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Abstract

Clustering problems are central to many knowledge discovery and data mining tasks.

However, most existing clustering methods can only work with fixed-dimensional

representations of data patterns. In this paper, we study the clustering of data pat-

terns that are represented as sequences or time series possibly of different lengths.

We propose a model-based approach to this problem using mixtures of autore-

gressive moving average (ARMA) models. We derive an expectation-maximization

(EM) algorithm for learning the mixing coefficients as well as the parameters of the

component models. To address the model selection problem, we use the Bayesian

information criterion (BIC) to determine the number of clusters in the data. Ex-

periments are conducted on a number of simulated and real datasets. Results from

the experiments show that our method compares favorably with other methods

proposed previously by others for similar time series clustering tasks.

Key words: ARMA model, EM algorithm, Mixture model, Model-based

clustering, Time series analysis

1 Introduction

Clustering is the unsupervised process of grouping data patterns into clusters

so that patterns within a cluster bear strong similarity to one another but are

very dissimilar to patterns in other clusters. Clustering problems are central

to many knowledge discovery and data mining tasks. While many clustering

techniques have been studied by researchers in statistics, pattern recognition,
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and machine learning, most of these techniques are based on the assumption

that data patterns can be represented as points in multidimensional spaces

of fixed dimensionality. Unfortunately this assumption does not always hold.

Temporal patterns involving sequences or time series are one important class

of such problems that are found in many applications from scientific, medical,

sociological, financial and other domains.

Distance-based methods (e.g., [1]) and model-based methods (e.g., [2]) are two

major classes of clustering methods. They are analogous to other nonpara-

metric and parametric methods, respectively, in that the former category (i.e.,

distance-based or nonparametric methods) assumes only some weak structure

of the data, but the latter category (i.e., model-based or parametric methods)

assumes some strong structure. Partitional distance-based methods, such as

the well-known k-means algorithm, usually require the number of clusters to

be known a priori. Hierarchical distance-based methods, on the other hand,

do not require the number of clusters to be known. However, they have to

search exhaustively for the number of clusters, either by starting from one

(for divisive methods) or from the total number of all data patterns available

(for agglomerative methods). Moreover, since typically pairwise distances have

to be computed, hierarchical distance-based methods tend to have computa-

tional complexity that is quadratic in the number of data patterns and hence

becomes prohibitive for large data sets.

Unlike distance-based methods, however, model-based methods can incorpo-

rate prior knowledge more naturally in finding the correct number of clusters.

Also, for time series data, they provide a principled approach for handling

the problem of modeling and clustering time series of different lengths. In this

paper, we focus on model-based time series clustering methods. In particular,

mixture models [2] are used.

The remainder of this paper is organized as follows. Some related work on

model-based clustering of time series is reviewed in Section 2. In Section 3,

we present our model-based time series clustering method based on mixtures

of time series models. The learning algorithm is outlined in Section 4, with

details left to Appendix A. We address the model selection problem in Sec-
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tion 5. Experimental results for simulated and real datasets are presented in

Sections 6 and 7, respectively. Finally, Section 8 concludes the paper with

discussions of some possible future work.

2 Related Work

2.1 Markov Chains

Finite mixtures of Markov chains [3–8] have been proposed for clustering time

series. The expectation-maximization (EM) algorithm [9] is used to learn the

mixing coefficients as well as the parameters of the component models. The

number of clusters can be determined by comparing different choices of the

number based on some scoring scheme. One possibility, used by Cadez et al.

[7,8], is related to minimizing the description length.

Another approach to the clustering of time series modeled by Markov chains

is called Bayesian clustering by dynamics (BCD) [10–12]. Strictly speaking,

this method is not a purely model-based approach. Rather, it can best be

seen as a hybrid approach with both model-based and distance-based flavors.

The BCD method first transforms each time series into a Markov chain, with

its dynamics represented simply by a transition probability matrix. Next, it

goes through an agglomerative procedure by trying to merge the two closest

Markov chains at each step, using the Kullback-Leibler divergence [13] as the

dissimilarity (cf. distance) measure between transition probability matrices.

Based on a greedy heuristic search approach, this procedure continues until

the resulting model is found to be less probable than the model before merging.

Thus the number of clusters can be determined automatically.

2.2 Hidden Markov Models

While simple Markov chains are good enough for some applications, some

time series can be modeled better using hidden Markov models (HMM) [14]
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due to their ability of handling uncertainty in temporal and spatial dimen-

sions simultaneously. For example, HMMs have been very successfully used

for speech recognition, handwriting recognition, and bioinformatics. The idea

of HMM-based clustering was first studied by Rabiner et al. [15] for speech

recognition applications. Multiple HMMs are created through a splitting pro-

cedure to group speech data into clusters for more accurate modeling. The

HMM-based clustering method studied in [16] follows the same spirit in that

HMMs are introduced one at a time to model the time series data more ac-

curately. It also shows that this method can perform better if dynamic time

warping (DTW) is used as a distance metric to form an initial partitioning of

the time series for the subsequent HMM-based clustering procedure.

Finite mixtures of HMMs have also been studied by a number of researchers.

Similar to mixtures of Markov chains, the EM algorithm can also be used

for HMM mixtures [17–20]. To trade accuracy for efficiency, the k-means al-

gorithm (used in [21]) and the rival penalized competitive learning (RPCL)

algorithm (used in [22]) have also been used in place of EM. The number of

clusters can be determined using Monte-Carlo cross-validation [19] or infor-

mation criteria such as the Bayesian information criterion (BIC) [20].

2.3 Regression Models

Regression models, mixtures of regression models or regression mixtures, and

their extensions [23–25] are another type of models that can be used for time

series modeling and clustering. Typically, a regression model provides a projec-

tion from the baseline status to some relevant demographic variables. Curve-

type time series data are quite common examples of these kinds of variables.

For example, mixtures of standard regression models and the accompanying

EM algorithm have been used by Gaffney and Smyth [24] for the clustering of

trajectory data. Recently in [25], they combined linear random effects models

with standard regression mixtures and extended mixtures of regressions to the

so-called random effects regression mixtures to more effectively solve similar

clustering problems. However, the problem of automatically determining the

number of clusters or the model size was not studied by them.
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2.4 Autoregressive Moving Average Models

In addition to Markov chains, HMMs and regression models, autoregressive

moving average (ARMA) and autoregressive integrated moving average (ARIMA)

models have also been used extensively for time series analysis [26,27]. Kwok

et al. [28] applied mixtures of ARMA models as well as their special cases,

mixtures of autoregressive (AR) models, for time series modeling and fore-

casting. However, clustering applications based on such mixture models were

not studied by them.

Similar to the BCD method for Markov chains, Ramoni et al. [29] extended

their BCD method for mixtures of AR models. They also introduced a good-

ness of fit measure for the resulting clustering model to evaluate the goodness

of the fitted model. Their method hierarchically searches for the AR models

with the highest marginal likelihood values, and selects the model order with

the highest goodness of fit score.

Recently, a method was proposed by Kalpakis et al. [30] for clustering ARIMA

time series. This method is similar to the BCD method for Markov chains in

that it is a hybrid method with both model-based and distance-based charac-

teristics. For each time series in the data set, a differencing operation is applied

to remove the nonstationarity in the time series and a separate ARMA model is

created by estimating the model parameters from the time series after nonsta-

tionarity removal. Afterwards, a partitional distance-based clustering method

called the partitioning around medoids (PAM) method is applied to group the

ARMA models into a prespecified number of clusters. The distance measure

used is the Euclidean distance between the linear predictive coding (LPC)

cepstral coefficients computed from two ARMA models.

In the next section, we propose a new time series clustering method based on

mixtures of ARMA models [31].
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3 Model-Based Clustering with ARMA Mixtures

3.1 Standard ARMA Models

The ARIMA model introduced by Box and Jenkins [26] is a combination of

three types of time series data processes, namely, autoregressive, integrated,

and moving average processes. A stationary ARIMA model with autoregressive

order p and moving average order q is commonly denoted as ARMA(p, q). If

the ARMA(p, q) model is used on time series data integrated to order d, then

the model for the original time series is denoted as ARIMA(p, d, q). Given a

time series x = {xt}n
t=1, the fitted ARMA(p, q) model takes the form

xt = φ0 +
p∑

j=1

φjxt−j +
q∑

j=1

θjet−j + et, t = 1, 2, . . . , n,

where n is the length of the time series, φ0 is a constant term, {φ1, φ2, . . . , φp, θ1, θ2, . . . , θq}
is the set of AR(p) and MA(q) coefficients, and {et}n

t=1 is a sequence of inde-

pendent and identically distributed (i.i.d.) Gaussian white noise terms with

variance σ2. From [27], we can express the natural logarithm of the conditional

likelihood function as

ln P (x|Φ) = −n

2
ln(2πσ2)− 1

2σ2

n∑

t=1

e2
t ,

where Φ = {φ0, φ1, φ2, . . . , φp, θ1, θ2, . . . , θq, σ
2} is the set of all model param-

eters and et must be estimated recursively, i.e.,

et = xt − φ0 −
p∑

j=1

φjxt−j −
q∑

j=1

θjet−j, t = 1, 2, . . . , n.

3.2 ARMA Mixtures

We now extend standard ARMA models to mixtures of ARMA models, or

simply called ARMA mixtures, for time series clustering. Let us assume that

the time series data are generated by M different ARMA models, which corre-

spond to the M clusters of interest denoted as ω1, ω2, . . . , ωM . Let P (x|ωk,Φk)

denote the conditional likelihood function or density function of component
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model k, with Φk being the set of parameters for the model. Let P (ωk) be

the prior probability that a time series comes from model k. The conditional

likelihood function of the mixture model can be expressed in the form of a

mixture density as

P (x|Θ) =
M∑

k=1

P (x|ωk,Φk)P (ωk),

where Θ =
{
Φ1,Φ2, . . . ,ΦM , P (ω1), P (ω2), . . . , P (ωM)

}
represents the set of

all model parameters for the mixture model. For a time series x, it is assigned

to cluster ωk with posterior probability P (ωk|x), where
∑M

k=1 P (ωk|x) = 1.

Suppose we are given a set D =
{
x1,x2, . . . ,xN

}
of N time series. Under

the usual assumption that different time series are conditionally independent

given the underlying model parameters, we can express the likelihood of D as

P (D|Θ) =
N∏

i=1

P (xi|Θ) (1)

Model parameter learning amounts to finding the maximum a posteriori (MAP)

parameter estimate given the data set D, i.e.,

Θ̂ = arg max
Θ

[
P (D|Θ)P (Θ)

]
.

If we take a noninformative prior on Θ, learning degenerates to maximum

likelihood estimation (MLE), i.e.,

Θ̂ = arg max
Θ

P (D|Θ).

This MLE problem can be solved efficiently using the EM algorithm, which is

discussed in detail in the next section.

4 EM Learning Algorithm

4.1 Standard EM Algorithm

The EM algorithm is an iterative approach to MLE or MAP estimation prob-

lems in the presence of incomplete data. It has been widely used for many
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applications, including clustering and mixture density estimation problems

[32].

Let us rewrite the likelihood in Equation (1) as a function of the parameter

vector Θ for a given data set D:

L(Θ;D) = P (D|Θ) =
N∏

i=1

P (xi|Θ).

Assuming a noninformative prior on Θ, the goal of the EM algorithm is to

find Θ that maximizes the likelihood L(Θ;D) or the log-likelihood

`(Θ;D) =
N∑

i=1

ln P (xi|Θ) =
N∑

i=1

ln




M∑

k=1

P (xi|ωk,Φk)P (ωk)


.

Since D is the incomplete data, we assume the missing data to be Z ={
z1, z2, . . . , zN

}
, such that D and Z form the complete data (D,Z). Thus the

complete-data log-likelihood function is ln P (D,Z|Θ). If we know the missing

data (and hence the complete data), parameter estimation would be straight-

forward. Without knowing the missing data, however, the EM algorithm has

to iterate between the Expectation step (E-step) and the Maximization step

(M-step). In the E-step, we calculate the expected value Q
(
Θ|Θ(t)

)
of the

complete-data log-likelihood with respect to the unknown data Z given the

observed data D and the current parameter estimate Θ(t), i.e.,

Q
(
Θ|Θ(t)

)
= E

[
ln P (D,Z|Θ) |D,Θ(t)

]
.

In the M-step, we try to maximize Q
(
Θ|Θ(t)

)
with respect to Θ to find

the new parameter estimate Θ(t+1). If the M-step is carried out to increase

Q
(
Θ|Θ(t)

)
only but there is no guarantee that Q

(
Θ|Θ(t)

)
is maximized,

this generalized version of the EM algorithm is often called a generalized EM

(GEM) algorithm.

4.2 EM Algorithm for ARMA Mixtures

In the context of using ARMA mixtures for clustering, the missing data cor-

respond to the unknown cluster or group membership of each time series xi.
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The log-likelihood `(Θ;D) can thus be expressed as

`(Θ;D) =
N∑

i=1

ln P (xi|ωzi
,Φzi

) +
N∑

i=1

ln P (ωzi
).

Given the observed data D and the current parameter estimate Θ(t), the

expectation of the complete-data log-likelihood becomes

Q
(
Θ|Θ(t)

)
=

N∑

i=1

M∑

k=1

P
(
ωk|xi,Θ(t)

)
ln P (xi|ωk,Φk)+

N∑

i=1

M∑

k=1

P
(
ωk|xi,Θ(t)

)
ln P (ωk),

(2)

where the posterior probabilities P (ωk|xi,Θ) can be computed using the Bayes

rule as

P (ωk|xi,Θ) =
P (xi|ωk,Φk)P (ωk)

M∑

u=1

P (xi|ωu,Φu)P (ωu)

, i = 1, 2, . . . , N and k = 1, 2, . . . , M.

(3)

The EM algorithm iteratively maximizes the function Q
(
Θ|Θ(t)

)
until conver-

gence. For each iteration, we compute the posterior probabilities P (ωk|xi,Θ(t))

and Q
(
Θ|Θ(t)

)
using the current parameter estimate Θ(t) in the E-step, and

update the parameter estimate by maximizing Q
(
Θ|Θ(t)

)
with respect to Θ

to obtain Θ(t+1) in the M-step. The algorithm can be summarized as follows:

initialize Θ, t ← 0

do t ← t + 1

E-step: Compute posterior probabilities P (ωk|xi,Θ(t)) and Q
(
Θ|Θ(t)

)

using the current parameter estimate and Equation (3)

M-step: Θ(t+1) ← arg maxΘ Q
(
Θ|Θ(t)

)
using Equations (A.2), (A.3) and (A.7)

until some convergence condition is satisfied

return Θ(t+1)

One possible convergence condition is that the difference in log-likelihood be-

tween two time steps, i.e., `(Θ(t+1);D) − `(Θ(t);D), is less than some pre-

specified threshold. Another possibility, which is used in our implementation,

is to detect if the change from Θ(t) to Θ(t+1) is significantly large. Detailed

derivation of the corresponding M-step equations can be found in Appendix A.
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4.3 Reducing the Dependence on Parameter Initialization

Since the standard EM algorithm can only guarantee finding a local maximum,

the quality of the clustering result depends heavily on the initial parameter

values. We have introduced two methods to reduce the dependence on param-

eter initialization.

The first method is based on the so-called stochastic EM (SEM) algorithm

[33,34], which is a stochastic variant of the standard EM algorithm. It adds a

stochastic step (S-step) between the E-step and M-step of standard EM. This

S-step generates a partition of the time series data by assigning each time

series to a cluster randomly according to the posterior probabilities estimated.

The M-step then uses this partition to update the parameter estimates. The

randomness associated with the S-step increases the chance that the algorithm

converges to a good set of model parameters. In our experiments, we use the

solution obtained by the significantly faster SEM algorithm to initialize the

model for the subsequent standard EM algorithm.

Although SEM reduces the effect due to parameter initialization, it cannot

solve the problem completely. In the second method, we first incorporate the

noise variance with the ARMA coefficients estimated from each time series as

feature vectors and feed them to the distance-based k-means clustering algo-

rithm to get a specified number of centers of the parameter values. After that

we use these centers as the initial parameter values of the component models

to run the standard EM algorithm. The k-means algorithm is run several times

with different starting points of the feature vectors to get different random ini-

tial parameter values. Among the results of the standard EM algorithm based

on these initial parameter values, we finally pick the one with the maximum

log-likelihood `(Θ;D).

5 Model Selection

The learning problem discussed in the previous section assumes that the model

has already been selected, i.e., the number of clusters has already been spec-
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ified by the user before clustering is performed. However, in many real-world

problems, the actual model size is unknown. We have to select the most ap-

propriate model (size) for clustering problems. In this section, we address the

model selection problem. Two families of model selection methods in common

use are cross validation [35–37] and Bayesian model selection (e.g., [38,39]).

The Bayesian approach to model selection is to compute the posterior model

probabilities of all possible models in the model space, and to select the model

with the highest posterior probability. There are several criterion-based ap-

proaches to model selection that have a Bayesian motivation, among which

the Bayesian information criterion (BIC) [40] is a commonly used one.

The BIC, which is an approximation of the Bayes factor, is based on the

maximized log-likelihood minus a penalty term to estimate the posterior model

probability quickly and efficiently. The BIC takes the form

BIC = ln P (D|Θ̂)− 1

2
V ln N,

where Θ̂ is the MLE parameter of the model and V is the number of indepen-

dent parameters to be estimated in the model. The first term is the maximized

log-likelihood which tends to favor larger models with more parameters, while

the second is the penalty term which favors smaller models with less param-

eters. The BIC criterion tries to strike a balance between the simplicity of a

model and its fit to the data. The larger the BIC value, the better the model.

Under our framework, the best mixture model for clustering has the maximum

marginal likelihood probability P (D|Θ). BIC approximation of the marginal

likelihood can be used as a model selection criterion to search for the correct

number of component models for a mixture model.

Given a partition with M clusters, the BIC criterion is expressed as

BIC =
N∑

i=1

ln




M∑

k=1

P (xi|ωk, Φ̂k)P̂ (ωk)


− 1

2

(
Mν + M − 1

)
ln N,

where ν is the number of parameters in each component model.

Given a set of time series, we first specify the maximum number of component

models that we want to try. We run the EM algorithm several times with an
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increasing number of component models, ranging from two to the maximum

number specified. For each number of components, multiple trials are run with

different random initializations. The trial that gives the highest BIC value is

chosen to be the solution for that number of components. The number of

clusters can then be determined by comparing the best trials for different

mixture model sizes to find the one with the highest BIC value.

6 Experimental Results for Simulated Datasets

As in [30], experiments are conducted on both simulated and real datasets.

Instead of handling ARIMA time series directly, a preprocessing step of differ-

encing is first applied to convert each nonstationary ARIMA time series into

the corresponding stationary ARMA time series. Moreover, as discussed in

[27], ARMA models can be converted into equivalent AR models. 1 Thus, for

simplicity, we in fact use mixtures of AR models in most of our experiments.

Experiments with ARMA mixtures are also given at the end of this section to

demonstrate that the EM algorithm presented above can be used for general

ARMA mixtures.

We have implemented our method in MATLAB. In addition, we have also

implemented the hybrid method proposed by Kalpakis et al. [30]. The AR

coefficients of each time series in a dataset are estimated using the forward-

backward method [41] provided by the System Identification Toolbox in MAT-

LAB. The LPC cepstral coefficients are then computed based on the estimated

AR coefficients. The Euclidean distance between the first eight LPC cepstral

coefficients of two time series is used as the distance measure for the PAM

partitional distance-based clustering method to partition the time series into

clusters.

To evaluate and compare the clustering results obtained by Kalpakis et al.’s

method (abbreviated in the tables below as CEP for cepstral coefficients) and

1 Theoretically speaking, finite-order ARMA models are equivalent to infinite-order
AR models. In practice, however, there usually exist finite-order AR models that
are good enough for approximation.
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our method (abbreviated as MAR for mixtures of AR models), we use the

cluster similarity measure in [42], which can be defined as

Sim(G,A) =
1

M

M∑

i=1

max
1≤j≤M

Sim(Gi, Aj),

where G = G1, G2, . . . , GM is the clustering for the ground truth, A = A1, A2, . . . , AM

is that obtained by a clustering method under evaluation, and

Sim(Gi, Aj) =
2 |Gi ∩ Aj|
|Gi|+ |Aj| .

Apparently, the similarity measure has values ranging from 0 to 1, with 1

corresponding to the case when G and A are identical. Note that this similarity

measure is asymmetric.

6.1 Experiments with Known Number of Clusters

We first study the simpler scenario with simulated time series data generated

by a known number of AR models. We consider two cases separately. The first

case involves AR models with the same noise variance, and the second case

involves AR models with different noise variances.

6.1.1 Time Series with Same Noise Variance

In this experiment, we use two zero constant term AR(1) models with their AR

coefficients uniformly distributed in the ranges (0.30±0.01) and (0.60±0.01),

respectively. The noise variance is 0.01 for both models. Each model generated

15 time series to form the dataset. As expected, both our MAR method and

the CEP method work very well because the two groups of time series are

easily separable. The cluster similarity measure is always equal to 1.

We further conduct more experiments on time series generated by two closer

AR(1) models. As before, the AR coefficient of one model is uniformly dis-

tributed in the range (0.30± 0.01), but that for the other model is set to four

different ranges in four different experiments, varying from (0.55 ± 0.01) to

(0.40±0.01). In each experiment, each model generated 15 time series to form
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the dataset. Both methods are run 10 times on each dataset. The minimum,

average, and maximum values of the cluster similarity measure over 10 trials

have been recorded. Table A.1 summarizes the results obtained by the two

methods. Our method is slightly better than CEP when the two AR(1) mod-

els are farther from each other, but CEP becomes slightly better when the

range of AR coefficient of one model decreases to (0.40± 0.01), which is very

close to that of the other model.

6.1.2 Time Series with Different Noise Variances

We repeat the experiments above under the same setup, except that the two

zero constant term AR(1) models have the same AR coefficient distribution

range of (0.30±0.01) but different noise variances of 0.01 and 0.02, respectively.

Table A.2 shows the results obtained by the two methods. Our method gives

perfect clustering of the two groups of time series, but CEP, which makes no

use of the noise variances, gives very poor results on this dataset.

This set of experiments based on simulated datasets allows us to explore the

strengths and weaknesses of the two methods under different controlled set-

tings. While our method, like other EM-based methods, generally degrades

in clustering performance when the underlying clusters are very close to each

other, it is better than Kalpakis et al.’s distance-based method under more

general situations. Specifically, our method is significantly better when the

models have different noise variances. It is also more flexible in determining

the underlying number of clusters automatically, as we will show in the next

subsection.

6.2 Experiments with Unknown Number of Clusters

We now consider the more general scenario in which the number of underlying

clusters is unknown.

We have tested three different groups of time series datasets generated by

three, four, and six zero constant term AR(1) component models, respectively.
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The parameter distribution ranges of these component models are shown in

Table A.3.

Experimental results (not shown here to save space) show that when the num-

ber of component models specified is equal to or less than the actual number

of clusters, the basic EM algorithm converges fast. However, if the number of

component models specified is larger than the actual number of clusters, the

EM algorithm converges even within a reasonably large number of iterations.

Moreover, some component models learn to become very similar to each other.

The posterior probability values of some data patterns associated with these

component models are also much nearer than others. These characteristics

can help us to decide whether too many component models are specified and

hence determine the maximum number of component models to try.

BIC values are used to select the number of clusters as well as the best local

maximum among different solutions corresponding to different initializations

for the same number of components. For each number of component models,

multiple trials of the experiment are performed with different random initial-

izations. The number of component models ranges from two to some maxi-

mum value chosen (seven, eight, and ten, respectively, for the three groups of

datasets). Along with each round which includes one trial for each number of

component models tried, we maintain a sequence of cumulative highest BIC

values. To avoid having to specify the maximum number of component models

to try, one could use an alternative method by stopping to try larger mixture

models as soon as the sequence of BIC values decreases.

Tables A.4, A.5, and A.6 show the first five sequences of the cumulative highest

BIC values corresponding to typical clustering results for different specified

numbers of component models. The cluster similarity values obtained for the

three datasets are 1.00, 0.98, and 1.00, respectively.

For each of the 3-cluster, 4-cluster and 6-cluster cases, we randomly generate

12 different datasets for our experiment. The number of trials required for the

program to find the correct number of clusters for each dataset can be found

in Table A.7. For most cases (33 out of 36 cases), our program is able to find

the correct number of clusters within five trials. Moreover, the BIC value is
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effective in helping to determine the correct number of clusters for all cases.

6.3 Experiments with Different AR Orders

We have tested four different groups of time series datasets generated by four

different sets of AR models, each of which contains three different AR models.

The parameter specification of these AR models is shown in Table A.8. As we

can see, all AR generating models in the second experiment have the same

noise variance, while all models in the third experiment have similar process

mean. 2 Except for the fourth experiment, all experiments use AR models of

the same order.

The number of time series generated by each model is the same in the balanced

cases (10 time series from each generating model) but it varies in the unbal-

anced cases (5, 10, and 15 time series, respectively). We run the clustering

algorithm on each dataset with different AR orders.

Table A.9 shows the experimental results. For comparison with the results in

[29], we use the average cluster impurity rate here to evaluate the clustering

performance. The average cluster impurity rate is simply the ratio between the

total number of time series assigned to the wrong group, and the total number

of time series in the dataset. The results using different AR orders are similar

especially when the time series are long. Note that our results are either the

same or even better than those of [29] for most of the datasets generated by

similar AR models.

6.4 Experiments with ARMA Models

To demonstrate that our method is applicable to general ARMA mixtures,

we conduct two experiments with ARMA models in this subsection. Both

experiments involve three ARMA(2,1) models with zero constant terms. As

shown in Table A.10, although the ARMA models from the two experiments

2 The process mean of an AR model can be computed as φ0/
(
1−∑p

j=1 φj

)
.
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have the same autoregressive and moving average coefficients, the models in

the first experiment have different noise variances.

Ten time series are generated for each component model. We randomly gen-

erate 10 datasets for each experiment and run our program on each dataset

with the correct number of clusters. Experimental results (see Table A.11)

show that our method can correctly group all time series into clusters for

each dataset of the first experiment. Even for datasets of the second experi-

ment, where time series are generated by ARMA models with the same noise

variance, our results are quite good.

7 Experimental Results for Real Datasets

For comparison, we conduct further experiments with the same four real

datasets used by Kalpakis et al. [30] and the EEG datasets from the UCI

KDD Archive. The same preprocessing steps used by them are also applied to

the datasets to remove the nonstationarity in the data.

7.1 First Four Datasets

7.1.1 Personal Income Dataset

The personal income dataset consists of 25 time series representing the per

capita personal income from 1929–1999 in 25 states of the USA. 3 The 25 states

are divided into two groups based on their personal income growth rate. The

east coast states, CA and IL form the first group with a high growth rate,

while the mid-west states form the second group with a low growth rate.

Kalpakis et al. decided that this dataset could be modeled by ARIMA(1, 1, 0)

models. Thus AR(1) coefficients were extracted to compute the LPC cep-

stral coefficients. For our method, we use a mixture of two AR(1) models.

3 http://www.bea.gov/bea/regional/spi/
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The results for the preprocessed time series using both methods are shown in

Table A.12. Our method performs better than the CEP method.

7.1.2 ECG Dataset

The ECG dataset was obtained from the ECG database at PhysioNet. 4 It

consists of two groups of time series. The first group contains 22 time series

representing the 2 second ECG recordings of people having malignant ventric-

ular arrhythmia, and the second group contains 13 time series of the 2 second

ECG recordings of healthy people.

For the CEP method, the time series was assumed to be from ARIMA(2, 3, 0)

models. So we use a mixture of two AR(2) models for our method. Table A.12

shows the results. The two methods give the same result for this dataset.

7.1.3 Temperature Dataset

The temperature dataset is a collection of time series of the daily temperature

in the year 2000 from various places in Florida, Tennessee and Cuba. 5 The

dataset we use includes temperature recordings from 9 locations in Tennessee,

4 locations in northern Florida, 8 locations in southern Florida, and 8 locations

in Cuba. Based on geographical proximity and similarity in temperature, time

series from Tennessee and northern Florida form the first group and those

from southern Florida and Cuba form the second group. The CEP method

assumed ARIMA(2, 1, 0) models and our method uses a mixture of two AR(2)

models. The clustering results for both methods are shown in Table A.12.

Since the variances of the two groups of time series are quite different, our

method yields good results.

4 http://www.physionet.org/physiobank/database/
5 http://lwf.ncdc.noaa.gov/oa/climate/climatedata.html

18



7.1.4 Population Dataset

The population dataset is a collection of 20 time series representing the popu-

lation estimates from 1900–1999 in 20 states of the USA. 6 The 11 time series

in the first group have an exponentially increasing trend and the remaining

time series in the second group have a stabilizing trend. The CEP method

assumed ARIMA(1, 1, 0) models and our method uses a mixture of two AR(1)

models. Table A.12 summarizes the results. Although our method gives the

same result as the CEP method, both are not considered satisfactory in clus-

tering the time series into two groups. The major reason for the unsatisfactory

clustering performance is that both methods actually work on stationary time

series after the nonstationarity is removed. However, for this dataset, it is the

exact nonstationary trend of the time series that is the most discriminating

feature.

7.2 Discussions

Compared with the CEP method, our method can give the same (for two

datasets) or even better (for another two datasets) results. However, both our

method and the CEP method, due to their nature of modeling stationary

ARMA processes only, do not learn the differences in trends of the time series

and hence cannot give very satisfactory results for the population dataset. It

should be noted, however, that the trends of the two groups of population

time series are actually visually distinguishable. An extension of our method

to address this issue is discussed in the next section.

7.3 EEG Datasets

7.3.1 Experiments with Univariate ARMA Mixtures

To evaluate the effectiveness of our method on time series from real-world ap-

plications, we further conduct some experiments with EEG data. EEG time

6 http://eire.census.gov/popest/archives/state/st stts.php

19



series have been widely used in the area of human-computer interaction for

the study of underlying human brain processes. We use a subset of the EEG

dataset from the UCI KDD Archive 7 for our experiments. The complete EEG

dataset arose from a large study to examine EEG correlates of genetic pre-

disposition to alcoholism. There are two kinds of subjects in the data: control

subjects and alcoholic subjects. Multi-channel time series were recorded for

these two kinds of subjects. The whole dataset includes 122 subjects, with

each subject completed 120 trials where different stimuli were shown. The

small dataset provided contains data for two subjects only, with 10 trials for

each of three matching paradigms, named Task 1, Task 2, and Task 3, respec-

tively. We include in our datasets time series from two channels (F4, P8) for

each trial of the two subjects under the three tasks, i.e., we form a total of

six datasets on different channels and under different tasks. We perform clus-

tering on these six datasets with the goal of separating time series of different

subjects.

Following previous results by Keirn and Aunon [43], AR(6) models are used

in all our experiments to represent the EEG time series. A differencing step

is first applied to the time series as the preprocessing step to remove the

nonstationarity in trend. We follow the same BIC selection procedure as in

the previous section on the six datasets. The BIC criterion correctly selected

two clusters for the datasets of both channels of Task 2 and Task 3, but it

selected three clusters for those of both channels of Task 1, with most of the

time series from the alcoholic subject separated into two different clusters. The

cluster similarity values for the 2-cluster results of each dataset are presented

in Table A.13. Our results are quite promising and even slightly better than

those obtained by Zhong et al. [44], who performed HMM-based classification

on similar datasets by utilizing class membership information of the training

data.

7 http://kdd.ics.uci.edu/

20



7.3.2 First Attempt at Multivariate ARMA Mixtures

We further extend our method to simple multivariate models. We make use of

both channels of the EEG time series, but ignore the correlation between time

series values from different channels, i.e., the ARMA coefficient matrices and

noise covariance matrices of the simple multivariate models are all diagonal

matrices. The conditional log-likelihood function for the multivariate time

series becomes the sum of the log-likelihood functions for the univariate time

series from different channels. As shown in Table A.14, the results for the

simple multivariate models are better than those of the univariate models.

8 Conclusion and Future Work

In this paper, we have proposed a model-based method for clustering univari-

ate and simple multivariate ARMA time series. This mixture-model method,

based on mixtures of ARMA models, uses an EM algorithm to learn the mixing

coefficients as well as the parameters of the component models. In addition,

we use the BIC criterion to determine the number of clusters in the data.

Experimental results show the effectiveness of this method.

Our method can be improved in a number of aspects. One natural extension

is to allow general multivariate ARMA component models. This extension

is currently being pursued. Also, computational speedup can be achieved by

pruning away some models if their posterior probabilities become very close to

0, indicating that their significance is negligible. The issue to address here is to

decide the appropriate time to apply this pruning operation without making

premature decisions.

One problem with our method, like other EM-based methods, is that its clus-

tering performance can degrade significantly when the underlying clusters are

very close to each other. Another problem is that it is not designed for model-

ing the differences in trend of the time series. A possible extension is to model

ARIMA time series directly without having to remove the nonstationarity in

trend as a preprocessing step.
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A Derivation of M-Step Equations of EM Algorithm for ARMA

Mixtures

Recall that in the M-step of the EM algorithm, we find a new parameter

estimate by maximizing Q
(
Θ|Θ(t)

)
.

We first maximize Q
(
Θ|Θ(t)

)
with respect to each P (ωk), subject to the

constraint that
∑M

k=1 P (ωk) = 1. This can be solved using the Lagrangian

multiplier method:

∂

∂P (ωk)

(
Q

(
Θ|Θ(t)

)
− λ

( M∑

k=1

P (ωk)− 1
))

=
∂Q

(
Θ|Θ(t)

)

∂P (ωk)
− λ = 0. (A.1)

We first rewrite Q
(
Θ|Θ(t)

)
as

Q
(
Θ|Θ(t)

)
= R(Θ) + S(Θ),

where

R(Θ) =
N∑

i=1

M∑

k=1

P
(
ωk|xi,Θ(t)

)
ln P (xi|ωk,Φk),

S(Θ) =
N∑

i=1

M∑

k=1

P
(
ωk|xi,Θ(t)

)
ln P (ωk).

Since
∂S(Θ)

∂P (ωk)
=

1

P (ωk)

N∑

i=1

P (ωk|xi,Θ(t)),

we can apply the above constraint to obtain the best estimate as

P̂ (ωk) =
1

N

N∑

i=1

P
(
ωk|xi,Θ(t)

)
. (A.2)

To get the best parameter estimate of σ2
k, we need to solve this equation:

∂R(Θ)

∂σ2
k

=
N∑

i=1

P
(
ωk|xi,Θ(t)

)[
− n

2σ2
k

+
1

2σ4
k

n∑

t=1

e2
i,t

]
= 0,

that is,
N∑

i=1

P
(
ωk|xi,Θ(t)

)[
− nσ2

k

2
+

1

2

n∑

t=1

e2
i,t

]
= 0,
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or
N∑

i=1

[
− P

(
ωk|xi,Θ(t)

)nσ2
k

2
+

1

2
P

(
ωk|xi,Θ(t)

) n∑

t=1

e2
i,t

]
= 0.

We get the best parameter estimate of σ2
k as

σ̂2
k =

N∑

i=1

[
P

(
ωk|xi,Θ(t)

) n∑

t=1

e2
i,t

]

N∑

i=1

[
nP

(
ωk|xi,Θ(t)

)] . (A.3)

To get the best estimates of φk and θk, we need to solve the following equa-

tions:

∂R(Θ)

∂φk,j

=
N∑

i=1

[
P

(
ωk|xi,Θ(t)

)(
− 1

2σ2
k

) n∑

t=1

(
2 ei,t

∂ei,t

∂φk,j

)]
= 0, j = 0, 1, 2, . . . , p.

Since
∂ei,t

∂φk,0

= −1,

we have
N∑

i=1

[
P

(
ωk|xi,Θ(t)

) n∑

t=1

ei,t

]
= 0,

or

N∑

i=1

[
P

(
ωk|xi,Θ(t)

) n∑

t=1

(
xi,t − φk,0 −

p∑

l=1

φk,l xi,t−l −
q∑

l=1

θk,l ei,t−l

)]
= 0,

or

N∑

i=1

[
P

(
ωk|xi,Θ(t)

)( n∑

t=1

xi,t − nφk,0 −
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l=1

φk,l
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t=1
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q∑

l=1

θk,l

n∑

t=1

ei,t−l

)]
= 0,

that is,

nφk,0

N∑

i=1

[
P

(
ωk|xi,Θ(t)

)]
+

p∑

l=1

φk,l

N∑

i=1

[
P

(
ωk|xi,Θ(t)

) n∑

t=1

xi,t−l

]
+

q∑

l=1

θk,l
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i=1

[
P

(
ωk|xi,Θ(t)
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=
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(
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. (A.4)

Since
∂ei,t

∂φk,j

= −xi,t−j, j = 1, 2, . . . , p,
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we have
N∑

i=1
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ωk|xi,Θ(t)
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(A.5)

For the same reason, we have

∂ei,t

∂θk,j

= −ei,t−j,
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(A.6)

Combining the (1 + p + q) equations from Equations (A.4), (A.5) and (A.6),

we get

Ŵk δ̂k = Ûk,

or

δ̂k =
(
Ŵk

)−1
Ûk, (A.7)

where

δ̂k = (φk,0 φk,1 φk,2 . . . φk,p θk,1 θk,2 . . . θk,q)
T ,

Ŵk =
N∑

i=1


P

(
ωk|xi,Θ(t)

)



A B

C D





,
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Ûk =
N∑

i=1

[
P

(
ωk|xi,Θ(t)

)(
a0 a1 a2 . . . ap c1 c2 . . . cq

)T
]
,

and

A = (auv)(0∼p)×(0∼p), B = (buv)(0∼p)×(1∼q), C = (cuv)(1∼q)×(0∼p), D = (duv)(1∼q)×(1∼q);

a00 = n,

a0v =
n∑

t=1

xi,t−v, v = 1, 2, . . . , p,

b0v =
n∑

t=1

ei,t−v, v = 1, 2, . . . , q,

au0 =
n∑

t=1

xi,t−u, u = 1, 2, . . . , p,

cu0 =
n∑

t=1

ei,t−u, u = 1, 2, . . . , q,

auv =
n∑

t=1

xi,t−u xi,t−v, u = 1, 2, . . . , p, v = 1, 2, . . . , p,

buv =
n∑

t=1

ei,t−u xi,t−v, u = 1, 2, . . . , p, v = 1, 2, . . . , q,

cuv =
n∑

t=1

xi,t−u ei,t−v, u = 1, 2, . . . , q, v = 1, 2, . . . , p,

duv =
n∑

t=1

ei,t−u ei,t−v, u = 1, 2, . . . , q, v = 1, 2, . . . , q,

a0 =
n∑

t=1

xi,t,

av =
n∑

t=1

xi,t xi,t−v, v = 1, 2, . . . , p,

cv =
n∑

t=1

xi,t ei,t−v, v = 1, 2, . . . , q.
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Table A.1
Clustering results for time series generated by two AR(1) models with the same
noise variance but different AR coefficient distribution ranges

Cluster similarity

Range of AR (min/avg/max)

coefficient MAR CEP

(0.55± 0.01) (0.93/0.99/1.00) (0.93/0.98/1.00)

(0.50± 0.01) (0.83/0.93/0.97) (0.80/0.93/0.97)

(0.45± 0.01) (0.80/0.88/0.93) (0.71/0.86/0.93)

(0.40± 0.01) (0.63/0.77/0.90) (0.63/0.79/0.93)

Table A.2
Clustering results for time series generated by two AR(1) models with the same AR
coefficient distribution range but different noise variances

Cluster similarity

(min/avg/max)

MAR CEP

(1.00/1.00/1.00) (0.51/0.59/0.67)
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Table A.3
Parameter distribution ranges of AR(1) models for generating time series datasets

3-cluster datasets

Component AR coefficient Noise variance

1 (0.20± 0.01) (0.01± 0.001)

2 (0.50± 0.01) (0.01± 0.001)

3 (0.80± 0.01) (0.01± 0.001)

4-cluster datasets

Component AR coefficient Noise variance

1 (0.20± 0.01) (0.01± 0.001)

2 (0.50± 0.01) (0.01± 0.001)

3 (0.20± 0.01) (0.02± 0.001)

4 (0.50± 0.01) (0.02± 0.001)

6-cluster datasets

Component AR coefficient Noise variance

1 (0.20± 0.01) (0.01± 0.001)

2 (0.50± 0.01) (0.01± 0.001)

3 (0.80± 0.01) (0.01± 0.001)

4 (0.20± 0.01) (0.02± 0.001)

5 (0.50± 0.01) (0.02± 0.001)

6 (0.80± 0.01) (0.02± 0.001)
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Table A.4
Cumulative highest BIC values for a typical 3-cluster time series dataset

# of clusters 2 3 4 5

After round 1 10051 10116 10110 10104

After round 2 10051 10116 10110 10105

After round 3 10051 10116 10110 10105

After round 4 10051 10116 10110 10105

After round 5 10051 10116 10110 10105

# of clusters 6 7

After round 1 10099 10094

After round 2 10099 10094

After round 3 10099 10094

After round 4 10100 10094

After round 5 10100 10094

Table A.5
Cumulative highest BIC values for a typical 4-cluster time series dataset

# of clusters 2 3 4 5

After round 1 10669 10747 10741 10806

After round 2 10669 10747 10741 10806

After round 3 10669 10747 10812 10806

After round 4 10669 10747 10812 10806

After round 5 10669 10747 10812 10806

# of clusters 6 7 8

After round 1 10799 10793 10787

After round 2 10799 10793 10787

After round 3 10799 10793 10787

After round 4 10799 10793 10787

After round 5 10799 10793 10787
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Table A.6
Cumulative highest BIC values for a typical 6-cluster time series dataset

# of clusters 2 3 4 5 6

After round 1 15199 15872 15941 15934 16142

After round 2 15450 15872 16083 16076 16142

After round 3 15450 15872 16083 16076 16142

After round 4 15450 15872 16083 16149 16208

After round 5 15450 15872 16083 16149 16208

# of clusters 7 8 9 10

After round 1 16201 16194 16188 16180

After round 2 16201 16194 16188 16180

After round 3 16201 16194 16188 16180

After round 4 16201 16194 16188 16180

After round 5 16201 16195 16188 16180

Table A.7
Number of trials required to find the correct number of clusters for each dataset

Dataset # of trials for each dataset

3-cluster 1 1 1 1 3 1 1 1 1 3 1 1

4-cluster 1 2 5 3 9 4 5 1 1 4 1 2

6-cluster 1 3 1 6 4 1 1 2 1 3 8 4
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Table A.8
Parameter specification of the AR(p) models used in the four experiments

Model Experiment 1

Parameters φ0 φ1 φ2 φ3 σ2

AR(3)1 1.13 -0.05 0.52 -0.21 0.26

AR(3)2 0.33 0.36 0.10 0.16 0.07

AR(3)3 0.62 0.34 0.27 0.06 0.34

Model Experiment 2

Parameters φ0 φ1 φ2 φ3 σ2

AR(3)1 1.13 -0.05 0.52 -0.21 0.27

AR(3)2 0.33 0.36 0.10 0.16 0.27

AR(3)3 0.62 0.34 0.27 0.06 0.27

Model Experiment 3

Parameters φ0 φ1 φ2 φ3 σ2

AR(3)1 1.13 -0.05 0.52 -0.21 0.26

AR(3)2 0.57 0.36 0.10 0.16 0.07

AR(3)3 0.50 0.34 0.27 0.06 0.34

Model Experiment 4

Parameters φ0 φ1 φ2 φ3 σ2

AR(1) 1.13 -0.05 - - 0.27

AR(2) 0.33 0.36 0.10 - 0.07

AR(3) 0.62 0.34 0.27 0.06 0.34
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Table A.9
Average impurity rates of the 24 experiments

Experiment 1 Experiment 2 Experiment 3 Experiment 4

Balanced 25 50 100 25 50 100 25 50 100 25 50 100

AR(1) 0.03 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

AR(2) 0.03 0.03 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

AR(3) 0.03 0.03 0.00 0.03 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00

AR(4) 0.00 0.03 0.00 0.03 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00

AR(5) 0.03 0.03 0.00 0.03 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00

Experiment 1 Experiment 2 Experiment 3 Experiment 4

Unbalanced 25 50 100 25 50 100 25 50 100 25 50 100

AR(1) 0.03 0.00 0.00 0.07 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00

AR(2) 0.03 0.00 0.00 0.07 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00

AR(3) 0.03 0.00 0.00 0.17 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.00

AR(4) 0.03 0.00 0.00 0.23 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.00

AR(5) 0.03 0.00 0.00 0.30 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.00

Table A.10
Parameter specification of the ARMA(2,1) models

Model Experiment 1

Parameters φ1 φ2 φ3 σ2

AR(2, 1)1 -0.05 0.52 0.44 0.26

AR(2, 1)2 0.36 0.10 0.06 0.07

AR(2, 1)3 0.34 0.27 -0.25 0.34

Model Experiment 2

Parameters φ1 φ2 φ3 σ2

AR(2, 1)1 -0.05 0.52 0.44 0.27

AR(2, 1)2 0.36 0.10 0.06 0.27

AR(2, 1)3 0.34 0.27 -0.25 0.27
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Table A.11
Clustering results for time series generated by the ARMA(2,1) models

Cluster similarity

(min/avg/max)

Experiment 1 (1.00/1.00/1.00)

Experiment 2 (0.93/0.98/1.00)

Table A.12
Cluster similarity values for first four datasets

MAR CEP

Personal income dataset 0.90 0.84

ECG dataset 0.94 0.94

Temperature dataset 1.00 0.65

Population dataset 0.64 0.64

Table A.13
Cluster similarity values for EEG datasets using univariate models

Task 1 Task 2 Task 3

Channel F4 0.90 1.00 0.95

Channel P8 0.90 1.00 0.90

Table A.14
Cluster similarity values for EEG datasets using simple multivariate models

Task 1 Task 2 Task 3

Channel F4 & P8 0.95 1.00 0.95
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