vs� novelty detection in terms of data usage

Classi�cation Paradigm

Training Validation Test
set set set

Class �
�normal

p p p

data�
Class �

�abnormal
p p p

data�

Novelty Detection Paradigm

Training Validation Test
set set set

Class �
�normal

p p p

data�
Class �

�abnormal
p

data�

��

Table �� An example with system calls forming two traces

Process ID System call

� �

� ��

� ��

� �

� ��

� ��

��

Table � Data partitioning for system call datasets

Program
ps login named sendmail

No� of system call categories �� �� �� 	�
No� of

Training traces �� ��
 ��	
set No� of

�normal� system calls ����

�� ����� �	��	�
Threshold No� of

determination traces �training set� ��
set No� of

�normal� system calls �training set�
�����
No� of

Test traces �training set� �� ��
set No� of

�normal� system calls �training set� ���	��
�����
No� of

Test traces �� � 	 ��
set No� of

�intrusive� system calls ���
 �
	� �
 ��

��

Table �� Data partitioning for shell command datasets

Threshold
Training determination Test

set set set
No� of No� of No� of No� of No� of No� of

User traces tokens traces tokens traces tokens

 ��� 	��� �� �
� ��� ����
� ��� 	�� ��� 	��� ��	 		��
� ��� ���� ��� �
�� ��� 	��
� ��� ����� ��� ��� �
� ����
� ��� �
�� ��� ��
	 ��� ��
�
	
�� ��
	
�� �
� ��� ���
� ��� ��
	 ��
 	�� 	� ���

� 	�� ���
� 	�� ��	
� ��� ����

��

Table �� Number of distinct tokens for each user

No� of distinct tokens Total no� of
User in training set distinct tokens

 �	� �
�
� �	� �

� ��� �
�
� ��� ���
� ��	 	��
	 �� ��
� ��
 ���
� �� ��

�

Table �� Results for system call data
ps� login� named�

Minimum
Sequence No� of sequence TDR FDR

Program Model length states length ��� ���

� � � � �
FC�HMM � � � ���� �

� � � ���	 �
ps �

 � ���� �

LR�HMM � �� � �	�� �
�
 �� � � �

Cross � � � �
entropy � � 	 �

� �
 � ���
 �
FC�HMM � �
 � ���
 �

� �
 � ���� �
login �
 � 		�� �

LR�HMM � � � ���
 �
	 � � ���
 �

Cross � � � 		�� �
entropy � � 	 		�� �

� 	 � ��
FC�HMM �� � � ��

� 	 � ��
named LR�HMM �
 � ��

� �� � ��
Cross � � � ��
entropy � � 	 ��

��

Table �� Results for system call data
sendmail�

Minimum TDR ���
Sequence No� of sequence FDR FDR FDR FDR

Program Model length states length �	� ��� ��	� ���

� � � ���	
���
��� ����
FC�HMM �� � �
���
���
���

� � � ���� ���� ����
sendmail LR�HMM � �� � ���� ����
���

� �	 �
��

��
 ���
Cross � � � ���� ���� ���� ����
entropy � � � ���� ���� ���� ����

��

Table �� Results for shell command data
FC�HMM�

TDR ��� of FC�HMM TDR ��� of FC�HMM
�sequence length � �� �sequence length � ��

No� of FDR FDR FDR FDR No� of FDR FDR FDR FDR
User states �	� ��� ��	� ��� states �	� ��� ��	� ���

 � ���� 	�� ���� ���� � �	� 	��
 ��� ����
� 	 	���
��
�� ��� 	 ���� ����
��	 ����
� � ���� ���� ��� ���� � ���
 ����
���
���
� � ���� �	�� 	��
 ���� � ��� ���� ���� �	�

� � ���� �
�� ���
 ���	 � ���
 ���	 �	�� 	��
	 � ���� ���� ���
 �
� � 	��� ��
 ����
���
� � ��� ���� ���� 	��� � ���� ��� 	
�� ���
� � �
�� ���	 ���� �	� � ���� 		�
 �	��
��

Average ��� 	�� ��� ��� ���� 	��� ���	 �	��
Worst ���� �
�� ���
 ���	 ���� ���	 �	�� 	��
Best 	���
��
�� ��� ���� ����
��	 ����

��

Table �� Results for shell command data
LR�HMM�

TDR ��� of LR�HMM TDR ��� of LR�HMM
�sequence length � �� �sequence length � 	�

No� of FDR FDR FDR FDR No� of FDR FDR FDR FDR
User states �	� ��� ��	� ��� states �	� ��� ��	� ���

 	 ��
 �
�� ��� �
� 	 �	�� ��� ���� �
��
� � ���� ����
���
��� � ���	
���
���
��

� 	 ���� ���� ����

� � ���
 ���� ����
���
� � ���� 	��� ���� ���� � �	�	 	
�	 ���� �
��
� � ���� ���� ���� ���� � ���
 ��� �
�
 	���
	 � 	�� ���� ���	
��	 	 ���� ���� ���� ����
� � ��� ���
 	�� 		�
 � �	�	 ���� ���� ����
� 	 ���� ���� 	��
 ���� � 	��� ���� ���� �	�

Average �
� 	��� �	�� ���� ���� 	��	 ���� ���
Worst ��� ���� ���� ���� ���
 ���� ���� ����
Best ���� ����
���
��� ���	
���
���
��

��

Table ��� Results for shell command data
cross entropy�

TDR ��� of cross entropy TDR ��� of cross entropy
�min� sequence length � �� �min� sequence length � 	�

FDR FDR FDR FDR FDR FDR FDR FDR
User �	� ��� ��	� ��� �	� ��� ��	� ���

 	��� ���� ����
��� ���� �
�	
�	
���
� 	��
��� ���� �	�� 	��� ����
��
 ����
� ���� ���� ���� �	�� ���� ���� ���� ���
� ���
 ���	 ��� �	�� ���
 ���	

�	 �	��
� �
�� ����
	��

� 		� ����
��
���
	 	��� ���� �
��
��
 	�� ���
���
���
� �	�� ��� 	��� 	
�
 ���� ��� 	�� ��
� ��

	�� ���� ����
��� �	�� ���� ���	

Average �
�
 �
��
��	
��� 	��� ����
��
��
Worst �	�� ��� 	��� 	
�
 ���� ��� 	�� ��
Best ��

	�� ���� ����
��� �	�� ���� ���	

��

Table ��� Execution time statistics for shell command data
FC�HMM�

CPU time �sec�� of FC�HMM CPU time �sec�� of FC�HMM
�sequence length � �� �sequence length � ��

No� of No� of
User states Training Testing states Training Testing

 � ��
� � �
�� �
� 	 ��	�� 	� 	 ���� �
� � ��	� �� � ����� �
� � ���� � � �
��

� � �		�� � � ����� �
	 � ����
 � ����� �
� � ��
�
 � ����� �
� � ���� � � �
	�� �

Average ��	�� ���� ����� ����

��

Table ��� Execution time statistics for shell command data
LR�HMM�

CPU time �sec�� of LR�HMM CPU time �sec�� of LR�HMM
�sequence length � �� �sequence length � 	�

No� of No� of
User states Training Testing states Training Testing

 	 �	�� � 	 ��	 �
� � ����� � � ���� ��
� 	 ���� 	 � ����� �
� � ���	 � � ����� �
� � ��	�� �� � ��
�	 ��
	 � ����� � 	 �
	� �
� � ��
� � � ��	
�

� 	 ���� � � �	�� �

Average ��	�
 	�
 �		��
��

�

Table �� Execution time statistics for shell command data
cross entropy�

CPU time �sec�� of cross entropy CPU time �sec�� of cross entropy
�min� sequence length � �� �min� sequence length � 	�

User Training Testing Training Testing

 �� ��
� �� �
� �� ��
� �� ��
� �� ��
	 �� ��
� �� ��
� �	 ��

Average ���� ���

�

Table ��� Data partitioning for shell command datasets in comparative study

Parameter
Training selection Test

set set set
No� of No� of No� of No� of No� of No� of

User tokens traces tokens traces tokens traces

 �		� �� ��
� �� ����� �	�
� �	� �� ���� �� ��
�� ���
� ���	 �� ���� �� ��
�� ��
� �		� �� ���� � ����� ���
� �	 �	 ���� � ���		 ���
	 �			 �	 �	� 		 ���
 		

� �	 � �	
 ��� ����� ���

� �	� 	� ���� 	� ���	 �	�

�

Table ��� Classi�cation results for shell command data in comparative study
instance�based
learning �����

Tested User model
user � � � � 	 � �

 ���� 	�� ���� ��� �	�� �� �
�	 ���
� ���� ���� ���� ���� ���� �� �� ��
� ���� 	
�� ���� ���� ���� �� ����
��
� ���
 ���� ���� ��
��� �� ��� �	��
� ���� ���� �
�� ���� ���� ���
�� ��
	 	�� �
�� ���� ��� �
� ���� 	��� ����
� ���
 �	�� ����
��� �
�� �� ���� ���
� ���� ���
�� ��� ���� �� 	�
 ����

FDR �� ��� 	�� �� ��� ��
�� ��

Average TDR �
�� ���� �	�� ��� 	��
 �� ��� ���

Table ��� Classi�cation results for shell command data in comparative study
cross entropy�

Tested User model
user � � � � 	 � �

 ��� ���� ���� ���
 ��� �� ���� ���

� �	�� ���
 	�� 	��	 ���� ��� ��� �	�

�
�� 	��� ���� �
�	 ���� ��� ���� ����
� ����
��� 	��
 �� ���	 ��� ���� ����
� ���� �	�� ���� ��� ���	 ���� ���� ����
	 ��� �
� �	�� �	�� �	�� ���
�� 	���
� ���� ���� ���� 	��� ���	
�� ���� ����
� ���� ���
 ���� ��� ���� ��� 	��� ����

FDR �� ��� 	�� �� ��	 ��
�� ���
Average TDR ��� ���� ���
 ���	 ���� ��	 ��� ����

�

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

