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Abstract

The performance of many supervised and unsupervised learning algorithms is very

sensitive to the choice of an appropriate distance metric. Previous work in metric

learning and adaptation has mostly been focused on classification tasks by making

use of class label information. In standard clustering tasks, however, class label in-

formation is not available. In order to adapt the metric to improve the clustering

results, some background knowledge or side information is needed. One useful type

of side information is in the form of pairwise similarity or dissimilarity information.

Recently, some novel methods (e.g., the parametric method proposed by Xing et al.)

for learning global metrics based on pairwise side information have been shown to

demonstrate promising results. In this paper, we propose a nonparametric method,

called relaxational metric adaptation (RMA), for the same metric adaptation prob-

lem. While RMA is local in the sense that it allows locally adaptive metrics, it is

also global because even patterns not in the vicinity can have long-range effects on

the metric adaptation process. Experimental results for semi-supervised clustering

based on both simulated and real-world data sets show that RMA outperforms Xing
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et al.’s method under most situations. Besides applying RMA to semi-supervised

learning, we have also used it to improve the performance of content-based image

retrieval systems through metric adaptation. Experimental results based on two

real-world image databases show that RMA significantly outperforms other meth-

ods in improving the image retrieval performance.

Key words: Distance metric, Nonparametric method, Semi-supervised clustering,

Constrained k-means, Side information, Pairwise similarity and dissimilarity,

Content-based image retrieval

1 Introduction

Many machine learning and pattern recognition algorithms involve the use

of a distance metric [1]. Commonly used methods include nearest neighbor

classifiers, radial basis function networks and support vector machines for

classification and the k-means algorithm for clustering. The performance of

these methods often depends very much on the choice of an appropriate met-

ric. Instead of determining a metric manually, a more promising approach is

to learn an appropriate metric from data automatically. This idea is not new,

though. It can be dated back to the early work on optimizing the metric for

k-nearest neighbor density estimation [2]. Optimal local metric [3] and optimal

global metric [4] were also developed for nearest neighbor classification. More

recent research continued to develop various locally adaptive metrics for near-

est neighbor classifiers [5–11]. Besides nearest neighbor classifiers, there are

other methods that also perform metric learning based on nearest neighbors,

e.g., radial basis function networks and variants [12].

While class label information is available for metric learning in classification

(or supervised learning) tasks, such information is not available in standard

clustering (or unsupervised learning) tasks. In order to adapt the metric to im-

prove the clustering results, some additional background knowledge is needed.

One approach to the introduction of additional knowledge is called semi-

supervised learning [13], which learns with both labeled and unlabeled data. 1

1 Typically the set of labeled patterns is very small compared with the set of unla-
beled patterns.
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Based on this paradigm, [14,15] proposed local metric learning methods to im-

prove clustering and visualization results. [16,17] proposed a parametric dis-

tance metric learning method that learns better metrics for improving both

classification and clustering tasks. Another approach to the introduction of

background knowledge or side information is in the form of pairwise similarity

or dissimilarity information. [18,19] proposed using such pairwise information

to improve clustering. However, they did not incorporate metric learning into

the clustering algorithms. [20] extended their method nicely by using pairwise

side information to learn a global metric before performing clustering with

constraints. Instead of using an iterative algorithm as in [20], a more effi-

cient, non-iterative algorithm called relevant component analysis (RCA) [21]

was proposed for learning a global Mahalanobis metric. More recently, [22,23]

proposed a nonmetric distance function learning algorithm called DistBoost

by boosting the hypothesis over the product space with Gaussian mixture

models as weak learners. However, both RCA and DistBoost can only incor-

porate similarity constraints. [24] introduced the use of discriminant kernels

for metric learning. [25] established the relationship between metric learning

and kernel matrix adaptation.

To summarize, we can categorize metric learning and adaptation methods ac-

cording to two different dimensions. The first dimension is concerned with

whether (supervised) classification or (unsupervised) clustering is performed.

Most methods were proposed for classification tasks, but some recent methods

extended metric learning to clustering tasks with the existence of background

knowledge. Background knowledge may be in the form of class label informa-

tion or pairwise (dis)similarity information. The second dimension categorizes

metric learning methods into global and local ones. Provided that sufficient

data are available, local metric learning is generally preferred as it is more

flexible in allowing different local metrics at different locations of the input

space. In this paper, we propose a new metric adaptation method for cluster-

ing with pairwise (dis)similarity side information. While our method is local

in the sense that it allows locally adaptive metrics, our method is also global

because even patterns not in the vicinity can have long-range effects on the

metric adaptation process.
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2 Our Metric Adaptation Method

Let us denote the set of n patterns or data points by X = {x1,x2, . . . ,xn},
the set of similar pairs by S0, and the set of dissimilar pairs by D0. S0 and D0

are both represented as sets of pairs of patterns, or pattern pairs, where each

pattern pair (xi,xj) indicates that patterns xi and xj are similar or dissimilar

to each other, respectively. Given the two sets S0 and D0 of pairwise side

information, we first convert them into S and D, respectively. This conversion

consists of two steps. The first step finds the transitive closure of all pattern

pairs in S0 to form S. Suppose xi and xj form a pair and xj and xk form

another pair in S0. We introduce xi and xk as a new similar pair to S if the

pair is not yet explicitly represented in S0. In the second step, we try to infer

from the pairs in S and D0. If xi and xj form a similar pair in S and xi and

xk form a dissimilar pair in D0, we introduce xj and xk as a new dissimilar

pair to D if it is not in D0. Through these two steps, the implicit knowledge

that can be inferred from S0 and D0 is represented explicitly in S and D.

Our metric adaptation method, called relaxational metric adaptation (RMA),

is an iterative algorithm that repeatedly adjusts the locations of the patterns in

the input space, such that similar patterns tend to get closer while dissimilar

patterns tend to move away from each other. Each iteration of the RMA

algorithm has two phases. The first phase affects only the patterns involved in

S and D. Based on the pairwise (dis)similarity information, it tries to move

similar patterns closer together and dissimilar patterns farther apart. In the

second phase, all other patterns are also affected by the pattern movement in

the first phase. Since pattern movement is equivalent to changing the metric of

the input space implicitly, the RMA algorithm is essentially an iterative metric

adaptation procedure. Moreover, it is a nonparametric learning algorithm since

there is no parametric model governing metric adaptation.

2.1 Phase 1: Local Changes

For each pattern pair (xi,xj) ∈ S, the squared Euclidean distance between

patterns xi and xj is ‖xi − xj‖2. The sum of squared Euclidean distances for

4



all pattern pairs in S is given by

dS =
∑

(xi,xj)∈S
‖xi − xj‖2.

We also define the sum of inverse squared Euclidean distances for all pattern

pairs in D as

dD =
∑

(xk,xl)∈D

1

‖xk − xl‖2
.

If the metric is good, both dS and dD should be sufficiently small. Based on

this observation, we define an optimization criterion as follows:

J = dS + αdD, (1)

for some parameter α > 0 representing the relative importance of the two

terms. We would like to move the patterns in S and D so as to minimize J .

Note that J is defined in such a way that it is affected more by a pattern pair

in S with longer inter-pattern distance but by a pattern pair in D with shorter

inter-pattern distance. This is desirable since a pair of similar patterns that

are far apart and a pair of dissimilar patterns that are close to each other are

expected to update their locations more significantly.

Consider the gradient vector of J with respect to a pattern xi in one pattern

pair of S or D:

∇xi
J = ∇xi

dS + α∇xi
dD. (2)

Only the first term of Equation (2) remains if xi appears only in S, and only

the second term remains if xi appears only in D. If xi appears in both S and

D, then both terms of Equation (2) do not vanish. Although one pattern may

appear in multiple pattern pairs in S and D, we could consider the effect of

one pattern pair at a time. Thus the gradient vector of dS due to pattern pair

(xi,xj) of S with respect to pattern xi is

∇xi
dS |(xi,xj) = 2 (xi − xj) ,

while the gradient vector of dD due to pattern pair (xk,xl) of D with respect

to pattern xk is

∇xk
dD|(xk,xl) = − 2

‖xk − xl‖4
(xk − xl) .
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Using a gradient-descent procedure to minimize J , the patterns xi and xk

should move in directions opposite to their gradient directions, i.e.,

∆xi|(xi,xj) = −η (xi − xj)

= η‖xi − xj‖umij←xi
, (3)

∆xk|(xk,xl) =
ηα

‖xk − xl‖4
(xk − xl)

=
ηα

‖xk − xl‖3
uxk←mkl

, (4)

where η > 0 is a learning rate parameter, mab is the midpoint between xa

and xb, and uxa←xb
is the unit vector pointing from xb to xa. It is easy to see

that xi moves towards xj and xk moves away from xl. To consider all patterns

in the pattern pairs, Equation (3) is applied 2|S| times and Equation (4)

is applied 2|D| times. However, the number of different patterns involved is

in general less than 2(|S| + |D|) since some patterns can appear in multiple

pattern pairs. 2

Although location changes are computed for all patterns involved in S and D,

the actual changes will only be made simultaneously in a batch mode at the

end of the second phase.

2.2 Phase 2: Global Changes

The second phase generalizes pattern movement in the first phase to all pat-

terns, allowing long-range effects to influence metric adaptation globally.

For each pattern pair (xi,xj) ∈ S, pattern movement of xi and xj towards

each other (as a result of the first phase) will influence all other patterns, i.e.,

all patterns in X\{xi,xj}. Similarly, pattern movement of xk and xl for each

pattern pair (xk,xl) ∈ D will also influence all patterns in X\{xk,xl}.

Consider a pattern xr ∈ X\{xi,xj}. Without loss of generality, let us assume

that xr is closer to xi than xj, i.e., ‖xr − xi‖ < ‖xr − xj‖. Pattern xr is

2 This is very likely the case if the pattern pairs are reasonably dense with respect
to the data set size n.
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updated in a way similar to Equation (3) for xi, as follows:

∆xr|(xi,xj) = η‖xi − xj‖Nij(xr)umij←xr , (5)

where Nij(·) is a neighborhood function that depends on both xi and xj.

It is natural to use a Gaussian neighborhood function so that the influence

of xi on xr decreases with the distance between them. The question is how

exactly the Gaussian function should be defined. One possibility is to use

a hyperspherical Gaussian function, meaning that the covariance matrix is

diagonal with all diagonal entries being the same (σ2
h). This scheme is very

simple to implement. Another possibility is to allow a more general Gaussian

function with full covariance matrix. This alternative scheme is slightly more

complicated and hence we will give the details below.

Let us assume that the covariance matrix of the Gaussian function has the first

principal component direction along the direction (xi−xj) with variance ‖xi−
xj‖2 while all other principal component directions have the same variance

σ2. Let Σij denote the covariance matrix that corresponds to the pattern pair

(xi,xj). The neighborhood function is defined as

Nij(xr) = exp
[
−1

2
(xr − xi)

TΣ−1
ij (xr − xi)

]
. (6)

By eigendecomposition, we can express Σij as

Σij = VΛijV
T ,

where Λij = diag(‖xi − xj‖2, σ2, . . . , σ2) is the diagonal matrix of eigenvalues

of Σij and V = [v1,v2, . . . ,vd] is the matrix of corresponding (orthonormal)

eigenvectors normalized such that vT
mvm = 1 for all 1 ≤ m ≤ d. 3 Note that

v1 is a unit vector along the direction xi − xj, i.e.,

v1 =
xi − xj

‖xi − xj‖ .

3 More correctly, V and its eigenvectors should depend on xi and xj . For notational
simplicity, however, the subscripts showing the dependency are omitted. Also note
that VT = V−1.
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Since

Σ−1
ij = VΛ−1

ij VT ,

Equation (6) can be rewritten as

Nij(xr) = exp
{
−1

2

[
VT (xr − xi)

]T
Λ−1

ij

[
VT (xr − xi)

]}

= exp(−1

2
D2), (7)

where Λ−1
ij = diag(‖xi − xj‖−2, σ−2, . . . , σ−2) and D2 denotes the squared

Mahalanobis distance between xr and xi. We simplify D2 as follows:

D2 =
1

‖xi − xj‖2

∥∥∥vT
1 (xr − xi)

∥∥∥
2
+

1

σ2

d∑

m=2

∥∥∥vT
m(xr − xi)

∥∥∥
2

=
1

‖xi − xj‖2

∥∥∥vT
1 (xr − xi)

∥∥∥
2 − 1

σ2

∥∥∥vT
1 (xr − xi)

∥∥∥
2
+

1

σ2

d∑

m=1

∥∥∥vT
m(xr − xi)

∥∥∥
2

=
1

σ2
‖xr − xi‖2 −

(
1

σ2
− 1

‖xi − xj‖2

) ∥∥∥vT
1 (xr − xi)

∥∥∥
2
. (8)

Hence, given xi, xj, xr, and σ, the neighborhood function value Nij(xr) for

pattern xr can be computed by applying Equations (7) and (8).

The effect of dissimilar pattern pairs in D can also be modeled similarly. As

in Equation (5), the update equation for any pattern xs ∈ X\{xk,xl}, as a

result of the influence of pattern pair (xk,xl) ∈ D, is given by

∆xs|(xk,xl) =
ηα

‖xk − xl‖3
Nkl(xs)uxs←mkl

, (9)

where Nkl(·) is defined in the same way as Nij(·).

Location changes computed from this phase, together with location changes

computed from the previous phase, will take effect all at once before moving

on to the next iteration. 4

4 This is analogous to the Jacobi method, as opposed to the Gauss-Seidel method,
for boundary value problems.
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2.3 Annealing and Stopping Criteria

Based on update equations (3)–(5) and (9) in the two previous subsections,

the locations of all patterns in the input space are adjusted iteratively. To en-

sure convergence, the learning rate parameter η should decrease monotonically

with time. Moreover, the variances of the neighborhood functions should also

decrease with time to gradually increase the specificity of the neighborhood

functions. We apply a simple annealing procedure by using a fixed decay rate

τ = 0.95 for both η and σ2
h (for hyperspherical Gaussian) or 1/D2 (for full

Gaussian).

The iterative metric adaptation procedure of RMA eventually has to stop.

One possible stopping criterion can be defined based on the ratio λ of the

average Euclidean distance over all pattern pairs in S to that over all pattern

pairs in D:

λ =
|D|∑(xi,xj)∈S ‖xi − xj‖
|S|∑(xk,xl)∈D ‖xk − xl‖ .

Apparently, a good metric should give a small value of λ. In general, λ de-

creases with time in the course of the metric adaptation process.

We summarize our RMA metric adaptation algorithm in Figure 1 below.

Input: X = {x1,x2, . . . ,xn}, S0, D0

Begin
Convert S0 and D0 into S and D
t = 0
Repeat {

For each (xi,xj) ∈ S, compute ∆xi|(xi,xj) according to (3)
For each (xk,xl) ∈ D, compute ∆xk|(xk,xl) according to (4)
For each (xi,xj) ∈ S,

For each xr ∈ X\{xi,xj}, compute ∆xr|(xi,xj) according to (5)
For each (xk,xl) ∈ D,

For each xs ∈ X\{xk,xl}, compute ∆xs|(xk,xl) according to (9)
Compute total location change ∆xi for each xi ∈ X
Update each xi ∈ X simultaneously
t = t + 1

λ =
|D|

∑
(xi,xj)∈S ‖xi−xj‖

|S|
∑

(xk,xl)∈D
‖xk−xl‖

} until λ is small enough
End

Fig. 1. Summary of RMA algorithm
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3 Experiments on Semi-Supervised Clustering

To assess the effectiveness of RMA for clustering tasks, we perform exten-

sive experiments on both simulated data and real-world data from the UCI

Machine Learning Repository. 5

3.1 Eight Clustering Algorithms

Similar to [20], we compare the clustering results based on k-means with and

without metric learning. We also repeat the experiments using the constrained

k-means algorithm [19]. More specifically, the following eight clustering algo-

rithms are compared:

(1) k-means algorithm based on default Euclidean metric without using the

constraints in S and D
(2) constrained k-means algorithm based on default Euclidean metric subject

to the constraints that patterns in a pair (xi,xj) ∈ S are always assigned

to the same cluster and patterns in a pair (xk,xl) ∈ D are always assigned

to different clusters

(3) k-means algorithm + Xing et al.’s diagonal metric learning method

(4) constrained k-means algorithm + Xing et al.’s diagonal metric learning

method

(5) k-means algorithm + Xing et al.’s full metric learning method

(6) constrained k-means algorithm + Xing et al.’s full metric learning method

(7) k-means algorithm + RMA

(8) constrained k-means algorithm + RMA

3.2 Performance Measures

The Rand index [26] is a clustering quality measure that measures the agree-

ment of the clustering result with the ground truth. Let ns be the number of

pairs of patterns that are assigned to the same cluster (i.e., matched pairs)

in both the resultant partition and the ground truth, and nd be the number

5 http://www.ics.uci.edu/~mlearn/MLRepository.html
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of pairs of patterns that are assigned to different clusters (i.e., mismatched

pairs) in both the resultant partition and the ground truth. The Rand index

is defined as the ratio of (ns + nd) to the total number of pattern pairs, i.e.,

n(n − 1)/2. When there are more than two clusters, however, the standard

Rand index will favor assigning patterns to different clusters. We modify the

Rand index as in [20] so that matched pairs and mismatched pairs are assigned

weights to give them equal chance of occurrence (0.5).

Note that the result depends on the S and D sets. To see how different al-

gorithms vary their performance with the background knowledge provided,

we randomly generate different sets of S and D for our experiments. Specif-

ically, we use 100 different S−D sets for each data set. Moreover, since the

result from k-means or constrained k-means can also vary slightly with ran-

dom initialization, we compute the average Rand index over 20 random runs

of (constrained) k-means for each S−D pair. The results from all eight algo-

rithms are then shown using box plots from S-PLUS.

3.3 Experiments on Simulated Data

We first perform some experiments on simulated data. We generate three

simulated data sets as shown in Figure 2. The data points with the same

color and type belong to the same class. The first two data sets, with 200

patterns (i.e., sample points) each (100 points for each class), are similar to

those used by [20]. We also introduce a third set which better demonstrates

the advantages of our method. There are 150 patterns in this data set, with

50 points for each of the three natural groupings (i.e., one class has 100 points

while the other class has 50). For each data set, we randomly select 0.5% of

the similar pairs to form S0. Similarly, we also randomly select 0.5% of the

dissimilar pairs to form D0.

Figure 3 shows the clustering results of the eight algorithms for the three

simulated data sets. Obviously, all the three data sets cannot be clustered

well using the standard k-means algorithm. In fact, even the constrained k-

means algorithm does not work well. For the first two data sets, good results

can be obtained by using both RMA and Xing et al.’s diagonal or full metric

learning method. For the third data set, RMA still gives fairly good results
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Fig. 2. Simulated data sets

but Xing et al.’s method cannot cluster the data well. It is easy to understand

why Xing et al.’s method does not work well for this data set. Since both the

lower-left cluster and the upper-right cluster belong to the same class but the

middle one belongs to the other class, the adapted metric tries to scale the

data globally so that patterns from the lower-left and upper-right clusters are

projected linearly to lie close to each other. However, this projection based

on a global metric makes the two classes overlap significantly with each other

and hence the clustering results are not satisfactory.
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Fig. 3. Clustering results for simulated data sets shown as box plots for 100 different
S−D sets (the eight clustering algorithms are numbered as in Section 3.1)

3.4 Experiments on UCI Data

We further perform experiments on some UCI real-world data sets. For com-

parison, we use the same nine UCI benchmark data sets as in [20]. Each

attribute is standardized by subtracting the mean from each value and di-

viding it by the corresponding standard deviation (i.e., standardized to zero

mean and unit variance). Table 1 tabulates some characteristics of the nine

data sets. The three columns show the number of patterns n, the number of
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classes c, and the number of attributes d for each data set. The number of

similar pairs |S0| and the number of dissimilar pairs |D0| randomly selected

from each data set are shown in the subfigure captions of Figure 4.

Table 1
Nine UCI data sets used in our experiments

Data set n c d

Soybean 47 4 35

Protein 116 6 20

Iris plants 150 3 4

Wine 178 3 13

Ionosphere 351 2 34

Boston housing 506 3 13

Breast cancer 569 2 31

Balance 625 3 4

Diabetes 768 2 8

The clustering results of the eight algorithms are shown in Figure 4. As we can

see, RMA gives significant improvement in clustering performance over the k-

means and constrained k-means algorithms for all data sets. To compare our

method with that of Xing et al., we find that RMA is clearly better than Xing

et al.’s method for six out of the nine data sets (Protein, Ionosphere, Boston

housing, Breast cancer, Balance, and Diabetes), while RMA has performance

in between the diagonal and full metric learning methods of Xing et al. for

the Iris plants data set.

3.5 Significance Tests

For data sets in which both RMA and Xing et al.’s method give comparable

results, we would like to compare them more carefully under the hypothesis

testing framework. Specifically, we would like to perform two-side paired t-test

on the clustering results for the first two simulated data sets and the Soybean

and Wine UCI data sets.
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Fig. 4. Clustering results for UCI data sets shown as box plots for 100 different
S−D sets (the eight clustering algorithms are numbered as in Section 3.1)

Table 2 shows the paired t-test statistics for the four data sets. Each sample

X (or Y ) in the pair (X,Y ) is a 100-element vector of Rand index values

for 100 different S−D sets obtained using algorithm X (or Y ), where the

algorithms are numbered as in Section 3.1. RX (or RY ) refers to the Rand index

value obtained using algorithm X (or Y ). The last column concludes which

algorithm is better, with the symbols < and > denoting ‘is worse than’ and ‘is

better than’, respectively. From the results of paired t-test with significance

level 0.05, we can conclude that RMA is better than Xing et al.’s full metric
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learning method for the first simulated data set. For the second simulated data

set, Xing et al.’s diagonal metric learning method is better than ours. As for

the two UCI data sets, the clustering performance of RMA is the best.

Table 2
Paired t-test on the clustering results for four data sets

Paired sample Mean of

Data set (X, Y ) RX −RY t p value Remark

Simulated 1 (6, 8) −1.944× 10−3 −3.4757 0.0008 X < Y

Simulated 2 (4, 8) 4.077× 10−3 4.6887 0 X > Y

Soybean (2, 8) −1.033× 10−2 −3.3116 0.0013 X < Y

(4, 8) −2.798× 10−2 −6.4397 0 X < Y

(6, 8) −1.350× 10−2 −4.2601 0 X < Y

Wine (2, 8) −8.893× 10−3 −5.8209 0 X < Y

(4, 8) −3.679× 10−2 −8.6770 0 X < Y

(6, 8) −8.748× 10−3 −5.5408 0 X < Y

To summarize, RMA outperforms the other methods for all data sets except

the second simulated data set and the Iris plants data set.

3.6 Efficiency

For each iteration of the RMA algorithm as summarized in Figure 1, we have to

compute the neighborhood function Nij(xr) for each pattern xr, r = 1, . . . , n

for each similar or dissimilar pattern pair (xi,xj) ∈ S ⋃D, and then decide the

location change for each pattern. Therefore, the time complexity for each iter-

ation of the RMA algorithm is O(n(|S|+ |D|)). Since the number of pairwise

constraints |S|+ |D| is usually much smaller than the total number of patterns

n, our method is more efficient than Xing et al.’s method which has an O(n2)

time complexity. In our experiments, we have noticed that the diagonal met-

ric learning method can take much longer time than the full metric learning

method for some data sets. In general, the speed of RMA is less sensitive to

the data sets considered.
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4 Experiments on Content-Based Image Retrieval

4.1 Content-Based Image Retrieval

With the emergence and increased popularity of the World Wide Web (WWW)

over the past decade, retrieval of images based on content, often referred to

as content-based image retrieval (CBIR), has gained a lot of research interests

[27]. The two determining factors for image retrieval performance are the fea-

tures used to represent the images and the distance function used to measure

the similarity between a query image and the images in the database. For a

specific feature representation chosen, the retrieval performance depends crit-

ically on the similarity measure used. Instead of choosing a distance function

in advance, a more promising approach is to learn a good distance function

from data automatically. Recently, this challenging new direction has aroused

great interest in the research community. In particular, RCA [21,28] has been

used to improve image retrieval performance in CBIR tasks. More recently,

another method called DistBoost [22,23] was demonstrated to give even better

image retrieval results.

In this section, we will apply RMA to improve the retrieval performance of

CBIR tasks. We will also compare the retrieval performance of this method

with other distance learning methods.

4.2 Image Databases and Feature Representation

Our image retrieval experiments are based on two image databases. One

database is a subset of the Corel Photo Gallery, which contains 1010 images

belonging to 10 different classes. The 10 classes include bear (122), butterfly

(109), cactus (58), dog (101), eagle (116), elephant (105), horse (110), pen-

guin (76), rose (98), and tiger (115). Another database contains 546 images

belonging to 10 classes that we downloaded from the Internet. The image

classes are manually defined based on high-level semantics. Compared with

the first database, the class sizes of this database have a much wider range of

variations from the smallest class with 24 images to the largest class with 125

images.
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We first represent the images in the HSV color space, and then compute

the color coherence vector (CCV) [29] as the feature vector for each image.

Specifically, we quantize each image to 8×8×8 color bins, and then represent

the image as a 1024-dimensional CCV (α1, β1, . . . , α512, β512)
T , with αi and βi

representing the numbers of coherent and non-coherent pixels, respectively, in

the ith color bin. The CCV representation gives finer distinctions than the use

of color histograms. Thus it usually gives better image retrieval results. For

computational efficiency, we first apply principal component analysis (PCA)

to retain the 60 dominating principal components before applying RMA as

described in the previous section.

4.3 Comparative Study and Performance Measures

We compare the image retrieval performance of RMA with the baseline method

of using Euclidean distance without distance learning, as well as some other

distance learning methods. Besides Xing et al.’s methods, we also include dis-

tance learning methods with RCA and DistBoost in our comparative study. 6

RCA makes use of the pairwise similarity constraints to learn a Mahalanobis

distance, which essentially assigns large weights to relevant components and

low weights to irrelevant components with relevance estimated based on the

connected components composed of similar patterns. DistBoost, as discussed

in Section 4.1, is a nonmetric distance learning method that makes use of the

pairwise constraints and performs boosting. Since both RCA and DistBoost

make use of similarity constraints only, for fair comparison, we do not incorpo-

rate dissimilarity information in RMA in our image retrieval experiments. As

a consequence, we have to modify the stopping criterion slightly by defining

λ as the average Euclidean distance over all pattern pairs in S to all pattern

pairs instead of pattern pairs in D only.

We use two performance measures in our comparative study. The first one,

based on precision and recall, is commonly used in information retrieval. The

second one, used in [22,23], is based on cumulative neighbor purity curves.

Cumulative neighbor purity measures the percentage of correctly retrieved

6 The MATLAB code for RCA and DistBoost was obtained from the authors of
[21,23,28].
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images in the k nearest neighbors of the query image, averaged over all queries,

with k up to some value K (K = 20 or 40 in our experiments).

For each retrieval task, we compute the average performance statistics over 5

randomly generated sets of similar image pairs. The number of similar image

pairs is set to 150, which is about 0.3% and 0.7% of the total number of possible

image pairs in the first and second databases, respectively. For each set of

similar image pairs, we set the number of boosting iterations in DistBoost to

50.

4.4 Experimental Results

Figure 5 shows the retrieval results on the first image database based on

both cumulative neighbor purity and precision/recall. We can see that met-

ric learning with RMA significantly improves the retrieval performance and

outperforms other distance learning methods especially with respect to the cu-

mulative neighbor purity measure. The retrieval results on the second image

database are shown in Figure 6. Note that this database is highly unbalanced

as the class sizes vary significantly. For this database, Xing et al.’s methods,

RCA and DistBoost cannot improve the retrieval performance. On the other

hand, RMA significantly outperforms the other methods in improving the

retrieval performance.
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Fig. 5. Retrieval results on the first image database (1010 images, 10 classes). (a) cu-
mulative neighbor purity curves; (b) precision/recall curves.

Some typical retrieval results on the first and second databases are shown in

Figure 7(a) and (b), respectively. For each query image, we show the retrieved
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Fig. 6. Retrieval results on the second image database (546 images, 10 classes).
(a) cumulative neighbor purity curves; (b) precision/recall curves.

images in five rows, corresponding, from top to bottom, to the use of Euclidean

distance without distance learning and distance learning with Xing et al.’s full

metric learning method, RCA, DistBoost and RMA. Each row shows the 7

nearest neighbors of the query image with respect to the distance used, with

dissimilarity based on the distance increasing from left to right. The query

image is shown with a frame around it. Note that the query image may not

be the nearest neighbor using the DistBoost method since it learns nonmetric

distance functions which, among other things, may not satisfy d(x,x) = 0 and

the triangle inequality condition. While Euclidean distance without distance

learning tends to retrieve images based mostly on the color coherence features,

the distance learning methods can retrieve images with different background

colors, as shown in Figure 7(b). This is in fact the main motivation for de-

veloping distance learning methods so that the retrieval results correspond

better to human expectation in the semantic sense. It can be seen that among

the distance learning methods studied, RMA slightly outperforms the other

methods.

4.5 Relevance Feedback vs. Pairwise Constraints

Relevance feedback has been used in the traditional information retrieval com-

munity to improve the performance of information retrieval systems based on

user feedback. This interactive approach has also emerged as a popular ap-

proach in CBIR [30]. The user is provided with the option of labeling (some

of the) previously retrieved images as either relevant or irrelevant. Based on
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(a)

(b)

Fig. 7. Typical retrieval results on the two databases ((a) and (b)) based on Eu-
clidean distance (first row), Xing et al.’s full metric learning (second row), RCA
(third row), DistBoost (four row) and RMA (fifth row). Each row shows the 7
nearest neighbors including the query image (framed).
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this feedback information, the CBIR system can iteratively refine the retrieval

results by learning a more appropriate (dis)similarity measure.

Relevance feedback may also be used to obtain the pairwise constraints. The

pairwise similarity constraints used by RMA can make better use of the rel-

evance feedback from users, not only from one specific query but also from

all previous ones. Specifically, similarity constraints can be obtained from the

relevance feedback, with each relevant image and the query image forming

a similar image pair. The set of similar image pairs (or pairwise similarity

constraints) is incrementally built up as relevance feedback is collected from

users. Thus, later retrieval tasks can make use of an increasing set of similar

image pairs for metric learning. To verify whether increasing the number of

pairwise similarity constraints can improve the retrieval performance, we fur-

ther perform some experiments on a smaller image database containing 448

images from four classes. Figure 8 shows the results in terms of precision/recall

curves for different numbers of pairwise similarity constraints. It is clear that

the performance increases with the number of similar image pairs. Thus, RMA

can be used for long-term learning to enhance the CBIR performance by ac-

cumulating relevance feedback from all previous query sessions. We can also

adapt the distance metric when new images are added to the image database.

The metric adaptation process will be repeated whenever new queries are put

forward.
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5 Related Previous Work

The nonparametric RMA method proposed in this paper for implicit distance

metric adaptation has been inspired by previous work in several lines of re-

search, although the problems addressed by them are different from what we

intend to solve here.

Deformable shape models [31–34] take a model-based approach to object

recognition by varying the shape of a model for representing an object while

limiting the degree of model deformation. Our criterion-based optimization

method for adjusting the locations of patterns in the input space resembles

the energy minimization approach adopted by many deformable models.

We also note that RMA is somewhat related to the nonparametric clustering

algorithm based on the so-called ‘friends’ and ‘non-friends’ [35], i.e., the prox-

imity relationships between a point and all other points. Unlike the iterative

transformation of the proximity matrix in their method, we formulate metric

adaptation explicitly in RMA under an optimization framework. Also, RMA

is not limited to finding two clusters at a time.

Self-organizing maps (SOM) [36] and their probabilistic extension called gen-

erative topographic mapping (GTM) [37] attempt to find a low-dimensional

embedding of some data manifold in a high-dimensional space while preserv-

ing topographic relationships. The notion of soft neighborhood has inspired us

to use Gaussian neighborhood functions to achieve global, long-range metric

adaptation effects. A more recent method called stochastic neighbor embed-

ding (SNE) [38] generalizes SOM and GTM by allowing many-to-one map-

pings in the embedding. Similar to our gradient-descent method, SNE also

employs a gradient-based approach for adjusting the locations of points in the

low-dimensional embedding space.

RMA also bears similarities with the embedding problem in general, which is

of central importance to such techniques as multidimensional scaling (MDS)

[39]. As is almost always the case, MDS attempts to embed patterns from one

(possibly non-metric, usually high-dimensional) space into another (metric,

usually low-dimensional) embedding space. In our case, however, we do not

make any difference between the two spaces. Instead, we (implicitly) modify
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the metric directly in the input space so that similar patterns tend to get

closer and dissimilar patterns tend to move away from each other after metric

adaptation. Since the original input space is metric to begin with, the adap-

tation procedure does not change the metric nature of the space. Hence, we

avoid the problem of having to ensure that the embedding space is metric.

6 Concluding Remarks

We have proposed a new metric adaptation method called RMA for improving

clustering results using pairwise (dis)similarity information. Since RMA is

nonparametric in nature, it can adapt to different local metrics at different

locations of the input space. While RMA is local in this sense, it also possesses

some global properties in that patterns can induce long-range effects on other

patterns through a Gaussian neighborhood.

Note that the original input space and the transformed space after metric

adaptation are not explicitly related via some transformation mapping. Thus

it is not straightforward for new points added to the original input space to

be projected onto the transformed space, although typically clustering tasks

do not have to address this problem.

RMA does not attempt to preserve the topological structure of the patterns

during the metric adaptation process. We are currently trying to extend it

by preserving the topological relationships explicitly. With this new property

introduced, it may be possible to extend RMA to visualization and other

machine learning tasks.
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