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Abstract
7

Many computer vision and pattern recognition algorithms are very sensitive to the choice of an appropriate distance metric. Some
recent research sought to address a variant of the conventional clustering problem called semi-supervised clustering, which performs9
clustering in the presence of some background knowledge or supervisory information expressed as pairwise similarity or dissimilarity
constraints. However, existing metric learning methods for semi-supervised clustering mostly perform global metric learning through a11
linear transformation. In this paper, we propose a new metric learning method that performs nonlinear transformation globally but linear
transformation locally. In particular, we formulate the learning problem as an optimization problem and present three methods for solving13
it. Through some toy data sets, we show empirically that our locally linear metric adaptation (LLMA) method can handle some difficult
cases that cannot be handled satisfactorily by previous methods. We also demonstrate the effectiveness of our method on some UCI data15
sets. Besides applying LLMA to semi-supervised clustering, we have also used it to improve the performance of content-based image
retrieval systems through metric learning. Experimental results based on two real-world image databases show that LLMA significantly17
outperforms other methods in boosting the image retrieval performance.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.19
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1. Introduction23

Many computer vision and pattern recognition algorithms
rely on a distance metric. Some commonly used methods25
are nearest neighbor classifiers, radial basis function net-
works and support vector machines for classification (or su-27
pervised learning) tasks and the k-means algorithm for clus-
tering (or unsupervised learning) tasks. The performance of29
these methods often depends critically on the choice of an
appropriate metric. Instead of choosing the metric manually,31
a promising approach is to learn the metric from data auto-
matically. This idea can be dated back to some early work on33
optimizing the metric for k-nearest neighbor density estima-
tion [1]. Later, optimal local metric [2] and optimal global35
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metric [3] were also developed for nearest neighbor classi- 37
fication. More recent research along this line continued to
develop various locally adaptive metrics for nearest neigh- 39
bor classifiers, e.g., Refs. [4–8]. Besides nearest neighbor
classifiers, there are other methods that also perform metric 41
learning based on nearest neighbors, e.g., radial basis func-
tion networks and variants [9]. 43

While class label information is available for metric learn-
ing in classification tasks, such information is generally un- 45
available in conventional clustering tasks. To adapt the met-
ric appropriately to improve the clustering results, some 47
additional background knowledge or supervisory informa-
tion should be made available. This learning paradigm be- 49
tween the supervised and unsupervised learning extremes
is referred to as semi-supervised clustering, as contrasted 51
to another type of semi-supervised learning tasks called
semi-supervised classification, which solves the classifica- 53
tion problem with the aid of additional unlabeled data.
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One type of supervisory information is in the form of1
limited labeled data.1 The set of labeled examples is typi-
cally very small compared with the set of unlabeled exam-3
ples. Based on such information, Sinkkonen and Kaski [10]
proposed a local metric learning method to improve clus-5
tering and visualization results. Basu et al. [11] explored
using labeled data to generate initial seed clusters for the7
k-means clustering algorithm. Also, Zhang et al. [12] pro-
posed a parametric distance metric learning method for both9
classification and clustering tasks.

Another type of supervisory information is in the form11
of pairwise similarity or dissimilarity constraints. This type
of supervisory information is weaker than the first type, in13
that pairwise constraints can be derived from labeled data
but not vice versa. Wagstaff and Cardie [13] and Wagstaff et15
al. [14] proposed using such pairwise constraints to improve
clustering results. Klein and Kamvar [15] introduced spa-17
tial generalizations to pairwise constraints, so that the pair-
wise constraints can also have influence on the neighboring19
data points. However, both methods do not incorporate met-
ric learning into the clustering algorithms. Xing et al. [16]21
proposed using pairwise side information in a novel way to
learn a global Mahalanobis metric before performing clus-23
tering with constraints. Both Klein et al.’s and Xing et al.’s
methods generally outperform Wagstaff et al.’s method in25
the experiments reported. Instead of using an iterative algo-
rithm as in Ref. [16], Bar-Hillel et al. [17] devised a more27
efficient, non-iterative algorithm called relevant component
analysis (RCA) for learning a global Mahalanobis metric.29
However, their method can only incorporate similarity con-
straints. Shental et al. [18] extended the work of Bar-Hillel31
et al. [17] by incorporating both pairwise similarity and
dissimilarity constraints into the expectation-maximization33
(EM) algorithm for model-based clustering based on Gaus-
sian mixture models. Kwok and Tsang [19] established the35
relationship between metric learning and kernel matrix adap-
tation.37

To summarize, we can categorize metric learning meth-
ods according to two different dimensions. The first di-39
mension is concerned with whether (supervised) classifica-
tion or (unsupervised) clustering is performed. Most meth-41
ods were proposed for classification tasks, but some recent
methods extended metric learning to clustering tasks under43
the semi-supervised learning paradigm. Supervisory infor-
mation may be in the form of class label information or45
pairwise (dis)similarity information. The second dimension
categorizes metric learning methods into global and local47
ones. Provided that sufficient data are available, local met-
ric learning is generally preferred as it is more flexible in49
allowing different local metrics at different locations of the
input space. In this paper, we propose a new semi-supervised51
metric learning method with pairwise similarity side infor-
mation. While our method is local in the sense that it per-53

1 Semi-supervised clustering with the aid of labeled data is essentially
the same as semi-supervised classification with the aid of unlabeled data.

forms metric learning through locally linear transformation,
it also achieves global consistency through interaction be- 55
tween adjacent local neighborhoods.

The rest of this paper is organized as follows. In Section 57
2, we present our metric learning method based on locally
linear transformation. We also formulate the learning prob- 59
lem as an optimization problem and present two methods for
solving it. A more efficient optimization method based on the 61
spectral approach is then proposed in Section 3. Section 4
presents some experimental results on semi-supervised clus- 63
tering, comparing our method with some previous methods.
We then apply our metric learning method to content-based 65
image retrieval in Section 5. Finally, some concluding re-
marks are given in the last section. 67

2. Locally linear metric adaptation

2.1. Basic ideas 69

Let us denote a set of n data points in a d-dimensional in-
put space by X= {x1, x2, . . . , xn}. As in Ref. [17], we only 71
consider pairwise similarity constraints which are given in
the form of a set S of similar point pairs. Intuitively, we 73
want to transform the n data points to a new space in which
the points in each similar pair will get closer to each other. To 75
preserve the topological relationships between data points,
we move not only the points involved in the similar pairs but 77
also other points. For computational efficiency, we resort to
linear transformation. One promising approach is to apply 79
locally linear transformation so that the overall transforma-
tion of all points in X is linear locally but nonlinear globally, 81
generalizing previous metric learning methods based on ap-
plying linear transformation globally [16,17]. We call this 83
new metric learning method locally linear metric adaptation
(LLMA). However, caution should be taken when applying 85
linear transformation to reduce the distance between similar
points, as a degenerate transformation will simply map all 87
points to the same location so that all inter-point distances
vanish (and hence become the smallest possible). Obviously, 89
this degenerate case is undesirable and should be avoided.

2.2. Metric adaptation as an optimization problem 91

We now proceed to devise the metric learning algorithm
more formally. For each point xr involved in some similar 93
point pair, say (xr , xs), we apply a linear transformation to
the vector (xs −xr ) to give Ar (xs −xr )+ cr for some d ×d 95
matrix Ar and d-dimensional vector cr . The same linear
transformation is also applied to every data point xi in the 97
neighborhood set Nr of xr . In other words, every data point
xi ∈ Nr is transformed to 99

yi = Ar (xi − xr ) + cr + xr

= xi + (Ar − I)xi + (I − Ar )xr + cr

= xi + (Ar − I)xi + br ,
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where br = (I − Ar )xr + cr is the translation vector for all1
points xi’s in Nr .

However, a data point xi may belong to multiple neigh-3
borhood sets corresponding to different points involved in
S. Thus, the new location yi of xi is the overall transfor-5
mation effected by possibly all points involved in all similar
pairs (and hence neighborhood sets):7

yi = xi +
∑

xr :(xr ,·)∨(·,xr )∈S
�ri[(Ar − I)xi + br ],

where �ri = 1 if xi ∈ Nr and 0 otherwise.9
Let m denote the number of unique points involved in S.

Thus, a total of m different transformations have to be esti-11
mated from the point pairs in S, requiring O(md2) trans-
formation parameters in {Ar} and {br}. When m is small13
compared with the dimensionality d , we cannot estimate the
O(md2) transformation parameters accurately. One way to15
get around this problem is to focus on a more restrictive
set of linear transformations. The simplest case is to allow17
only translation, which can be described by md parameters.
Obviously, translating all data points in a neighborhood set19
by the same amount leads to no change in the inter-point
distances. Although some data points may fall into multi-21
ple neighborhood sets and hence this phenomenon does not
hold, we want to incorporate an extra degree of freedom by23
changing the neighborhood sets to Gaussian neighborhood
functions. More specifically, we set Ar to the identity matrix25
I and express the new location yi of xi as

yi = xi +
∑

xr :(xr ,·)∨(·,xr )∈S
�ri br , (1)

27

where �ri is a Gaussian function defined as

�ri = exp[− 1
2 (xi − xr )

T�−1
r (xi − xr )],29

with �r being the covariance matrix. For simplicity, we use
a hyperspherical Gaussian function, meaning that the covari-31
ance matrix is diagonal with all diagonal entries being �2.
Thus �ri can be rewritten as �ri =exp(−‖xi −xr‖2/(2�2)).33
Note that (1) can be expressed as

yi = xi + B�i , (2)35

where B = [b1, b2, . . . , bm] is a d × m matrix and �i =
(�1i , �2i , . . . , �mi)

T is an m-dimensional column vector. For37
data points that are far away from all points involved in S
(and hence the centers of the neighborhoods), all �ri’s are39
close to 0 and hence those points essentially do not move
(since yi ≈ xi ).41

We now formulate the optimization problem for finding
the transformation parameters. The optimization criterion is43
defined as

J = dS + �P , (3)45

where dS is the sum of squared Euclidean distances for all
similar pairs in the transformed space 47

dS =
∑

(xr ,xs )∈S
‖yr − ys‖2,

and P , a penalty term used to constrain the degree of trans- 49
formation, is defined as

P =
∑

i

∑
j

N�(dij )(qij − dij )
2, (4)

51

where qij =‖yi −yj‖ and dij =‖xi −xj‖ represent the inter-
point Euclidean distances in the transformed and original 53
spaces, respectively. N�(dij ) is again in the form of a Gaus-
sian function, as N�(dij ) = exp(−d2

ij /�
2), with parameter 55

� specifying the spread of the Gaussian window. The regu-
larization parameter � > 0 in (3) determines the relative sig- 57
nificance of the penalty term in the objective function for the
optimization problem. Note that the optimization criterion 59
in (3) is analogous to objective functions commonly used
in energy minimization models such as deformable models 61
[20], with the penalty term P playing the role of an internal
energy term. 63

The optimization problem formulated above can be solved
in an iterative manner, resulting in an iterative metric adap- 65
tation procedure [21]. In Ref. [21], we decrease over time
the Gaussian window parameters � and �, which determine 67
the neighborhood size and the weights in the penalty term,
respectively. In so doing, the local specificity is increased 69
gradually to allow global nonlinearity in the transformation.
More specifically, given the data point locations {y(t)

i } and 71
the window parameters �(t) and �(t) at iteration t , the over-
all optimization criterion in (3) is rewritten as 73

J (t)({br}; {y(t)
i }, �(t), �(t))

=
∑

(xr ,xs )∈S
‖y(t+1)

r − y(t+1)
s ‖2

+ �
∑

i

∑
j

N�(t)(dij )(q
(t+1)
ij − dij )

2. (5)

We seek to minimize J (t) by finding the optimal values of 75
{br} as {b(t)

r }, which are then used to compute the location
changes from {y(t)

i } to {y(t+1)
i }. 77

However, based on the many experiments we have per-
formed on both synthetic and real data sets, we find that the 79
iterative procedure typically terminates after one or two iter-
ations. In fact, the experimental results usually do not change 81
much after the first iteration. In this paper, we consider non-
iterative versions of the optimization methods studied in Ref. 83
[21]. With these methods, we can disengage our attention
from the consideration of decreasing Gaussian window pa- 85
rameters and setting the stopping criteria. In the next sec-
tion, we further propose a more efficient method based on 87
the spectral approach.
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2.3. Two optimization methods: gradient method and1
iterative majorization

We solve the optimization problem by minimizing J in3
Eq. (3). Two different optimization methods based on the
gradient method and iterative majorization are discussed in5
the following two subsections.

2.3.1. Gradient method7
While the first term of J in (5) is quadratic in {br}, the

second term is of a more complex form. So we cannot find9
a closed-form solution for the optimal values of {br} sim-
ply by solving ∇br J = 0, 1�r �m. However, by using per-11
turbation value of dij to approximate qij , we can obtain an
approximate closed-form solution13

B = −U1U+
2 ,

where15

U1 =
∑

i

∑
j

[sij + �N�(dij )(1 − dij /qij )]

× (yi − yj )(�i − �j )
T

U2 =
∑

i

∑
j

[sij + �N�(dij )(1 − dij /qij )]

× (�i − �j )(�i − �j )
T,17

and sij = 1 if (xi , xj ) ∈ S and 0 otherwise. U+
2 denotes the

pseudo-inverse of U2.19

2.3.2. Iterative majorization
Let us define two d × n matrices X = [x1, x2, . . . , xn]21

and Y = [y1, y2, . . . , yn] for n data points before and after
transformation, respectively. From (2), we have23

Y = X + B� = (X�+ + B)� = L�,

where � = [�1, �2, . . . , �n] is an m × n matrix. The opti-25
mization problem is then equivalent to minimization of J

with respect to L.27
The optimization criterion J (L) can be rewritten as

J (L) =
∑
i,j

sij q
2
ij (L) + �

∑
i,j

N�(dij )(qij (L) − dij )
2

=
∑
i,j

(sij + �N�(dij ))

×
(

qij (L) − �N�(dij )

sij + �N�(dij )
dij

)2

+ �
∑
i,j

N�(dij )

(
1 − �N�(dij )

sij + �N�(dij )

)
d2
ij .

29

We can omit the second term since it does not depend on L.
The equivalent optimization criterion is31 ∑

i

∑
j

�ij (qij (L) − pij )
2,

where 33

�ij = sij + �N�(dij ),

pij = �N�(dij )

sij + �N�(dij )
dij .

Since this form is the same as that for multidimensional 35
scaling for discriminant analysis [22], we can solve the op-
timization problem by iterative majorization, which can be 37
seen as an EM-like algorithm for problems with no missing
data. We define 39

C =
∑

i

∑
j

�ij (�i − �j )(�i − �j )
T

and 41

D(L) =
∑

i

∑
j

eij (L)(�i − �j )(�i − �j )
T

with 43

eij (L) =
{ �N�(dij )dij

qij (L)
, qij (L) > 0,

0, qij (L) = 0.

Then the optimization problem consists of the following 45
steps:

(1) Initialize L(0); u = 0. 47
(2) u = u + 1; and compute

L(u) = L(u−1)(D(L(u−1)))T(C−1)T. 49

(3) If converged, then stop; otherwise go to Step 2.

3. A more efficient optimization method: spectral 51
method

Recall that the penalty term P in (3) serves to constrain 53
the degree of transformation, partly to prevent the occur-
rence of a degenerate transformation and partly to preserve 55
the local topological relationships between data points. Be-
sides defining the penalty term as in (4), there also exist other 57
ways to achieve this goal. One possibility is to preserve the
locally linear relationships between nearest neighbors, as in 59
a nonlinear dimensionality reduction method called locally
linear embedding (LLE) [23]. Specifically, we seek to find 61
the best reconstruction weights for all data points, repre-
sented as an n×n weight matrix W =[wij ], by minimizing 63
the following cost function

E =
∑

i

∥∥∥∥∥∥xi −
∑

xj ∈Ni

wij xj

∥∥∥∥∥∥
2

= Tr[X(I − W)T(I − W)XT] 65

with respect to W subject to the constraints
∑

xj ∈Ni
wij =1,

where Ni denotes the set of K nearest neighbors of xi and 67
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Tr is the trace operator. This can be solved as a constrained1
least squares problem. With the optimal weight matrix W
found, the penalty term P is defined to ensure that points3
yi’s in the transformed space preserve the local geometry of
the corresponding points xi’s, i.e.5

P = Tr[Y(I − W)T(I − W)YT],

subject to the constraints (1/n)
∑

i yi = 1
n

1TYT = 0 and7
(1/n)

∑
i yiyT

i =(1/n)YYT =Id , where 1 represents a vector
of 1’s and Id is the d × d identity matrix.9

The first term dS of J in (3) can be rewritten as

∑
(xr ,xs )∈S

‖yr − ys‖2 =
∑

i

∑
j

uij yT
i yj = Tr[YUYT],

11

where uij is the (i, j)th element in an n × n matrix U with
uij defined as13

uij = uij = �ij

n∑
r=1

sir − (1 − �ij )sij .

�ij = 1 if i = j and 0 otherwise, and sij = 1 if (xi , xj ) ∈15
S and 0 otherwise. Thus the optimization criterion can be
expressed as17

J = Tr[YUYT] + �Tr[Y(I − W)T(I − W)YT]
= Tr[L�(U + �(I − W)T(I − W))�TLT], (6)

subject to the constraints (1/n)1T�TLT = 0 and (1/n)19
L��TLT = LBLT = Id .

Let21

E = �[U + �(I − W)T(I − W)]�T,

F = 1

n
��T.

The solution to the optimization problem with respect to L is23
given by the second to (d +1)st smallest generalized eigen-
vectors v with Ev = �̂Fv. Minimization of J in the form of25
(6) by the spectral approach is analogous to minimization
of (3) based on the gradient method and iterative majoriza-27
tion. We present some experimental results based on both
gradient method and spectral method in Section 4.29

4. Experiments on semi-supervised clustering

To assess the efficacy of LLMA, we perform extensive31
experiments on toy data as well as real data from the UCI
Machine Learning Repository.233

2 http://www.ics.uci.edu/ mlearn/MLRepository.html

4.1. Illustrative examples

Fig. 1 demonstrates the power of our LLMA method by 35
comparing it with the RCA method [17] on three toy data
sets.3 RCA, as a metric learning method, changes the fea- 37
ture space by a global linear transformation, which assigns
large weights to relevant dimensions and low weights to ir- 39
relevant dimensions. The relevant dimensions are estimated
based on connected components composed of similar pat- 41
terns. For each data set, we randomly select 10 similar pairs
to form S. For LLMA, the gradient method is used to ob- 43
tain the transformed results. More details about these exper-
iments will be given in Section 4.3. 45

Notice that although the original Euclidean metric is not
good for the first data set, even applying a linear transfor- 47
mation (RCA) can give a new Euclidean metric that is sig-
nificantly better in grouping data points from the same class 49
together. However, this is no longer the case for the second
and third data sets which are more difficult than the first data 51
set, demonstrating the limitations of linear metric learning
methods. On the other hand, LLMA, as a nonlinear metric 53
learning method, can give satisfactory results for all three
data sets. 55

4.2. Clustering algorithms and performance measures for
comparative study 57

In order to assess the efficacy of LLMA for semi-
supervised clustering, we compare the clustering results 59
based on k-means with and without metric learning. Besides
RCA method, we also repeat the experiments using the 61
constrained k-means algorithm [14]. Constrained k-means
algorithm is based on default Euclidean metric subject to 63
the constraints that patterns in a pair (xr , xs) ∈ S are al-
ways assigned to the same cluster. As for LLMA, we use 65
both the gradient method and the spectral method as pre-
sented in Section 2 and Section 3, respectively, to solve the 67
optimization problem. More specifically, the following five
clustering algorithms are compared:

69
(1) k-means without metric learning;
(2) Constrained k-means without metric learning; 71
(3) k-means with RCA for metric learning;
(4) k-means with LLMA for metric learning (gradient 73

method);
(5) k-means with LLMA for metric learning (spectral 75

method).

The Rand index [24] is used to measure the clustering qual- 77
ity in our experiments. It reflects the agreement of the clus-
tering result with the ground truth. Let ns be the number 79
of point pairs that are assigned to the same cluster (i.e., 81

3 The MATLAB code for RCA was downloaded from the web page
of an author of Ref. [17].
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(a) (b) (c) (d)

(a) (b ) (c) (d)

(a) (b) (c) (d)

Fig. 1. Comparison of LLMA with RCA on three toy data sets. Subfigures in the first column show the data sets each with two classes, while subfigures
in the second column show 10 similar pairs in S for each data set. The third and fourth columns show the data sets after applying RCA and LLMA,
respectively, for metric learning.

matched pairs) in both the resultant partition and the ground1
truth, and nd be the number of point pairs that are assigned
to different clusters (i.e., mismatched pairs) in both the re-3
sultant partition and the ground truth. The Rand index is de-
fined as the ratio of (ns + nd) to the total number of point5
pairs, i.e., n(n − 1)/2. When there are more than two clus-
ters, however, the standard Rand index will favor assigning7
data points to different clusters. We modify the Rand index
as in [16] so that matched pairs and mismatched pairs are9
assigned weights to give them equal chance of occurrence
(0.5).11

To see how different algorithms vary their performance
with the background knowledge provided, we use 20 ran-13
domly generated S sets for each data set. Moreover, we
compute the average Rand index over 20 random runs15
of (constrained) k-means for each S set. The results for
all five algorithms are then shown as box-plots using17
MATLAB.

4.3. Semi-supervised clustering on toy and UCI data sets19

In the LLMA algorithm, there are a few parameters
that need to be set. For the gradient method described21
in Section 2, we make the Gaussian window parameters
� and � depend on d0, which is the average initial Eu-23
clidean distance between all point pairs in X (i.e., d0 =
2/(n(n−1))

∑
i<j‖xi −xj‖), as �=�d0 and �= ��. � and25

� are constant parameters set to [0.1,3] and (0,1), respec- 27
tively, in our experiments. For the spectral method described
in Section 3, the only Gaussian window parameter � is set in 29
the same way. The regularization parameter � adjusting the
tradeoff between local transformation and geometry preser- 31
vation is set to 5. All data sets are normalized before apply-
ing the five algorithms. 33

Fig. 2 shows the clustering results for the three toy data
sets as illustrated in Section 4.1. Obviously, all the three 35
data sets cannot be clustered well using the standard and
constrained k-means algorithms. Even RCA can give good 37
result only on the first data set. On the other hand, LLMA
can handle all these cases and perform particularly well on 39
the second and third data sets which cannot be handled sat-
isfactorily by the other methods. For our LLMA method, the 41
spectral approach leads to slightly better clustering results
than the gradient method. 43

We further conduct experiments on nine UCI data sets.
The number of data points n, the number of features d, 45
the number of classes c, and the number of randomly se-
lected similar pairs |S| are shown under each subfigure in 47
Fig. 3. From the clustering results, we can see that LLMA
outperforms the other methods for most of these data sets. 49
As for the iris and Boston housing data sets, RCA can im-
prove the clustering results most. For LLMA, the clustering 51
results obtained using the gradient and spectral methods are
comparable. 53
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Fig. 2. Clustering results for toy data sets shown as box-plots for 20 different S sets with |S| = 10 (the five clustering algorithms are numbered as in
Section 4.2). (a) Toy data set 1, (b) toy data set 2; (c) toy data set 3.
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Fig. 3. Clustering results for UCI data sets shown as box-plots for 20 different S sets (the five clustering algorithms are numbered as in Section
4.2). (a) Soybean n = 47, d = 35, c = 4, |S| = 10; (b) protein n = 116, d = 20, c = 6, |S| = 20; (c) iris plants n = 150, d = 4, c = 3, |S| = 30; (d) wine
n = 178, d = 13, c = 3, |S| = 20; (e) ionosphere n = 351, d = 34, c = 2, |S| = 30; (f) boston housing n = 506, d = 13, c = 3, |S| = 40; (g) breast cancer
n = 569, d = 31, c = 2, |S| = 50; (h) balance n = 625, d = 4, c = 3, |S| = 40; (i) diabetes n = 768, d = 8, c = 2, |S| = 40.
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To summarize, these experimental results on both toy and1
real data sets demonstrate the effectiveness of our LLMA
method.3

5. Experiments on image retrieval

5.1. Content-based image retrieval5

With the emergence and increased popularity of the World
Wide Web (WWW) over the past decade, retrieval of im-7
ages based on content, often referred to as content-based
image retrieval (CBIR), has gained a lot of research interest9
[25]. The two determining factors for image retrieval perfor-
mance are the features used to represent the images and the11
distance function used to measure the similarity between a
query image and the images in the database. For a specific13
feature representation chosen, the retrieval performance de-
pends critically on the similarity measure used. Instead of15
choosing a distance function in advance, a more promis-
ing approach is to learn a good distance function from data17
automatically. Recently, this challenging new direction has
aroused great interest in the research community. In partic-19
ular, RCA [17,26] has been used to improve image retrieval
performance in CBIR tasks.21

In this section, we will apply LLMA to improve the re-
trieval performance of CBIR tasks. We will also compare23
the retrieval performance of this method with other distance
learning methods.25

5.2. Image databases and feature representation

Our image retrieval experiments are based on two im-27
age databases. One database is a subset of the Corel Photo
Gallery, which contains 1010 images belonging to 10 dif-29
ferent classes. The 10 classes include bear (122), butterfly
(109), cactus (58), dog (101), eagle (116), elephant (105),31
horse (110), penguin (76), rose (98), and tiger (115). An-
other database contains 546 images belonging to 10 classes33
that we downloaded from the Internet. The image classes are
manually defined based on high-level semantics. Compared35
with the first database, the class sizes of this database have a
much wider range of variations from the smallest class with37
24 images to the largest class with 125 images.

We first represent the images in the HSV color space, and39
then compute the color coherence vector (CCV) [27] as the
feature vector for each image. Specifically, we quantize each41
image to 8 × 8 × 8 color bins, and then represent the image
as a 1024-dimensional CCV (�1, �1, . . . , �512, �512)

T, with43
�i and �i representing the numbers of coherent and non-
coherent pixels, respectively, in the ith color bin. The CCV45
representation gives finer distinctions than the use of color
histograms. Thus it usually gives better image retrieval47
results. For computational efficiency, we first apply princi-
pal component analysis (PCA) to retain the 60 dominating49
principal components before applying LLMA as described
above.51

5.3. Comparative study and performance measures

We compare the image retrieval performance of LLMA 53
with the baseline method of using Euclidean distance with-
out distance learning, as well as some other distance learning 55
methods. In particular, we consider two distance learning
methods: Mahalanobis distance with whitening transform 57
and RCA.

We use two performance measures in our comparative 59
study. The first one, based on precision and recall, is com-
monly used in information retrieval. The second one is based 61
on cumulative neighbor purity curves. Cumulative neighbor
purity measures the percentage of correctly retrieved images 63
in the k nearest neighbors of the query image, averaged over
all queries, with k up to some value K (K = 20 or 40 in our 65
experiments).

For each retrieval task, we compute the average perfor- 67
mance statistics over five randomly generated sets of similar
image pairs. The number of similar image pairs is set to 150, 69
which is about 0.3 and 0.7% of the total number of possible
image pairs in the first and second databases, respectively. 71
In LLMA, we use the spectral method (Section 3) because
it is more efficient than the other two optimization methods. 73

5.4. Experimental results

5.4.1. Basic retrieval results 75
Fig. 4 shows the retrieval results on the first image

database based on both cumulative neighbor purity and pre- 77
cision/recall. We can see that metric learning with LLMA
significantly improves the retrieval performance and out- 79
performs other distance learning methods especially with
respect to the cumulative neighbor purity measure. The re- 81
trieval results on the second image database are shown in
Fig. 5. Note that this database is highly unbalanced as the 83
class sizes vary significantly. For this database, both whiten-
ing transform and RCA cannot improve the retrieval perfor- 85
mance. On the other hand, LLMA significantly outperforms
the other methods in improving the retrieval performance. 87

Some typical retrieval results on the first and second
databases are shown in Fig. 6(a) and (b), respectively. For 89
each query image, we show the retrieved images in three
rows, corresponding, from top to bottom, to the use of 91
Euclidean distance without distance learning and distance
learning with RCA and LLMA. Each row shows the seven 93
nearest neighbors of the query image with respect to the dis-
tance used, with dissimilarity based on the distance increas- 95
ing from left to right. The query image is shown with a frame
around it. We can see that both distance learning methods 97
improve the retrieval performance, with LLMA outperform-
ing RCA slightly. 99

5.4.2. Results with relevance feedback
As in traditional information retrieval, relevance feed- 101

back from users on the retrieval results is considered as a
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Fig. 4. Retrieval results on the first image database (1010 images, 10
classes). (a) Cumulative neighbor purity curves; (b) precision/recall curves.

powerful tool to bridge the gap between low-level features1
and high-level semantics in CBIR systems [28]. When dis-
played images are retrieved in response to the query im-3
age(s), the user is allowed to label some or all of the re-
trieved images as either relevant or irrelevant. Based on the5
relevance feedback, the system modifies either the query or
the distance function and then carries out another retrieval7
attempting to improve the retrieval performance. Most ex-
isting systems only make use of relevance feedback within9
a single query session.
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Fig. 5. Retrieval results on the second image database (546 images, 10
classes). (a) Cumulative neighbor purity curves; (b) precision/recall curves.

Similarity constraints used in LLMA can be obtained 11
from users’ relevance feedback, with each relevant image
and the query image forming a similar pair. We accumulate 13
the similarity constraints over multiple query sessions before
applying LLMA. To verify whether increasing the number of 15
pairwise similarity constraints can improve the retrieval per-
formance, we further perform some experiments on a smaller 17
image database containing 120 images from four classes.
Fig. 7 shows the results in terms of cumulative neighbor 19
purity curves for different numbers of pairwise similarity
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Fig. 6. Typical retrieval results on the two databases (a) and (b) bases on Euclidean distance (first row), RCA (second row), and LLMA (third row).
Each row shows the seven nearest neighbors including the query image (framed).

constraints. It is clear that more pairwise constraints can lead1
to greater improvement.

However, using pairwise constraints collected from many3
query sessions also implies higher computational demand.
As a compromise, we can perform stepwise LLMA by in-5
corporating the pairwise constraints in reasonably small, in-
cremental batches each of a certain size 	. Whenever the7
batch of newly collected pairwise constraints reaches this
size, LLMA will be performed with this batch to obtain a9
new metric. The batch of similarity constraints is then dis-
carded. This process will be repeated continuously with the11
arrival of more relevance feedback from users. In so doing,
knowledge acquired from relevance feedback in one session13
can be best utilized to give long-term improvement in sub-
sequent sessions.15

We conduct some experiments on the first image database
to verify the effectiveness of this method. For a prespecified17

maximum batch size 	, we randomly select 	 images from
the database as query images. In each query session based 19
on one of the 	 images, the system returns the top 20
images from the database based on the current distance 21
function, which is Euclidean initially. Of these 20 images,
five relevant images are then randomly chosen, simulating 23
the relevance feedback process performed by a user. LLMA
is performed once after every 	 sessions. Fig. 8 shows the 25
cumulative neighbor purity curves for the retrieval results
based on stepwise LLMA with maximum batch sizes 	=10 27
sessions. As we can see, long-term metric learning based on
stepwise LLMA can result in continuous improvement of 29
retrieval performance.

5.4.3. Results with noisy pairwise constraints 31
So far, we have assumed that the pairwise constraints

available for metric learning are all correct. However, this 33
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assumption may not hold in some applications. For example,1
in CBIR, some pairwise constraints provided as relevance
feedback to the users may not be correct, in the sense that3
they do not agree with the high-level semantics. We perform
some preliminary experiments here to study the robustness5
of a CBIR system when there exist noisy pairwise constraints
in the relevance feedback.7

We use the second image database in our study. In ad-
dition to the 150 similar image pairs, we randomly select9
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Fig. 9. Cumulative neighbor purity curves for different numbers of noisy
pairwise similarity constraints, ranging from 0 to 40%.

some dissimilar image pairs and add them to the set S as
noisy pairs. Fig. 9 shows the retrieval results reported by 11
cumulative neighbor purity curves with different numbers
of noisy pairwise similarity constraints incorporated. As ex- 13
pected, the retrieval performance degrades with the number
of noisy constraints added. However, even with 40% noisy 15
constraints added, LLMA still gives better retrieval perfor-
mance than the baseline Euclidean metric. 17

6. Concluding remarks

In this paper, we have proposed a new metric adapta- 19
tion method called LLMA based on semi-supervised learn-
ing. Unlike previous methods which can only perform linear 21
transformation globally, LLMA performs nonlinear trans-
formation globally but linear transformation locally. This 23
generalization makes it more powerful for solving some dif-
ficult clustering tasks as demonstrated through the toy and 25
UCI data sets.

We have simplified the optimization methods presented 27
in [21], and have proposed a more efficient optimization
method for LLMA based on the spectral approach. Besides 29
performing semi-supervised clustering on toy and real data
sets, we have also demonstrated the promising performance 31
of LLMA for CBIR tasks. Not only does LLMA based on
semi-supervised metric learning improve the retrieval per- 33
formance of Euclidean distance without distance learning,
it also outperforms other distance learning methods signifi- 35
cantly due to its higher flexibility in metric learning.

Note that in LLMA, the original input space and the trans- 37
formed space are explicitly related via a mapping, as Y=L�,
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where � is a nonlinear function with respect to X. Although1
it is not necessary for clustering problems, it is possible for
new data points added to the input space to be mapped onto3
the transformed space. One example is the CBIR applica-
tion if the query image is not from the image database. We5
will also explore other applications that can make use of this
favorable property.7

Currently, our method can only utilize similarity con-
straints. A natural question to ask is whether we can ex-9
tend LLMA by incorporating dissimilarity constraints. In
principle this is possible, but the optimization criterion has11
to be modified in order to incorporate the new constraints.
One challenge to face is to maintain the form of the ob-13
jective function so that the optimization problem remains
tractable.15

Moreover, we have only considered a restrictive form of
locally linear transformation, namely, translation. A poten-17
tial direction to pursue is to generalize it to more general
linear transformation types. Other possible research direc-19
tions include improving the current LLMA algorithm such
as performing globally linear transformation first and then21
LLMA only when necessary.
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